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Abstract

The prominence of deep learning, large amount of annotated
data and increasingly powerful hardware made it possible to
reach remarkable performance for supervised classification
tasks, in many cases saturating the training sets. However the
resulting models are specialized to a single very specific task
and domain. Adapting the learned classification to new do-
mains is a hard problem due to at least three reasons: (1) the
new domains and the tasks might be drastically different; (2)
there might be very limited amount of annotated data on the
new domain and (3) full training of a new model for each
new task is prohibitive in terms of computation and mem-
ory, due to the sheer number of parameters of deep CNNs. In
this paper, we present a method to learn new-domains and
tasks incrementally, building on prior knowledge from al-
ready learned tasks and without catastrophic forgetting. We
do so by jointly parametrizing weights across layers using
low-rank Tucker structure. The core is task agnostic while a
set of task specific factors are learnt on each new domain.
We show that leveraging tensor structure enables better per-
formance than simply using matrix operations. Joint tensor
modelling also naturally leverages correlations across differ-
ent layers. Compared with previous methods which have fo-
cused on adapting each layer separately, our approach results
in more compact representations for each new task/domain.
We apply the proposed method to the 10 datasets of the Vi-
sual Decathlon Challenge and show that our method offers
on average about 7.5× reduction in number of parameters
and competitive performance in terms of both classification
accuracy and Decathlon score.

1 Introduction

It is now commonly accepted that supervised learning with
deep neural networks can provide satisfactory solutions for
a wide range of problems as long as i) the aim is to focus
on a single task only, and ii) there is a sufficient availability
of labelled training data and computational resources. This
is the setting under which Convolutional Neural Networks
(CNNs) have been employed in order to provide state-of-
the-art solutions for a wide range of Computer Vision prob-
lems such as recognition (Krizhevsky, Sutskever, and Hinton
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2012; Simonyan and Zisserman 2014; He et al. 2016), de-
tection (Ren et al. 2015) and semantic segmentation (Long,
Shelhamer, and Darrell 2015; He et al. 2017) to name a few.

However, visual perception is not just concerned with be-
ing able to learn a single task at a time, assuming an abun-
dance of labelled data, memory and computing capacity.
A more desirable property is to be able to learn a set of
tasks, possibly over multiple different domains, under lim-
ited memory and finite computing power. This setting is a
very general one and many instances of it have been studied
in Computer Vision and Machine Learning under various
names. The main difference comes from whether we vary
the task to be performed (classification or regression), or the
domain, which broadly speaking refers to the distribution of
the data or the labels for the considered task.

Herein, we are mostly concerned with the problem of
multi-domain incremental learning. A key aspect of this set-
ting is that the new task should be learned without harming
the classification accuracy and representational power of the
original model. This is called learning without catastrophic
forgetting (French 1999; Li et al. 2017). Another important
aspect is to keep newly introduced memory requirements
low: a newly learned model should use as much as possi-
ble existing knowledge learned from already learned tasks,
i.e. from a practical perspective, it should re-use or adapt the
weights of an already trained (on a different task) network.

The aforementioned setting has only recently attracted the
attention of the neural network community. Notably, Re-
buffi, Bilen, and Vedaldi (2017) introduced the Visual De-
cathlon Challenge which is concerned with incrementally
converting an Imagenet classification model to new ones for
another 9 different domain/tasks. To our knowledge there
are only a few methods that have been proposed recently in
order to solve it (Rebuffi, Bilen, and Vedaldi 2017; 2018;
Rosenfeld and Tsotsos 2017; Mallya, Davis, and Lazebnik
2018). These works all have in common that incremental
learning is achieved with layer-specific adapting modules
(which are simply called adapters) applied to each CNN
layer separately. Although the adapters have only a small
number of parameters, because they are layer specific, the
total number of parameters introduced by the adaptation pro-
cess scales linearly with the the number of layers, and in
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practice an adaptation network requires about 10% extra pa-
rameters (see also (Rebuffi, Bilen, and Vedaldi 2018)). Our
main contribution is to propose a tensor method for multi-
domain incremental learning that requires significantly less
number of new parameters for each new task.
In summary, our contributions are:

• We propose to leverage joint parametrization of neural
networks for multi-domain learning without catastrophic
forgetting. Our method differs from previously proposed
layer-wise adaptation methods (and their straightforward
layer-wise extensions) by grouping all identically struc-
tured blocks of a CNN within a single high-order tensor.

• We perform a thorough evaluation of our model on the
10 datasets of the visual decathlon challenge and show
that our method offers on average about 7.5× reduction in
model parameters compared with training a new network
from scratch.

• The joint parametrization of the tensor with a low-rank
tensor naturally leverages correlations across different
layers. This results in learning more compact represen-
tations for each new task/domain.

• We show that this tensor approach outperforms meth-
ods based on matrix algebra that discard the multi-linear
structure in the data.

Intuitively, our method first learns, on the source domain,
a task agnostic core tensor. This represents a shared, domain-
agnostic, latent subspace. For each new domains, this core is
specialized by learning a set of task specific factors defining
the multi-linear mapping from the shared subspace to the
parameter space of each of the domains.

2 Closely Related Work

In this section, we review the related work on incremental
multi-domain learning and tensor methods.

Incremental Multi-Domain Learning In the context of
incremental learning, Rosenfeld and Tsotsos (2017) and Re-
buffi, Bilen, and Vedaldi (2017) introduce the concept of
layer adapters. Theses convert each layer1 of a pre-trained
CNN (typically on Imagenet) to adapt to a new classifica-
tion task, for which new training data becomes available.
Because the layers of the pre-trained CNN remain fixed,
such approaches avoid the problem of catastrophic forget-
ting (French 1999; Li et al. 2017) so that performance on
the original task is preserved. The method of (Rosenfeld and
Tsotsos 2017) achieves this by computing new weights for
each layer as a linear combination of old weights where the
combination is learned in an end-to-end manner for all layers
via back-propagation on the new task. The work in (Rebuffi,
Bilen, and Vedaldi 2017) achieves the same goal by intro-
ducing small residual blocks composed of batch-norm fol-
lowed by 1×1 convolutional layers after each 3×3 convolu-
tion of the original pre-trained network. Similarly, the newly
introduced parameters are learned via back-propagation.
The same work introduced the Visual Decathlon Challenge

1The last layer typically requires retraining because the number
of classes will in general be different.

which is concerned with incrementally adapting an Imagenet
classification model to 9 new and completely different do-
mains and tasks. More recently, (Rebuffi, Bilen, and Vedaldi
2018) extends (Rebuffi, Bilen, and Vedaldi 2017) by making
the adapters to work in parallel with the 3× 3 convolutional
layers. Although the adapters have only a small number of
parameters each, they are layer specific, and hence the total
number of parameters introduced by the adaptation process
grows linearly with the the number of layers. In practice,
an adaptation network requires about 10% extra parameters
(see also (Rebuffi, Bilen, and Vedaldi 2018)). In (Mallya,
Davis, and Lazebnik 2018) the authors propose to learn to
adapt to a new task by learning how to mask individual
weights of a pre-trained network. Following the same gen-
eral idea, in (Morgado and Vasconcelos 2019), the authors
introduce the so-called NetTailor method. Given an existing
pretrained network with generic layers the methods learns
how to combine them using a series of small task specific
layers. (Guo et al. 2019a) makes uses of depthwise separa-
ble convolutions in order to build more efficient multi-task
networks. In (Mancini et al. 2018), the authors propose to
learn a task specific binary mask that selects a different set
of activations depending of the target task.

Our method significantly differs from these works in that
it models groups of identically structured blocks within a
CNN with a single high-order tensor. This results in a much
more compact representations for each new task/domain,
with a latent subspace shared between domains. Only a set of
factors, representing a very small fraction of this subspace,
needs to be learnt for each new task or domain.

Tensor methods Herein, we focus on methods which
have been used to re-parametrize existing deep neural net-
works. For a review of tensor methods, the reader is referred
to existing surveys (Kolda and Bader 2009; Sidiropoulos et
al. 2016; Papalexakis, Faloutsos, and Sidiropoulos 2016). In
deep learning, tensor methods are typically used to speed up
computation or to reduce the number of parameters. Convo-
lutional kernels in particular can be decomposed and refor-
mulated more efficiently using CP Lebedev et al.; Astrid and
Lee (2015; 2017) or Tucker Kim et al. (2016) decomposi-
tion. Yang and Hospedales (2017) proposed a tensor factor-
ization approach to multi-task learning. The weights of sev-
eral networks (one per task) are parametrized, at each layer,
with a low-rank tensor which allows to learn the sharing.
The method of (Yunpeng et al. 2017) proposed a method to
share parameters within a ResNeXt (Xie et al. 2017) block,
by applying a Generalized Block Decomposition to a 4-th
order tensor. As exemplified here, tensor algebraic opera-
tions have the potential to improve deep models. However,
a straightforward extension of existing multi-domain adap-
tation methods to use tensor methods (e.g. (Rosenfeld and
Tsotsos 2017)) can result in an adaptation model with a large
number of parameters. To improve this, following (Kossaifi
et al. 2019a), we propose to model groups of identically
structured blocks within a CNN with a single high-order
Tucker tensor, with a task agnostic core and task specific
factors. We describe our method in details in the next sec-
tion.
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Figure 1: Overview of our method First, a task agnostic core K is learned jointly with the domain specific factors F(0)
s , · · · ,F(5)

s

on the source domain/task (left). For a new target domain/task, the same core is specialized for the new task by training a new
set of factors F

(0)
t , · · · ,F(5)

t (bottom), similarly for any new task k ∈ [1 . . N ] (right). Intuitively, the core represents a task
agnostic subspace, while the task specific factors define the multi-linear mapping from that subspace to the parameter space of
each of the domains. Note that here, we represent the 6th order tensors in 3D for clarity.

3 Method

In this section, we introduce our method (depicted in Fig-
ure 1) for incremental multi-domain learning, starting by
the notation used (Section. 3.1). By considering a source
domain Xs and output space Y s, we aim to learn a func-
tion h (here, a ResNet based architecture) parametrized by
a tensor θs, h(θs) : Xs → Y s. The model and its tensor
parametrization are introduced in detail in Section 3.2. The
main idea is to then learn a task agnostic latent manifold K
on the source domain. The parameter tensor θs is obtained
from K with task specific factors F

(0)
s , · · · ,F(N)

s . Given a
new target task, we then adapt h and learn a new parameter
tensor θt by specialising K with a new set of task specific
factors (F

(0)
t , · · · ,F(N)

t ). This learning process is detailed
in Section 3.3. In practice, most of the parameters are shared
in K, while the factors only contain a fraction of the param-
eters, which leads to large parameters savings. We offer an
in-depth analysis of these space savings in Section 3.4.

3.1 Notation

In this paper, we denote vectors (1st order tensors) as v, ma-
trices (2nd order tensors) as M and tensors, which general-
ize the concept of matrices for orders (number of dimen-
sions) higher than 2, as X . Id is the identity matrix. Ten-
sor contraction with a matrix, also called n–mode prod-
uct, is defined, for a tensor X ∈ R

D0×D1×···×DN and a
matrix M ∈ R

R×Dn , as the tensor T = X ×n M ∈
R

D0×···×Dn−1×R×Dn+1×···×DN , with:

Ti0,i1,··· ,iN =

Dn∑
k=0

Min,kXi0,··· ,in−1,k,in+1,··· ,iN .

3.2 Latent Network Parametrization

We propose to group all the parameters of a neural network
into a set of high-order hyper-parameter tensors (Kossaifi
et al. 2019a). We do so by collecting all the weights of
the neural network into 3 parameter tensors θ(0) and θ(2),
all of order 6. While the proposed method is not archi-
tecture specific, to allow for a fair comparison in terms of
overall representation power, we follow (Rebuffi, Bilen, and
Vedaldi 2017; 2018; Rosenfeld and Tsotsos 2017) and use
a modified ResNet-26 (He et al. 2016). The network con-
sists of 3 macro-modules, each consisting of 4 basic resid-
ual blocks (He et al. 2016). Each of these blocks contain
two convolutional layers with 3 × 3 filters. Following (Re-
buffi, Bilen, and Vedaldi 2017), the macro-modules output
64, 128, and 256 channels respectively. Throughout the net-
work the resolution is dropped multiple times. First, at the
beginning of each macro-module using a convolutional layer
with a stride of 2. A final drop in resolution is done at the
end of the network, before the classification layer, using an
adaptive average pooling layer that reduces the spatial di-
mensions to resolution of 1× 1 px.

In order to facilitate the proposed grouped tensorization
process, we moved the feature projection layer (a convolu-
tional layer with 1×1 filters), required each time the number
of features changes between blocks, outside of the macro-
modules (i.e. we place a convolutional layer with a 1 × 1
kernel before the 2nd and 3rd macro-modules).

We closely align our tensor re-parametrization to the net-
work structure by grouping together all the convolutional
layers within the same macro-module. For each macro-
module b ∈ {0, 1, 2}, we construct a 6th -order tensor col-
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lecting the weights in that group:

θ(b) ∈ R
D0×D1×···×D5 (1)

where Wb is the tensor for the bth macro-module. The 6 di-
mensions of the tensor are obtained as follows: D0 ×D1 ×
D2×D3 corresponds to the shape of the weights of a partic-
ular convolution layer and represents the number of output
channels, number of input channels, kernel width and kernel
height respectively. The D4

th mode corresponds to the num-
ber of basic blocks per residual module (2 in this case) and,
D5 corresponds to the number of residual blocks present in
each macro-module (4 for the specific architecture used).

Our model should be compared with previous meth-
ods for incremental multi-domain adaptation like (Rosen-
feld and Tsotsos 2017) (the method of (Rebuffi, Bilen, and
Vedaldi 2017) can be expressed in a similar way) which
learn a linear transformation per layer. In particular, (Rosen-
feld and Tsotsos 2017) learns a 2D adaptation matrix F ∈
R

D0×(D1×D2×D3) per convolutional layer. Moreover, prior
work on tensors (e.g. (Kim et al. 2016)) has focused on stan-
dard layer-wise modelling with a 4

th
-order convolutional fil-

ter, of shape D0×D1×D2×D3. In contrast, our model has
two additional dimensions incorporating intra-architecture
correlations and can accommodate an arbitrary number of
dimensions depending on the architecture used. Our ap-
proach is in particular not architecture specific and can be
used for various network architectures.

3.3 Multi-Domain Tensorized Learning

We now consider a scenario with T tasks, from potentially
very different domains. The traditional approach would con-
sist in learning as many models, one for each task. In our
framework, this would be equivalent to learning one param-
eter tensor θ

(b)
d independently for each task d and macro-

module b. Since the reasoning is the same for each of the
3 macro-modules, for clarity and without loss of general-
ity, we omit the b in the remaining of the paper. We pro-
pose that all the parameters are obtained from a shared la-
tent subspace, modelled by a task agnostic tensor K. The
(multi-linear) mapping between this task agnostic core and
the parameter tensor is then given by a set of task specific
factors (F(0)

s , · · ·F(5)
s ) that specialize the task agnostic sub-

space for the source domain s. Specifically, we write, for the
source domain s:

θs = K ×0 F
(0)
s ×1 F

(1)
s × · · · ×5 F

(5)
s , (2)

where K ∈ R
D0···×D5 is a task-agnostic full rank core

shared between all domains and (F
(0)
s ,F

(1)
s , · · · ,F(5)

s ) a
set of task specific projection factors (for domain s). We
assume here that the task used to train the shared core is a
general one with many classes and large amount of training
data (here, Imagenet classification). Moreover, a key obser-
vation to make at this point is that the number of parameters
for the factors is orders of magnitudes smaller than the num-
ber of parameters of the core.

For each new target domain t, we form a new parameter
tensor θt obtained from the same latent subspace K. This is

done by learning a new set of factors (Ft
(0), · · ·Ft

(5)) to
specialize K for the new task:

θt = K ×0 Ft
(0) ×1 Ft

(1) × · · · ×5 Ft
(5) (3)

Note that the new factors represent only a small fraction of
the total number of parameters, the majority of which are
contained within the shared latent subspace. By expressing
the new weight tensor θt as a function of the factors Ft,
one can learn them on the new task given that labelled data
are available in an end-to-end manner via back-propagation.
This allows to efficiently adapt the domain agnostic sub-
space to the new domains while retaining the performance
on the original task, and training only a small number of ad-
ditional parameters. Fig. 1 shows a graphical representation
of our method, where the weight tensors have been simpli-
fied to 3D for clarity.

Auxiliary loss function: To prevent degenerate solutions
and facilitate learning, we additionally explore orthogonal-
ity constraints on the task specific factors. This type of con-
straints have been shown to encourage regularization, im-
proving the overall convergence stability and final accu-
racy (Brock et al. 2016; Bansal, Chen, and Wang 2018). In
addition, by adding such constraint, we aim to enforce the
factors of the decomposition to be full-column rank, which
would ensure that the core of the decomposition preserves
essential properties of the full weight tensor such as the
Kruskal rank (Jiang, Yang, and Zhang 2017). In practice,
rather than a hard constraint, we add a loss to the objective
function:

L = λ
5∑

k=0

‖
(
Fk

(k)
)�

Fk
(k) − Id‖2F . (4)

The regularization parameter λ was validated on a small val-
idation set.

3.4 Complexity Analysis

In terms of unique, task specific parameters learned, our
grouping strategy is significantly more efficient than a layer-
wise parametrization. For a given group of convolutional
layers, in this work defined by the macro-module structure
present in a ResNet architecture, we can express the total
number of parameters for a Layer-wise Tucker case (this
is not proposed in this work but mentioned here for com-
parison purposes) as follows: Nlayerwise = (D4 × D5) ×
(
∑3

k=0 DnRk).
In particular, in the case of a full rank decomposition, by

denoting L = D4 ×D5 the number of convolutional layers,
we get:

Nlayerwise = (D4 ×D5)︸ ︷︷ ︸
L

×(D2
0 +D2

1 +D2
2 +D2

3), (5)

where L is the number of re-parametrized layers in a given
group.

For the linear case (Rosenfeld and Tsotsos 2017), we have
that D0 = D1 = Dc, and the number of parameters sim-
plifies to: Nlinear = (D4 ×D5)︸ ︷︷ ︸

L

×D2
c As opposed to this,
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for our proposed method, by grouping the parameters to-
gether into a single high-order tensor, the total number of
parameters is: NT-Net =

∑5
k=0 DnRk. For the full-rank case

(Dn = Rk), this simplies to:

NT-Net = D2
0 +D2

1 +D2
2 +D2

3 + D2
4 +D2

5︸ ︷︷ ︸
( L
D5

)2+( L
D4

)2

(6)

Note that here, D4 = 2 and D5 = 4 so D2
4 +D2

5 ≤ L2

4 .
Because in practice (D2

0 + D2
1 + D2

2 + D2
3) � L2, by

using the proposed method, we achieve Nlayerwise

NT-Net
≈ L times

less task-specific parameters.
Substituting the variables from Eq. (5) and Eq. (6) with

the numerical values specific to the architecture used in this
work we obtain in total: Nlayerwise = 1, 376, 688 parameters.
By contrast, using the same setting for our proposed method,
we get NT-Net = 172, 068, thus verifying Nlayerwise

NT-Net
≈ 8 = L.

Making the same assumptions as for the linear case, given
that we use square convolutional kernels (i.e. D2 = D3 =

Dn), and Dc � Dn, Eq. (6) becomes: NT-Net ≤ 2D2
c +

L2

4 ,
resulting in ≈ L

2 less parameters than in the linear case (L2 =
4 for the model used).

Conclusion: Our proposed approach uses L times less pa-
rameters per group than the layers-wise Tucker decompo-
sition and L

2 times less parameters than the layer-wise lin-
ear decomposition. For the ResNet-26 architecture used in
this work L = 8.

4 Experimental Setting

In this section, we detail the experimental setting, metrics
used and implementation details.

Datasets: We evaluate our method on the 10 different
datasets from very different visual domains that compose
the Decathlon challenge (Rebuffi, Bilen, and Vedaldi 2017).
Note that this dataset where modified in (Rebuffi, Bilen, and
Vedaldi 2017), mainly by resizing and cropping them to the
same resolution (72×72px). This challenge assesses explic-
itly methods designed to solve incremental multi-domain
learning without catastrophic forgetting. Imagenet (Rus-
sakovsky et al. 2015) contains 1.2 millions images dis-
tributed across 1000 classes. Following (Rebuffi, Bilen, and
Vedaldi 2017; 2018; Rosenfeld and Tsotsos 2017), this was
used as the source domain to train the shared low-rank man-
ifold for our model as detailed in Eq. (2). The FGVC-
Aircraft Benchmark (Airc.) (Maji et al. 2013) contains
10,000 aircraft images across 100 different classes; CI-
FAR100 (C100) (Krizhevsky and Hinton 2009) is com-
posed of 60000 small images in 100 classes; Daimler Mono
Pedestrian Classification Benchmark (DPed) (Munder
and Gavrila 2006) is a dataset for pedestrian detection (bi-
nary classification) composed of 50,000 images; Describ-
able Texture Dataset (DTD) (Cimpoi et al. 2014) contains
5640 images, for 47 texture categories; the German Traf-
fic Sign Recognition (GTSR) Benchmark (Stallkamp et al.

2012) is a dataset of 50, 000 images of 43 traffic sign cate-
gories; Flowers102 (Flwr) (Nilsback and Zisserman 2008)
contains 102 flower categories with between 40 and 258 im-
ages per class; Omniglot (OGlt) (Lake, Salakhutdinov, and
Tenenbaum 2015) is a dataset of 32000 images representing
1623 handwritten characters from 50 different alphabets; the
Street View House Numbers (SVHN) (Netzer et al. 2011)
is a digit recognition dataset containing 70000 images in 10
classes. Finally, UCF101 (UCF) (Soomro, Zamir, and Shah
2012) is an action recognition dataset composed of 13,320
images representing 101 action classes.

Metrics: We follow the evaluation protocol of the De-
cathlon Challenge and report results in terms of mean ac-
curacy and decathlon score S, computed as follows:

S =
N∑
t=1

βt max{0, Ereference
t − Et}λt , (7)

where Ereference
t is considered to be the upper limit al-

lowed for a given task t in order to receive points, λt is
an exponent that controls the reward proportionality, and
βt a scalar that enforces the limit of 1000 points per task.
Ereference = 2Ebaseline where Ebaseline is the strong base-
line from (Rebuffi, Bilen, and Vedaldi 2017).

One key limitation of this metric is that it doesn’t take
in consideration the model capacity or the methods com-
pression abilities. As such, following (Mancini et al. 2018;
Berriel et al. 2019) we also report an efficiency based scored
(EScore) that is simply computed by dividing the decathlon
score by the relative number of parameters required across
all tasks with respect to the original ResNet-26 network
from (Rebuffi, Bilen, and Vedaldi 2017).

Implementation details: We first train our adapted
ResNet-26 model on ImageNet for 90 epochs using SGD
with momentum (0.9), using a learning rate of 0.1 that is
decreased in steps by 10× every 30 epochs. To avoid over-
fitting, we use a weight decay equal to 10−5. During train-
ing, we follow the best practices and randomly apply scale
jittering, random cropping and flipping. We initialize our
weights from a normal distribution N (0, 0.002), before de-
composing them using Tucker decomposition (Section 3).
Finally, we train the obtained core and factors (via back-
propagation) by reconstructing the weights on the fly.

For the remaining 9 domains, we load the task-
independent core and the factors trained on imagenet, freeze
the core weights and only fine-tune the factors, batch-norm
layers and the two 1 × 1 projection layers, all of which ac-
count for ≈ 3.5% of the total number of parameters in total.
The linear layer at the end of the network is trained from
scratch for each task and was initialized from a uniform dis-
tribution. Depending on the size of the dataset, we adjust the
weight decay to avoid overfitting (10−5 for larger datasets)
and up to 0.005 for the smaller ones (e.g. Flowers102).

We used PyTorch (Paszke et al. 2017) to implement and
train the models and TensorLy (Kossaifi et al. 2019b) for all
tensor operations.

10474



Dataset
Model #param

ImNet Airc. C100 DPed DTD GTSR Flwr OGlt SVHN UCF
Mean EScore Score

Model \Number of images - 1.3M 7K 50K 30K 4K 40K 2K 26K 70K 9K - - -

Rebuffi et al. 2017 2× 59.23 63.73 81.31 93.30 57.02 97.47 83.43 89.82 96.17 50.28 77.17 1322 2643
Rosenfeld et al. 2017 2× 57.74 64.11 80.07 91.29 56.54 98.46 86.05 89.67 96.77 49.38 77.01 1425 2851
Mallya et al. 2018 1.28× 57.69 65.29 79.87 96.99 57.45 97.27 79.09 87.63 97.24 47.48 76.60 2217 2838
S. Adap. (Rebuffi et al. 2017) 2× 60.32 61.87 81.22 93.88 57.13 99.27 81.67 89.62 96.57 50.12 77.17 1580 3159
P. Adap. (Rebuffi et al. 2017) 2× 60.32 64.21 81.91 94.73 58.83 99.38 84.68 89.21 96.54 50.94 78.07 1706 3412
P. SVD (Rebuffi et al. 2017) 1.5× 60.32 66.04 81.86 94.23 57.82 99.24 85.74 89.25 96.62 52.50 78.36 2265 3398
NetTailor (Morgado et al. 2019) 1.5× 61.42 75.07 81.84 94.68 61.28 99.52 88.53 90.09 96.44 49.54 79.64 2496 3744
SpotTune (Guo et al. 2019b) 11× 60.32 63.91 80.48 94.49 57.13 99.52 85.22 88.84 96.72 52.34 77.89 328 3612
Depthwise (Guo et al. 2019a)* 1× 63.99 61.06 81.20 97.00 55.48 99.27 85.67 89.12 96.16 49.33 77.82 3507 3507
Bin. mask (Mancini et al. 2018) 1.29× 60.8 52.8 82.0 96.2 58.7 99.2 88.2 89.2 96.8 48.6 77.2 - -
BA2 (Berriel et al. 2019) 1.03× 56.9 49.9 78.1 95.5 55.1 99.4 86.1 88.7 96.9 50.2 75.7 3105 3199

Ours 1.35× 61.48 67.36 80.84 93.22 59.10 99.64 88.99 88.91 96.95 47.90 78.43 2656 3585

Table 1: Comparison to the state-of-the-art: Top-1 classification accuracy (%) and overall decathlon scores on all 10 dataset
from the Visual Decathlon challenge. Our method is generic, applicable to any network architecture. It offers a good balance
between accuracy and number of task-specific parameters used.

5 Results

First, we assess the performance of the proposed ap-
proach (Section 5.1) and compare it with the state-of-the-
art on the challenging Visual Decathlon (Rebuffi, Bilen, and
Vedaldi 2017). In Section 5.2, we study of the method, in-
cluding the importance of source dataset, the influence of the
amount of data on the overall performance and the effect of
the constraints imposed on the core and factors of the model.

5.1 Comparison with State-of-the-Art

Herein, we compare against the current state-of-the-art
methods on multi-domain transfer learning (Rebuffi, Bilen,
and Vedaldi 2017; 2018; Rosenfeld and Tsotsos 2017;
Mallya, Davis, and Lazebnik 2018) on the decathlon dataset.
We train our core subspace on ImageNet and incrementally
adapt to all 9 other domains. We report, for all methods, the
relative increase in number of parameters (per domain), the
top-1 accuracy on each of the 10 domain, as well as the av-
erage accuracy and overall challenge score, Table 1.

Overall, our approach offers competitive results in terms
of both accuracy and efficiency (i.e. number of introduced
task-specific parameters), offering a good balance between
the two. When compared within the same class of methods,
that directly apply a form of matrix decomposition (Rebuffi,
Bilen, and Vedaldi 2018; Rosenfeld and Tsotsos 2017) our
approach outperforms all of them, including the joint com-
pression method of (Rebuffi, Bilen, and Vedaldi 2018) (de-
noted as “Parallel SVD”) that takes advantage of the data re-
dundancy in-between tasks. We could go further and impose
a weight sharing within the prediction layers by removing
the flattening and fully-connected layers altogether, replace
them with a tensor regression layer (TRL) (Kossaifi et al.
2018). Our approach can then be readily applied to the low-
rank Tucker tensor of the TRL. Furthermore, our method
could be combined with binary masking approaches (Berriel
et al. 2019; Mallya, Davis, and Lazebnik 2018) that reduce
the number of additional parameters by compacting the bi-
nary values using bit packing.

5.2 Inter-class Transfer Learning

Most of the recent work on multi-domain incremental learn-
ing attempts to transfer the knowledge from a model, pre-
trained on a large scale dataset such as ImageNet to another
easier dataset and/or task. In this work, we go on step further
and explore the efficiency of our transfer learning approach
when such source dataset or computational resources are not
available, by starting from a model pre-trained on a much
smaller dataset. Table 2 shows the results for a network pre-
trained of CIFAR100. Notice that on some datasets (i.e. GT-
SRB, OGlt) such model can match or marginally surpass the
performance of its Imagenet counterpart. On the other hand,
on some of the more challenging datasets (i.e. DTD, air-
craft) there is still a large gap. This suggest that the features
learned by Cifar-trained model are less generic and diverse.
This is due to both the low quantity of available samples
and the easiness/overfitting on the original dataset. A poten-
tial solution for this may be to enforce a diversity loss, and
fine-tune the core jointly on all tasks. However we leave the
exploration of this area for future works.

5.3 Varying the Amount of Training Data

An interesting aspect of incremental multi-domain learn-
ing not addressed thus far is the case where only a lim-
ited amount of labelled data available for the new domain
or tasks, and how this affects performance. Although not all
9 remaining tasks of the Decathlon assume abundance of
training data, in this section, we systematically assess the
sensitivity to the amount of training data. Specifically, we
vary the amount of training data for 4 tasks, namely DPed,
DTD, GTSRB, UFC. Fig. 2 shows the classification accu-
racy on these datasets as function of the amount of training
data. In the same figure, we also report the performance of
a network for which both the cores and the factors are fine-
tuned on these datasets, also trained with the same amount
of data. In general, especially on the smaller dataasets, we
observe that our method is at least as good as the fine-tuned
network which should be considered as a very strong base-
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Figure 2: Top-1 classification accuracy (%) on DPed, DTD, GTSRB, UFC as function of the amount of training data. Our
method is compared with the performance of a network for which both the cores and the factors are fine-tuned on these datasets,
also trained with the same amount of data.

Model Pretrained on Airc. C100 DPed DTD GTSR Flwr OGlt SVHN UCF

ImageNet 55.6 80.7 99.67 52.2 99.96 83.8 88.18 95.66 78.6
Ours

Cifar100 41.7 74.5 99.82 37.55 99.98 70.9 88.35 95.43 72.1

Table 2: Mean Top-1 accuracy (%) on the unseen validation set, reported for two settings: (a) A model trained on Imagenet
and adapted for the rest of the datasets, (same as the one used for the decathlon setting) (first row) and (b) a more challenging
scenario where we train a model on Cifar100 and adapt it for the other datasets (second row). Notice that our method produced
satisfactory results even for setting (b), marginally outperforming the Imagenet model on some datasets. This clearly illustrates
the representational power of learned model and the generalization capabilities of the proposed method.

line, requiring as many parameters as the original Imagenet-
trained model. This validates the robustness of our model for
the case of training with limited amount of training data.

5.4 Rank Regularization

Figure 3: Effect of the rank regularization on ImageNet
when training from scratch, for ranks achieving compres-
sion ratios of 1.0 (full-rank), 1.3× (reducing the rank with
one over the number of blocks dimension) and 1.7× (de-
creasing the rank of #input and #output channels).

It is well-known that low-rank structure act as regulariza-
tion mechanisms (Tai et al. 2015). By jointly modelling the
parameters of our model as a high order tensor, our model
allows such constraint. Limiting the multi-linear rank of
these tensors effectively regularizes the whole network, thus

preventing over-fitting. This also allows for more efficient
representations, by leveraging the redundancy in the multi-
linear structure of the network, allowing for large compres-
sion ratios, without decrease in performance.

In this section we investigate this possibility by studying
the effect of such constraint. To this end, we attempted to
train our Imagenet model by imposing a low-rank constraint
on the weight tensor. However, as can be seen in Fig. 3,
this leads to a significant drop in performance on the base
task of Imagenet; hence we did not pursue the possibility
of rank regularization further. We attribute this effect to the
very small number of parameters in our ResNet model.

6 Conclusions

We presented a method for incremental multi-domain learn-
ing using a latent tensor factorization of the network. By
modelling groups of identically structured blocks within a
CNN as a high-order tensor, we are able to express the pa-
rameter space of a deep neural network as a (multi-linear)
function of a task-agnostic subspace. This task-agnostic core
is then specialized by learning a set of small, task-specific
factors for each new domain. While previous methods which
have focused on adapting each layer separately, we show
that our proposed joint modelling naturally leverages corre-
lations across different filters and layers, resulting in a more
compact representation for each new task/domain. We eval-
uate the proposed method on the 10 datasets of the Visual
Decathlon Challenge and show that our method offers on
average about 7.5× reduction in model parameters offering
competitive results, both in terms of classification accuracy
and Decathlon points.
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