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Abstract

In various clinical scenarios, medical image is crucial in dis-
ease diagnosis and treatment. Different modalities of medical
images provide complementary information and jointly helps
doctors to make accurate clinical decision. However, due to
clinical and practical restrictions, certain imaging modalities
may be unavailable nor complete. To impute missing data
with adequate clinical accuracy, here we propose a frame-
work called self-supervised collaborative learning to syn-
thesize missing modality for medical images. The proposed
method comprehensively utilize all available information cor-
related to the target modality from multi-source-modality im-
ages to generate any missing modality in a single model.
Different from the existing methods, we introduce an auto-
encoder network as a novel, self-supervised constraint, which
provides target-modality-specific information to guide gener-
ator training. In addition, we design a modality mask vector
as the target modality label. With experiments on multiple
medical image databases, we demonstrate a great generaliza-
tion ability as well as specialty of our method compared with
other state-of-the-arts.

Introduction

Multimodal medical imaging such as computed tomography
(CT), magnetic resonance imaging (MRI), positron emis-
sion tomography (PET) plays an irreplaceable role in rou-
tine clinical practice (e.g, lesion detection, disease diagno-
sis, and treatment planning). They provide unprecedented in
vivo resolution and contrast in visualization of internal or-
gans of almost entire human body and the modern medicine,
especially precision medicine, has increasingly depended on
them.

In many clinical scenarios, doctors combine different
insights from multi-modality medical images (e.g., T1-
weighted (T1), T2-weighted (T2) and T2-FLAIR (FLuid-
Attenuated Inversion Recovery), and T1 post-contrast im-
ages) (T1-C) to make a final diagnostic decision. Each imag-
ing modality provides certain information. While the doc-
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tors desire as many different modalities as possible to make
a joint and more accurate decision, certain limitations (e.g.,
restricted medical conditions, inadequate scanning time, and
cost/spending/resource control) could result in sacrificing
some imaging modalities to have the most important one
done. For examples, low-resolution (e.g., thick-sliced) imag-
ing modalities are always combined with another single
high-resolution imaging modality to save scanning time and
the low-resolution images can be misleading due to its par-
tial coverage. CT is notorious for poor soft-tissue contrast
and radiation exposure, but can better quantify tissue’s phys-
ical density. MRI is non-invasive and safer with better con-
trast; therefore, it could be more prioritized than CT with
limited scanning time.

Due to the aforementioned restrictions on acquiring full
multi-modality images, imputing the missing or low-quality
modalities by using available modalities has become a very
important research topic in the artificial intelligence-based
medical image analysis (Van Buuren, Boshuizen, and Knook
1999; Sauerbrei and Royston 1999; Shen, Wu, and Suk
2017). Mounting effort has been put in developing effec-
tive image imputation algorithms for not only medical im-
age analysis but also, more generally, natural image synthe-
sis (e.g., style transfer (Gatys, Ecker, and Bethge 2016), de-
noising (Im et al. 2017), and super-resolution (Ledig et al.
2017)), where a mapping function is learned to translate im-
ages from a source domain to a target domain. While clas-
sic machine learning techniques (Jog et al. 2017) have made
enormous achievement, recently, generative adversarial net-
works (GANs) (Goodfellow et al. 2014) has shown unprece-
dented superiority in such image generation tasks, includ-
ing its recent variation conditional GAN (conduct image-
to-image translation by using an imposed condition), e.g.,
Pix2Pix (Isola et al. 2017), CycleGAN (Zhu et al. 2017), and
StarGAN (Choi et al. 2018). However, these methods only
can transfer images from one to another domain, instead of
translating multi-modality images from multiple domains to
a target (new modality) domain. Since multi-modality im-
ages constitute fundamentally complementary information
to each other (Yu et al. 2018; 2019), it is theoretically and
practically necessary to use all the available information to
generate more accurate missing modalities. In addition, the
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weak supervision and unguided generation/translation due
to ignored feature-level constraint could lead to greater de-
formation and indistinct details in output images. For in-
stance, the results could be heavily biased towards source
modalities in the CycleGAN and greatly distorted in the
Pix2Pix.

To address the drawbacks, we introduce an auto-encoder
network with an encoder-decoder network architecture and
take advantage of its strong self-representation ability (Hin-
ton and Salakhutdinov 2006) to impose self-supervised
feature-level constraint and better guide a target domain-
specific generator. We coin our method as Auto-GAN, which
jointly utilizes multiple source domains (multi-modality im-
ages) and self representation of the target domain to deeply
and collaboratively supervise a better decoder in a layer-by-
layer fashion. Our Auto-GAN consists of multiple branches
as the encoder network anchored with multiple input modal-
ities and another branch driven by the self-representation
network as the decoder network. In-between these two net-
works, we use latent layers to fuse and distill multi-modality
features and feed the decoder network. While our method is
a general solution to various medical imaging modalities, it
can be further empowered by a modality mask vector, which
is utilized as the target modality label. By concatenating the
label with input images, our model can translate any combi-
nations of available modalities to the missing modality in a
single model. There are many advantages of the Auto-GAN
in comparing with the existing methods:

• The deep representations extracted from the auto-encoder
can provide a strong self-representation ability to super-
vise image translation framework. Therefore, the pro-
posed Auto-GAN can generate more accurate results.

• Multiple branches in the encoder network can incorpo-
rate collaborative information from multiple source do-
mains to provide complementary structural details for the
decoder network.

• By imposing a modality mask vector to the inputs, Auto-
GAN can estimate different modalities with a single
model, which is more effective than other state-of-the-art
methods and achieves superior performance in both qual-
itative and quantitative evaluations.

Related Work

Existing medical image synthesis methods can be grouped
into two categories: data-driven methods and model-driven
methods.

Data-driven methods utilize training data in the testing
phase, which results in the estimations deeply depends on
the integrity and the accuracy of training data. The images
in both training set and testing set are cropped into patches.
For example, Burgos et al. (2014) proposed an informa-
tion propagation scheme, which searches the most similar
patches from the training data to reconstruct the correspond-
ing patch from source domain to target domain. This method
is further improved by Vemulapalli et al. (2015), which esti-
mates each target voxel corresponding to the source domain
by searching the nearest neighbor voxels from the training

set in the target domain. These methods require paired cross-
domain training data and a large scale of training set. How-
ever, large dataset leads to increased computational com-
plexity and patch-based synthesis inevitably causes a blur-
ring effect, reducing the quality of the generated images.

Model-driven methods utilize training data in generative
model learning for mapping the image from source to target
domain. Goodfellow et al. (2014) first proposed GANs to
generate a target image without a certain input image, which
is then improved to conditional generative adversarial net-
works (cGAN). Different from GANs, cGAN takes the in-
put images into consideration. Isola et al. (2017) proposed
Pix2Pix, a generative model that learns a mapping function
from the paired cross-domain data and utilize a generative
loss and a discriminator loss to constrain the networks. To
apply the Pix2Pix model to unpaired data, Zhu et al. (2017)
proposed CycleGAN, where a cycle-consistent loss was de-
signed to reconstruct the input images from the generated
images. These methods achieved better perceptual appear-
ance and much improved details with less computational de-
mands than the data-driven methods; however, there could
be excessive deformation in the synthesized images, and this
may affect their clinical applications.

Auto-GAN

To solve these issues, we propose an Auto-GAN framework
and detail it as below. Auto-GAN can generate any missing
modality from available modalities in a unified single model.

Motivation

Although existing GAN-based methods have largely im-
proved the quality of synthesized images, these images are
often found to be deformed and/or blurred. The main reasons
are that these methods implement loss functions computed
by the pixel-level difference between generated images and
the ground-truth (cycle-consistent loss (Zhu et al. 2017)) or
the discriminator loss (as used in “PatchGAN” (Isola et al.
2017)). To our best knowledge, no work uses a feature-level
constraint directly to guide the decoder for a better learned
generator.

Inspired by knowledge distillation (Hinton, Vinyals, and
Dean 2015; Kim and Rush 2016; Liu et al. 2019), which
extracts general, moderate and sufficient knowledge from a
“teacher” network to guide the “student” network, we intro-
duce an experienced teacher network to guide the decoder in
the generative network at the feature level. To better guide
the decoder, a network with a strong representation ability is
required. To this end, the classification models (Krizhevsky,
Sutskever, and Hinton 2012; Simonyan and Zisserman 2014;
He et al. 2016) can be pre-trained on large-scale natural
image datasets (Deng et al. 2009) to extract sufficient fea-
ture maps with a strong representation ability as knowledge
transfer. However, for medical images that are more com-
plex compared to natural images (Huang et al. 2019), it is
difficult to directly borrow the natural image-derived knowl-
edge for the guidence of generator networks. In practice, it
is impossible to acquire large-scale medical image data sets
for pre-training as well. Taken together, it should be better
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Figure 1: The framework of Auto-GAN. There are three ma-
jor components: Self-Representation Network, Translation
Network, and Discriminator Network.

dealt with for medical image synthesis than natural image
synthesis.

Auto-encoder network can be supervised by the input im-
ages themselves and has a similar architecture to that of
the generator in the GAN-based methods. Since the auto-
encoder only works on a single domain, it is also easy to
converge (faster than the generators that learn the mapping
function between two different domains). Its strong self-
representation ability has made it widely used in other tasks
(e.g., feature dimensionality reduction). We hereby borrow
auto-encoder network to guide the decoder network at the
feature level, which is better than solely learning from the re-
constructed images through back-propagation with a pixel-
level loss.

Self-Supervised Collaborative Learning

The framework of the proposed Auto-GAN consists of three
key components: a translation network T (to translate im-
ages from source to target domain) , a self-representation
network S (to guide the decoder), and a discriminator net-
work D, as shown in Fig. 1. The three components are
trained in an end-to-end fashion. For translation network T ,
there are multiple branches (each for one modality) in the
encoder network, six latent layers, and one branch in the
decoder network. Different from the translation network T ,
there are only one branch in both encoder and decoder of the
self-representation network S (for the output modality).

In the training phase, the translation network T encodes
the input images into a common latent feature space. The
latent layers fuses the concatenated deep features from
the input images to extract their complementary informa-
tion for the image generation through a decoder. The self-
representation network takes a form of an auto-encoder and
is trained by the target images only. Once well trained, we
use the feature maps extracted from the decoder of the self-
representation network S to guide the optimization of the
decoder of the translation network T .

In the testing phase, the self-representation network and
discriminator network are removed, only the translation net-
work T is used to translate the images from multiple source
domains to the target domain. For different input combi-
nations from different source domains, our framework can
generate the images of the missing modalities by a single,
unified model.

Implementation

Without loss of generality and for ease of representation, we
assume four modalities {m1, m2, m3, m4} in the data sets.

Translation Network We exploit an encoder-decoder net-
work architecture for the translation network T , inspired by
existing image translation methods (Noh, Hong, and Han
2015; Justin, Alexandre, and Li 2016; Long, Shelhamer,
and Darrell 2017). The translation network T consists of
a multi-branch encoder EC, a latent network L, and a de-
coder DC. The number of branches in the encoder network
is determined by the total number of input modalities. Each
branch has three convolutional layers, followed by a batch-
normalization (BN) layer (Ioffe and Szegedy 2015). The la-
tent network consists of six residual blocks (He et al. 2016),
each of which takes a form of Conv-BN-ReLu-Conv-BN.
For each residual block, the input is skip-connected with the
output of the last batch-normalization layer.

For the given input images {xm1
, xm2

, xm3
} of modal-

ities {m1, m2, m3}, the branches ECT
i , (i ∈ {1, 2, 3}) of

the encoder in the translation network T encode the input
images into a common latent feature space as {fG

1 , fG
2 , fG

3 },

fG
i = ECT

i (xmi
), i ∈ {1, 2, 3} (1)

where ECT (·) denotes the forward computation process of
the convolution network, and i denotes modality. Then, the
latent layers L extract the fused complementary informa-
tion fG from the concatenated encoded features as fG =
L(fG

1 , fG
2 , fG

3 ). The decoder DCT extracts the feature maps
fG,DC from fG as:

fG,DC
i = DCT,i(fG) (2)

where i denotes the i-th layer of decoder network. DCT,i(·)
denotes the forward computation process of the decoder in
T .

Self-representation network As aforementioned, an
auto-encoder is trained to reconstruct the input itself, which
ensures a strong representation ability for the auto-encoder
in the same domain. Therefore, Auto-GAN takes the auto-
encoder network as a self-representation network. Consid-
ering this, one of the key concepts for the proposed frame-
work is guiding the decoder in translation network by the de-
coder in a self-representation network. Here, we utilize the
same network architecture as the translation network T for
the self-representation network S, except merging multiple
branches to a single branch.

For a given ground-truth image y from the target domain,
the encoder ECS of the self-representation network S en-
codes it into a latent space fS ,

fS = ECS(t) (3)

Similar to the translation network, the latent features
fS are utilized to feed the decoder DCS of the self-
representation network S and extract the feature maps
fS,DC :

fS,DC
i = DCS,i(fS) (4)

where DCS,i(·) denotes the forward computation process of
the decoder in S.
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The pseudo images ŷ = T (xm1 , xm2 , xm3) and y
′
=

S(y) generated by the translation network and the self-
representation network are all utilized to train the discrim-
inator network D with the ground-truth image y.

Discriminator network Auto-GAN utilizes the network
architecture of 70 × 70 “PatchGAN” (Isola et al. 2017;
Zhu et al. 2017) in the discriminator network. Different from
telling whether each pixel of input image is real or fake, this
discriminator tries to classify whether each patch in the in-
put image is real or fake. Such a patch-level discriminator
penalizes structured errors at the scale of patches and has
fewer parameters than a full image discriminator.

Modality mask vector Taking a modality mask vector as
the target modality label, Auto-GAN can translate the im-
ages from multiple modalities to any missing modality with
the same generator. The modality mask label is a matrix in
the same size as the training images, and they are concate-
nated together as the inputs. The elements of each matrix
in the modality mask vector shares the same value for each
target modality label.

Network Losses

In Auto-GAN, we introduce three losses: self-representation
loss, collaborative discriminator loss, and multiple generator
loss.

Self-representation loss One of the main concepts of our
proposed Auto-GAN is the self-representation loss. Differ-
ent from traditional GAN-based image translation meth-
ods, Auto-GAN is supervised by not only pixel-level losses,
but also feature-level losses. As aforementioned, the self-
representation network S is trained by target image itself.
When it is trained together with the translation network T ,
network S will better model the distribution of target images
than the translation network T does. Therefore, we introduce
the feature maps of decoder network DCS to guide the de-
coder network DCT at the feature level. Given four modali-
ties, our proposed model can generate any missing modality
from the other three modalities. The self-representation loss
LSR
mk4

of generating modality mk1
from {mk2

,mk3
,mk4

}
can be defined as:

LSR
mk1

=

n∑

i

‖fS,DC
i,mk1

− fG,DC
i;mk2

,mk3
,mk4

‖2

j, kj ∈ {1, 2, 3, 4}
(5)

where ‖ · ‖2 denotes the l2-norm, DCi(·) denotes the output
of i-th layer in decoder network, and n denotes the num-
ber of convolutional layers in decoder networks DCS and
DCT . In general, the self-representation loss LSR can be
written as:

LSR =

N∑

k

LSR
mk

(6)

where k ∈ {1, 2, 3, · · · , N}, and N denotes the number of
modalities.

Collaborative discriminator loss The discriminator is
utilized to predict whether an input image is real or fake.
As aforementioned, the self-representation network S can
estimate the distribution of target domain more accurately
than translation network T does, we incorporate not only
the pseudo image ŷ translated by T but also the pseudo im-
age y

′
generated by S to train the decoder network, together

with the ground truth image S. Therefore, the collaborative
discriminator loss LCD can be computed as:

LCD(ŷ, y
′
, y) = Ey∼Py

[log(D(y))]

+ λ1 · Eŷ∼Pŷ
[log(1−D(ŷ))]

+ (1− λ1) · Ey′∼P
y
′ [log(1−D(y

′
))]

(7)

where Py , Pŷ , and Py′ are the distributions of the ground-
truth image, the pseudo image translated by T , and the
pseudo image generated by S, respectively. λ1 ∈ (0, 1) is a
trade-off parameter between the self-representation network
and the translation network.

Multiple generator loss As our model can generate any
missing modality from the other three modalities, the gen-
erator loss is the sum of four different input combinations.
To avoid the blurring effect (Isola et al. 2017) caused by l2
loss (Pathak et al. 2016), we take the l1 loss as the pixel-
level loss to supervise the translation network T and self-
representation network S. When m1 is the target modality,
the l1 generator loss LMG,T

m1
of translation network T and

LMG,S
m1

of self-representation network S can be computed
as:

LMG,T
m1

= Ex∼Px
[‖T (xm1|m2,m3,m4

)− y‖1]
LMG,S
m1

= Ex∼Px [‖S(xm1)− y‖1]
(8)

Therefore, the multiple generator loss LMG,T of transla-
tion network T and LMG,S of self-representation network S
can be written as:

LMG,i =

N∑

k

LMG,i
mk

, i ∈ {T, S} (9)

Our full objective is:

L = LSR + LCD + λ2 · LMG,T (10)

LMG,S is utilized to optimize the self-representation net-
work S.

Experiments

To validate the effectiveness of the proposed Auto-GAN,
we evaluate our method by two experiments represent-
ing different clinical scenarios: magnetic resonance (MR)
image translation and CT image translation. We conduct
the first experiment on the BraTS database (Menze et al.
2015), which consists of four MRI modalities: T1, T1-C,
T2, and T2-FLAIR. Auto-GAN is used to generate any
missing modality from the other three remaining modali-
ties. For CT image translation, we evaluate our method on
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database, which has two modalities: T1 and CT. Fig. 2
presents exemplary samples from these databases.
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Figure 2: Exemplary examples of BraTS database. From left
to right, they are T1, T1-C, T2-FLAIR, and T2; Exemplary
examples of ADNI database, from left to right, they are T1
and CT.

Dataset and Protocols

MR image translation For MR image translation, we
evaluate our method on the BraTS2018 dataset, which con-
sists of 352 subjects with high- or low-grade gliomas. Each
subject has four MRI modalities: T1, T1-C, T2, and T2-
FLAIR. Since the tumor entity has different appearances in
different modalities, the challenge for the translation task is
much greater. The size of each MR image is 240×240×155
with the voxel size of 1× 1× 1 mm3.

CT image translation To validate the generalization abil-
ity of the proposed method, we extend the experiment from
translating medical images among MRI modalities to MRI
to CT translation. We evaluate CT image translation perfor-
mance based on Auto-GAN on the ADNI database with 16
subjects. Each subject has a T1 image and a paired CT im-
age. The MR images were scanned by a Siemens Trio TIM
scanner, with the voxel size 1.2×1.2×1mm3, TE 2.95ms,
TR 2300 ms, and flip angle 9◦. The voxel size of the cor-
responding CT images, which were scanned by a Siemens
Somatom scanner, is 0.59× 0.59× 3 mm3.

Dataset protocols We randomly select 80% subjects as a
training set; the remaining 20% subjects are taken as a test-
ing set. Such a process is repeated by 10 times. Unless ex-
plicitly mentioned, all the reported quantitative assessment
is evaluated on the testing set. All the quality assessment
for the perceptual appearance is based on the same protocol
with the state-of-the-art methods.

Experimental Settings

We conduct all the experiments under the environment of
Python 3.7 and PyTorch 1.0 on a Ubuntu 18.04 system with
NVIDIA TITAN Xp GPU. All the images used in our ex-
periments are spatially aligned. According to the slice-based
scanning principle of medical images, the 3D medical im-
ages are only continuous on the scanning direction. The dis-
continuity on the other two directions make 3D convolution
unsuitable. Therefore, based on the scanning direction, we
cut each data into multiple slices and utilize 2D slices to
train the proposed model. In the training phase, the input
images are resized to 256×256 and then cropped to the size
of 240 × 240. In the testing phase, the input images are not
resized. The trade-off parameter λ1 is set to 0.5 and λ2 is set
to 10 in our experiments.

To objectively assess the quantitative score of translated
images, structural similarity index metric (SSIM) (Wang et
al. 2004) and feature-similarity index (FSIM) (Zhang et al.

��

���

������ ���	
��

��� ������

��� ��� ���

������������� ����	
����	��

����	
����	�����
�
�����
�

��

�����
�������

Figure 3: (a) is generated without self-representation con-
straint; (b) is generated with self-representation constraint;
(d) is translated only from T1 modality; (e) is translated from
both T1 and T1-C modalities; (f) is the translated from all
three available modalities; (c) and (g) are the ground-truth
T2 image. The yellow numbers are the SSIM scores and
FSIM scores.

2011) as the evaluation criterion. All the real images from
target modality are taken as reference dataset. The SSIM
and FSIM scores of the translated images are taken as the
quantitative evaluation.

Ablation Study

We explore the improvements benefiting from the two key
concepts in the proposed framework: self-supervised learn-
ing and collaborative learning.

To validate the effectiveness of self-supervised learning,
we remove the self-representation network from the pro-
posed framework and compare the experimental results with
proposed approach on BraTS database, as shown in (a) and
(b) of Fig. 3. {T1, T1-C, T2-FLAIR} are taken as inputs.
Without self-supervised learning network, the synthesized
result is indistinct with poor perceptual appearance and lost
useful texture information (yellow arrow in (a) of Fig. 3).
However, with self-supervised learning network, the syn-
thesized results achieves much better perceptual appearance
with more details. We highlighted the interhemispheric cere-
bral spinal fluid posterior to the splenial part of the cor-
pus collosum, where (a) is not clear enough and the inten-
sity distribution is not accurate. In (d)-(f), without collab-
orative learning, this structure is either completely lost or
distorted. We also quantitatively assess the result by using
SSIM and FSIM scores. The proposed method with self-
supervised learning achieves 0.9157 in SSIM and 0.9592 in
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Figure 4: Experimental results of the proposed method, Pix2Pix, CycleGAN, and StarGAN on BraTS database. The yellow
numbers are the SSIM and FSIM scores. The arrows point out the remarkable parts of the results. For Pix2Pix, CycleGAN,
and StarGAN, synthesized T1/T1-C/T2 images are translated from T2-FLAIR, T2-FLAIR images are translated from T2. The
results of Auto-GAN are generated from all the available modalities.

FSIM, much higher than 0.8800 and 0.9498 without self-
representation learning.

To validate the effectiveness of collaborative learning, we
change the branch number of the encoder in translation net-
work from one to three. For ease of explanation, we take
the translation of T2 modality as examples. In this exper-
iment, the combinations of inputs are {T1}, {T1, T1-C},
and {T1, T1-C, T2-FLAIR}. As shown in (d), (e) and (f)
of Fig. 3, (f) is very similar to the ground-truth image in
(g). (e) shows better perceptual appearance than (d), indi-
cating that more inputs lead to better results. Specifically, as
aforementioned, when a subject has a lesion in the soft tis-
sue, images from different modalities can provide unique in-
formation to enhance the synthesis results. For instance, T1
has clear texture for soft tissue but less tumor details. There-
fore, the result in (d) contains less tumor lesion information.
Because T1-C provides tumor parenchyma information and
T2-FLAIR provides tumor edema information, as they were
incorporated to train the model, the results show more ac-
curate soft-tissue texture and better tumor lesion contrast.
In addition, more inputs further increase the quantitative as-
sessment scores.

Comparison

We compare our method with three popular and state-of-the-
art GAN-based methods: Pix2Pix (Isola et al. 2017), Cycle-
GAN (Zhu et al. 2017), and StarGAN (Choi et al. 2018).

MR image translation To evaluate the performance of
the proposed method on multi-modality synthesis, the four
modalities in the training set of the BraTS database are all
utilized to train the Auto-GAN. Then, we generate each

modality from the other three modalities using the testing
set. As Pix2Pix, CycleGAN, and StarGAN are yield to a sin-
gle input, we take T2-FLAIR as the input modality, because
it provides more tumor lesion information than the other
three modalities. T2-FLAIR modality is estimated by T2
modality, which is the most similar modality to T2-FLAIR.

As shown in Fig. 4, the synthesized results of the pro-
posed method are very similar to the ground truth, while
CycleGAN and StarGAN show poor perceptual appearance
in generating T1-C, T2-FLAIR, and T2. Although Pix2Pix
shows clear texture details, the results are noisy (as indicated
by yellow arrows in Fig. 4) and the perceptual appearance
is seriously degraded. All the methods show acceptable re-
sults for T1, but the tumor lesion is missing in the results of
CycleGAN and StarGAN, and the details of the Pix2Pix’s
result are indistinct. The results of the proposed Auto-GAN
show clear details of soft-tissue and distinct texture of tumor
lesion area, which is superior to the other methods.

For the quantitative assessment, the SSIM and FSIM
scores are shown on the top left of each sample, which are
computed by the synthesized images and the corresponding
ground truth. Due to the other GAN-based methods only uti-
lize the pixel-level generator loss and a single input, they
can not learn accurate distribution of the target modality in
the feature level and miss the complementary information
from multiple input modalities, which reduced the quantita-
tive SSIM and FSIM scores. Our method achieves the high-
est quantitative scores on all the four modalities.

Note that, in these experiments, Pix2Pix, CycleGAN, and
StarGAN need to be trained multiple times, each generating
a different model. This is because they only allow to take a
single fixed modality as an input. As a comparison, our pro-
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Figure 5: Experimental results of the proposed method,
Pix2Pix, CycleGAN, and StarGAN on the ADNI database.
Pseudo CT image are generated from the input MR image.

posed Auto-GAN can estimate any missing modality from
the other available modalities in a unified, single model and
achieves superior performance both qualitatively and quan-
titatively, which can be more efficient in the testing phase.

CT image translation As the existing GAN-based meth-
ods can only take one modality as input, for a fair compari-
son, we extend our framework to accommodate this scenario
and decrease the branch number of the encoder in the trans-
lation network to one. The reduced framework thus only
benefits from feature-level self-representation learning.

This experiment is conducted on the ADNI database,
which consists of T1 and corresponding CT images. In clini-
cal practice, the radiation effect caused by CT scan could po-
tentially affect patient’s health, while MR scan is considered
safe and non-invasive. Therefore, in the experiments, we
translate the images from T1 to CT modality. For qualitative
evaluation, Pix2Pix, CycleGAN, and StarGAN show poor
perceptual appearance with unexpected details and great de-
formation around the skull (yellow boxes in Fig. 5). The re-
duced framework of the proposed Auto-GAN achieves qual-
ified pseudo CT images with more accurate and clearer skull
contour. For quantitative evaluation, we compute the SSIM
and FSIM scores from the synthesized CT images compared
to the ground-truth CT images. As shown in the bottom of
each sample, our method achieves the highest SSIM and
FSIM scores, superior to the other competing methods. This
experimental result further validates the effectiveness of the
proposed feature-level self-supervised learning method.

For fair comparisons, we also use Inception Score
(IS) (Salimans et al. 2016) and Fréchet Inception Distance
(FID) (Heusel et al. 2017) as our evaluations. Our method
achieves 2.15 of IS and 64.29 of FID. As a comparison,
pix2pix, CycleGAN, and StarGAN achieve 1.21, 1.37, 1.05
of IS and 151.36, 129.61, 195.93 of FID, respectively.

Evaluation on Generalization Ability

To verify the generalization ability of the proposed method
in broader applications, we conduct two additional experi-
ments using natural image transformation tasks. We applied
the same settings as those in the experiments of medical im-
age generation on the CMP Facade database (Tyleček and
Šára 2013) and the CUHK Student database (Wang and Tang
2008). As shown in Fig. 6, the proposed method can handle
different translation tasks, indicating its strong generaliza-
tion ability.

������

Figure 6: (a) is the experimental results on the CMP Facade
database. From left to right, the examples are facade, gener-
ated labels and ground-truth labels. (b) is the experimental
results on the CUHK Student database. From left to right,
the examples are photo, generated sketch, and ground-truth
sketch.

Limitations and Discussion

In this paper, we propose an Auto-GAN. Our method lever-
ages the auto-encoder network to conduct self-supervised
learning for a better guidance to each layer of the decoder
in the domain translation network. Collaborative learning
framework utilizes multi-facet information from multiple
modalities. The designed modality mask vector empowers
our Auto-GAN to generate any missing modality in a single,
unified model, further guaranteeing its generalizability.

While our proposed Auto-GAN achieves superior perfor-
mance compared to other state-of-the-arts, there are several
limitations. For instance, in the training phase, more com-
puting resources and computing time are required by the
proposed framework. In the future, we will explore more
efficient network architectures to handle more realistic and
complex applications.
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