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Abstract

This paper studies the task of image captioning with novel
objects, which only exist in testing images. Intrinsically, this
task can reflect the generalization ability of models in under-
standing and captioning the semantic meanings of visual con-
cepts and objects unseen in training set, sharing the similarity
to one/zero-shot learning. The critical difficulty thus comes
from that no paired images and sentences of the novel objects
can be used to help train the captioning model. Inspired by
recent work (Chen et al. 2019b) that boosts one-shot learn-
ing by learning to generate various image deformations, we
propose learning meta-networks for deforming features for
novel object captioning. To this end, we introduce the feature
deformation meta-networks (FDM-net), which is trained on
source data, and learn to adapt to the novel object features
detected by the auxiliary detection model. FDM-net includes
two sub-nets: feature deformation, and scene graph sentence
reconstruction, which produce the augmented image features
and corresponding sentences, respectively. Thus, rather than
directly deforming images, FDM-net can efficiently and dy-
namically enlarge the paired images and texts by learning
to deform image features. Extensive experiments are con-
ducted on the widely used novel object captioning dataset,
and the results show the effectiveness of our FDM-net. Ab-
lation study and qualitative visualization further give insights
of our model.

Introduction

It is one of the long term goals for the AI community to
pursue an agent that can automatically and linguistically de-
scribe the captured visual signals. Recently, this task is for-
mulated as the task of image captioning, which has made
significant progress powered by deep architectures (Xu et
al. 2015). Such a task relies on large-scale datasets contain-
ing the image and sentence pairs, like MSCOCO (Chen et al.
2015) and Flickr 30K (Plummer et al. 2015). However, the
expensive cost of manually annotating limits the richness of
visual concepts in image captioning dataset. For example,
compared to the recently released object detection dataset
Open Images V4 (Rom et al. 2017) with 600 object classes,
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Figure 1: The idea of feature deformation meta-networks
(FDM-net). (a) Inconsistent visual problems of directly
learning deformed images and the mismatching problem
applying deformed methods (Chen et al. 2019a; 2019b)
to novel object captioning; (b) Feature deformation meta-
networks solve the problems in (a).

MSCOCO (Lin et al. 2014) dataset only contains 91 under-
lying object classes. Thus, novel object captioning (Tran et
al. 2016; Anne Hendricks et al. 2016) is recently studied
to generate appropriate descriptions for novel classes which
have no training instances. To address this problem, extra
resources have been investigated. These resources should be
easy to be collected and contain abundant visual concepts.

Previous works attempt to leverage object detection
datasets and text corpora for novel object captioning. Par-
ticularly, these methods explored transferring knowledge by
designing template-based caption models (Lu et al. 2018;
Wu et al. 2018), multi-task models (Anne Hendricks et al.
2016), or creating weakly-annotated data (Anderson, Gould,
and Johnson 2018). While these methods have got promising
results, we argue that tackling this problem more explicitly
from another perspective can lead to better performance.

Humans are good at describing visual scenes with novel
objects. Not surprisingly, cognitive evidence (Marr 1982)
shows that the visually grounded language generation is not
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end-to-end, but primarily attributed to the “high-level” sym-
bolic reasoning. That is, once we abstract the scene into
symbols, the novel object can be merged into the back-
ground automatically by our brains, which inspires us to
address novel object captioning task from a completely dif-
ferent perspective. To empower the captioning model with
such ability, we synthesize new training instances composed
of novel objects and reasonable backgrounds as additional
training data. Taking such deformed images (Chen et al.
2019a; 2019b; Satoshi Tsutsui 2019) as augmented images
has already shown efficacy to help train image classifica-
tion models. Although these deformed images might not be
visually realistic, they still maintain critical semantic infor-
mation to help build better classifiers. It can be developed to
adapt to the novel image captioning task, as using an origi-
nal image to keep background content and introducing novel
objects by replacing patches. As shown in Fig. 1(a), by re-
placing the bounding box of “chair” in the original image
with a cropped patch “couch” (novel object); we hope to
synthesize a deformed image that can be described as “A
dog is laying on a couch”.

However, two critical problems existing here should be
identified. Firstly, due to the spatial overlapping of different
objects, the novel object that blocks all information in the
original region may cause the loss of discriminative infor-
mation. For example, the “couch” in Fig. 1(a) completely
blocks the “dog” in the original image, though the generated
sentence still emphasizes the “dog.” Another problem shown
in Fig. 1(a) is the strong noise by the side of the “couch”
border, caused by different sizes and ratios of the patches.
As shown in Fig. 1(a), on the edge of “couch”, we can still
find the apparent residual visual information of the “chair”.
Thus, due to the gap between expected images and actual
generated ones, the direct exploitation of deformed images
is inefficient to the novel object captioning task. This method
is not ready to create appropriate augmented data for image
captioning models because of the severe mismatching prob-
lem between images and texts caused by the information loss
of the context.

Inspired by the “high-level” symbolic reasoning the-
ory in (Marr 1982), this paper proposes feature deforma-
tion meta-networks (FDM-net) to overcome problems men-
tioned above. In particular, we employ features of region-
of-interest (RoI) from the image detector as “high-level”
symbols. We first remove one RoI feature from the feature
map of the original image, which is treated as the candidate
to be replaced. On the feature level, there is less overlap-
ping of important visual information and less complex spa-
tial relationships between objects. The remaining features
are able to present the background with less information
loss or residue. Then, we synthesize new feature maps com-
posed of features from novel objects and backgrounds. Es-
sentially, nowadays popular captioning decoders (Anderson
et al. 2018) are trained for a projection from feature maps
to sentences. It means that we can synthesize feature maps
to represent non-existent images as extra training data, so
our method can be seamlessly integrated into the encoder-
decoder architecture. Particularly, the FDM-net synthesizes
deformed feature maps instead of deformed images to help

train better image captioning models. As illustrated in Fig.
1(b), after replacing the feature of the object in original
images, the potent visual information of novel objects is
added without blocking other discriminative features. Con-
sequently, the mismatching problem is remitted.

To generate corresponding sentences for new feature
maps, we improve a sentence reconstruction network with
the scene graph in (Yang et al. 2018). This subnet can reduce
the semantic bias caused by the discrepancy in attributes and
relationships between source and target objects. Consider-
ing a sentence containing “coffee cup” (“cup” is to be re-
placed with “bottle”), we are more likely to get “wine bottle”
rather than “coffee bottle” after the network. Benefited from
the universally existed structure of sentences, we are able
to modify both attributes and objects on scene graph level
to get correct descriptions for generated feature maps. Thus,
we implement an unsupervised scene graph based sentence
reconstruction network in (Yang et al. 2018).

To sum up, we have several contributions. Firstly, we
propose feature deformation meta-networks (FDM-net) that
aim to help image captioning models adapt to the novel
objects by generating deformed training data. It contains
feature deformation and scene graph sentence reconstruc-
tion sub-nets. Secondly, the feature deformation subnet ex-
ecutes generating deformed feature maps with novel ob-
jects. It can avoid the mismatching problem by replacing
region-of-interesting (RoI) features instead of creating de-
formed images. Thirdly, scene graph strategy is applied to
reconstruct sentences corresponding to the augmented fea-
ture maps. Finally, extensive results on MSCOCO and Open
Image illustrate the efficacy of our structure, and we have
achieved state-of-the-art results on several metrics for novel
object captioning task.

Related Work

Novel Object Captioning

General image captioning aims to describe images with sen-
tences. For increasing scalability of diversified objects, re-
cently novel object captioning (Anne Hendricks et al. 2016;
Lu et al. 2018; Wu et al. 2018) has attracted lots of at-
tention. However, most proposed methods are architectural
in essence. Researchers have designed template-based cap-
tion models (Lu et al. 2018), multi-task models (Anne Hen-
dricks et al. 2016) and novel sampling algorithms (Koehn
2016). These novel structures are disjointed from normal
image captioning task to varying degrees, which causes
poor performance on in-domain scores. Inspired by the new-
fangled deformation strategies (Chen et al. 2019b; 2019a;
Satoshi Tsutsui 2019), we design deformed meta-networks
for the novel object image captioning task which can be
seamlessly integrated into popular encoder-decoder caption-
ing models. However, different from image deformation
methods, we deformed RoI features in our proposed feature
deformation sub-net.

Scene Graph

The task of converting a sentence or an image into a struc-
tured meaningful representation has received considerable
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Figure 2: The framework of our proposed feature deformation meta-learning networks. It contains two sub-nets: feature defor-
mation sub-net and scene graph sentence reconstruction sub-net. The former focuses on generating deformed visual features
with novel objects and the latter is responsible for reconstructing sentences by replacing key objects and attributes based on
scene graph strategy.

attention. The scene graph is such a general representa-
tion existing in several vision datasets (Krishna et al. 2016),
which contains the structured semantic information includ-
ing objects, attributes and relationships. In the visual and
linguistics community, scene graphs have been used to a
number of tasks like image retrieval, visual question answer-
ing, and image captioning (Yang et al. 2018). Enlightened
by (Yang et al. 2018) that parses captions into scene graphs,
we reconstruct deformed sentences similarly by parsing sen-
tences to graphs. Differently, our sentence reconstruction
network targets to replace attributes and objects and gener-
ate corresponding descriptions for augmented feature maps.

Method

We propose a framework that combines feature deforma-
tion sub-net and scene graph sentence reconstruction sub-net
(SGSR) to caption images with novel objects. Instead of re-
placing patches of novel objects in images directly, feature-
level visual information is applied to introduce the novel
objects to the model. Feature deformation sub-net aims to
augment the visual training information with novel objects.
To fit the augmented visual information, we also recon-
struct matched texts containing novel objects synchronously
by our proposed SGSR sub-net. The pipeline of generating
training instances with visual and text pairs is shown in Fig.
2. In the following, both the feature deformation sub-net and
scene graph sentence reconstruction sub-net are introduced
in detail.

Feature Deformation Subnet

To augment image features with novel objects, we firstly
utilize mis-labelled probability strategy (MLS) for choos-
ing a set of objects from the seen object set that are easy
to confuse. In other words, each novel object corresponds
to a group of confused objects. Then we replace candidate
features with novel object features. Such feature maps with

novel objects and backgrounds are added into the training
set accordingly.
Mis-labelled Probability Strategy. Following the setting of
novel object captioning, we have a set of training image-
sentence pairs with seen classes Cs and testing images with
unseen classes (novel objects) Cu, which Cs ∩ Cu = ∅. The
purpose of our Mis-labelled Probability Strategy (MPS) is to
select a group of easily-confused objects Ccon for a novel ob-
ject cu ∈ Cu. We have Ccon ⊂ Cs. In advance, we pre-train a
general captioning model on image-sentence pairs that only
contain seen classes.

The validation images with novel objects are then fed into
the pre-trained model. From generated sentences, we de-
note the number of occurrences of each confused seen ob-
ject ccon ∈ Ccon as n. Then, k objects in Ccon with largest
numbers of occurrences n are preserved and constructed to
a mis-labelled group Ccon = {c1con, c2con, ..., ckcon} and their
occurrence time N = {n1,n2, ...,nk}.

Then, for each novel object cu ∈ Cu, we normalize oc-
currence times N to obtain similarity scores between cu
and cicon: P = {p1,p2, ...,pk} by pi = ni∑

j nj
. Suppose

we would like to generate M augmented training instances:
M × pi images are applied to generate augmented features
with confused object cicon.
Feature Deformation. After selecting confused object sets
from base dataset by MLS, a pre-trained detection model
of faster R-CNN with ResNet-101 (Anderson et al. 2018),
named as gdet (·), is utilized to extract RoI region features.
Given an image Inov containing a novel object cu ∈ Cu and
a training image Iori containing a confused seen object ccon
in its confused group Ccon, the RoI region features (Ren et
al. 2015) of the images are obtained by:

fnov = gdet(Inov) fori = gdet(Iori) (1)
where f = {f1, . . . , fT } means RoI region features with
T regions in an image. Then we classify features of each
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Table 1: Top three similar concepts for novel class decided by Mis-labeled Probability Strategy
bottle bus couch microwave pizza racket suitcase zebra

cup truck chair stove sandwich bat bag giraffe
glass car bed refrigerator bread frisbee backpack elephant
vase train bench toaster cake racquet box cow

Table 2: Evaluation on sentence reconstruction network.
Where B@1, B@4, M, R, C and S mean Blue-1, Blue-4,
METEOR, Rough, CIDEr-D and SPICE respectively.

Models B@1 B@4 M R C S

SGSR 91.6 64.9 38.7 71.7 175.0 34.3

region in fnov and fori and denote fu
nov and fs

ori as the re-
gion features that are classified to the novel object cu and
the confused seen object ccon respectively. We preserve the
background of the training image by excluding the confused
seen object ccon by fori − {fs

ori} and we introduce novel
objects into augmented instance by:

f̃ = (fori − {fs
ori}) ∪ {fu

nov} (2)

Scene Graph Sentence Reconstruction Subnet

Despite the effectiveness of MLS, the augmented pairs in
principle can not be directly utilized to boost the perfor-
mance of novel object captioning. The key problem comes
from the visual difference. To this end, the motivation of
SGSR is to decrease the differences between the augmented
fake pairs and image captioning datasets. Specifically, one
important goal of the proposed sub-net in this subsection
is to repair possible predicative errors, semantic errors and
meaningless sentences, caused by the fake augmented data.

To train the model, we apply scene graph strategy to gen-
erate sentences. Several sentences S = {S1,S2, ...,Sm} are
given in the training dataset to describe Iori. For a aug-
mented feature maps f̃ , our target is to generate several sen-
tences that can describe it: S̃ = {S̃1, S̃2..., S̃m}. As shown
in Fig. 2, we modify Auto-Encoding Scene Graphs (Yang et
al. 2018) to reconstruct our target sentences,

Encoder : G ← S
SceneGraph : G̃ ← G

Decoder : S̃ ← G̃
(3)

So, we should encode the candidate sentences S to scene
graph G firstly. We further illustrate the process of G̃ ← G.
We get attributes for the novel object by:

Anov = gattr(f
u
nov) (4)

where fu
nov is the feature of novel object, and gattr is an

attribute classifier network with two fully connected layers
trained on visual genome dataset (Krishna et al. 2016). Then

we replace the object node Oori with Onov . Since the at-
tributes node connected with Oori may be not exactly cor-
responding to new generated f̃ , such attributes should be
deleted. To give more specific information for novel objects,
Anov is taking as attribute nodes and we construct the edges
to Onov . In this way, we will get sentences containing less
noise than simply parsing and replacing a single word of
‘chair’ with ‘couch’ and its attributes. Scene Graph Decoder
employs Beam Search (Anderson et al. 2016a) to generate
m new sentences S̃ from G̃; more reasonable sentences can
be generated in such a manner.

Experiments

Dataset Split. We follow the novel object captioning split
(NOC split) introduced by (Anne Hendricks et al. 2016) to
evaluate our proposed method. It comes from the standard
split of MSCOCO 2014 (Chen et al. 2015) that contains
120K images, and each image is labelled with five human-
annotated sentences. Eight objects (bottle, bus, couch, mi-
crowave, pizza, racket, suitcase and zebra) are selected as
novel objects in NOC split. Correspondingly, all image-
sentence pairs that include novel objects are removed from
the standard training set. In the standard validation dataset,
half of the pairs are randomly selected into new validation
set, and others are selected into the test set. New validation
and test sets are further separated into out-of-domain and
in-domain subsets based on whether including positive ex-
amples for eight novel objects. For the in-domain validation
set and test set, there are no image-sentence pairs contain-
ing novel objects while images from out-of-domain sets in-
clude novel objects. So in this split, models are required to
describe images containing novel objects.

To evaluate the expandability of our method, we also con-
duct experiments on Open Image dataset – a large-scale
dataset. Fifty classes are randomly chosen from Open Im-
age dataset as novel objects. We utilize our FDM-net on
MSCOCO training set to help learn the image captioning
model.
Implementation Details. In our model, we use the pre-
trained bottom-up attention model to extract visual features.
To make a fair comparison, we use traditional cross-entropy
loss during training. The RoI features of novel objects come
from OpenImage. Specially, we use mis-labelled probability
strategy (MLS) to select top similar seen objects for each un-
seen object. As shown in Tab. 1, the top three similar seen
objects are considered to conduct the replacing work with
their corresponding novel objects. That means we set k = 3.
Besides, constrained beam search (CBS) algorithm (Koehn
2016) is also applied in the test and validation stage. For
ensuring the diversity of our augmented dataset, we extract
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Table 3: Results on test dataset of DCC split. Where �/�,�/� and�/� mean whether apply Mis-Labeled Strategy (MLS),
scene graph sentence reconstruction network (SGSR) and Constrained Beam Search (CBS) respectively. And No. means the
augmented examples number of each novel object.

No. Strategy Out-of-Domain Scores In-Domain Scores
MLS SGSR CBS SPICE METEOR CIDEr F1 SPICE METEOR CIDEr

0 � � � 13.4 21.1 65.2 0 19.8 26.5 105.1
500 � � � 18.2 24.6 79.9 57.2 19.6 26.4 105.0

1000

� � � 18.0 24.9 79.8 53.5 19.6 26.3 104.0
� � � 18.6 25.0 80.6 63.7 19.6 26.2 103.3
� � � 19.4 25.9 84.8 64.7 20.2 27.2 109.7
� � � 19.6 25.6 85.3 85.7 19.7 26.2 105.5

1500

� � � 18.4 24.8 80.3 64.0 19.4 26.3 104.2
� � � 18.4 25.1 81.4 64.8 19.3 26.2 102.6
� � � 19.0 25.7 84.0 64.7 20.3 27.2 110.7

� � � 19.3 25.5 83.9 87.0 19.3 25.9 104.7

100 novel object features as resources for the following re-
placement. To implement the SGSR, we train and evaluate a
sentence reconstruction network, using sentences in Visual
Genome and the input sentence itself as the ground truth.
Tab 2 shows the results tested on Visual Genome, which
demonstrates that our SGSR subnet can serve as a potent tool
to generate high-quality synthetic descriptions.
Baselines and Competitors. We also compared with recent
models, such as DCC (Anne Hendricks et al. 2016), NBT
(Lu et al. 2018) and PS3 (Anderson, Gould, and Johnson
2018). Some decoding algorithms such as constrained beam
search (Koehn 2016) are proved to be helpful to this task.
For a fair comparison, when comparing with popular meth-
ods, we implement the same setting on FDM-net of whether
using CBS.
Evaluation Metrics. We use three standard automatic evalu-
ations metrics: CIDEr-D (Vedantam, Lawrence Zitnick, and
Parikh 2015), METEOR (Banerjee and Lavie 2005) and
SPICE (Anderson et al. 2016b). F1 scores are also reported
for evaluating the performance of captioning eight novel
concepts. We also report the human evaluation scores in our
experiments. Word incorporation and image description pro-
posed in (Venugopalan et al. 2017) are utilized as evaluation
metrics. Given two sentences describe one image, people are
asked to pick up the better one based on different evaluation
points. Word incorporation assesses in which sentence orga-
nizes more meaningfully sentences with novel objects and
image description focuses on which sentence describes the
whole image better.

Quantitative Performance

To display the quantitative performance of our proposed
FDM-net on novel object image captioning task, we conduct
several experiments to analyze our model versatilely by us-
ing different strategies (such as FDM, MLS, SGSR and CBS)
and various numbers of augmented feature-text pairs. Mean-
while, we also compare our results with state-of-the-art com-
petitors. Besides, we report the human evaluation results of

our model. All experiments illustrated the quantitative supe-
riority of our model in various aspects.

Results with Different Assignments. Several experiments
are conducted by adding different numbers of augmented in-
stances and utilizing kinds of strategies, as shown in Tab. 3.
We use the results that are generated by general captioning
model on NOC split as our baseline. Furthermore, differ-
ent numbers of augmented feature-text pairs are added into
the NOC training split. The MLS strategy denotes that we
apply the features of top three nearest objects to the follow-
ing replacement, while one most similar object is chosen for
each novel object based on human common sense whenever
MLS is not used. Directly, we parse and replace the words of
objects and attributes in the original ground truth sentences
if our proposed SGSR is not utilized. Besides, constrained
beam search decoder is an optional strategy in the testing
stage.

The results of our model with kinds of strategies and dif-
ferent numbers of augmented instances are shown in Tab. 3.
There are several points we want to highlight. Firstly, our
FDM-net displays great advantages compared with the gen-
eral captioning model. No matter how many instances we
add, the performance is increased. Just as shown in the Tab.
3, most of the scores are improved after adding augmented
feature-text pairs by the FDM-net, especially F1 score in-
creases from 0% to more than 50%. Obviously, the results on
out-of-domain split have greater promotion than in-domain
because our FDM-net focuses on enlarging the novel ob-
ject knowledge in the training stage, which has a greater
influence on the out-of-domain dataset. Secondly, scores are
gradually raised by utilizing several strategies. When we pay
attention to scores of the out-of-domain setting, applying
MLS strategy makes an improvement, and it means our MLS
method is efficient and useful. Particularly, our SGSR makes
a great contribution in elevating novel object captioning per-
formance. It states that replacing attributes and objects to-
gether on the scene graph level with SGSR trained on extra
text resources makes significant contribution on novel object
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Table 4: Evaluating performance with popular methods.

Model CNN CBS Out-of-Domain Scores In-Domain Scores

SPICE METEOR CIDEr F1 SPICE METEOR CIDEr

DCC(Koehn 2016) VGG-16 - 13.4 21.0 59.1 39.8 15.9 23.0 77.2
NOC(Venugopalan et al. 2017) VGG-16 - - 21.4 - 48.8 - - -
C-LSTM(Yao et al. 2017) VGG-16 - - 23.0 - 55.7 - - -
LRCN(Koehn 2016) VGG-16 + 15.9 23.3 77.9 54.0 18.0 24.5 86.3
LRCN(Anne Hendricks et al. 2016) Res-50 + 16.4 23.6 77.6 53.3 18.4 24.9 88.0

NBT(Lu et al. 2018) VGG-16 - 15.7 22.8 77.0 48.5 17.5 24.3 87.4
Res-101 + 17.4 24.1 86.0 70.3 18.0 25.0 92.1

PS3(Anderson, Gould, and Johnson 2018) Res-101 - 17.9 25.4 94.5 63.4 19.0 25.9 101.1
Res-101 + 18.2 25.2 92.5 62.4 19.1 25.9 99.5

FDM-net Res-101 - 19.4 25.9 84.8 64.7 20.2 27.2 109.7
Res-101 + 19.6 25.6 85.3 85.7 19.7 26.2 105.5
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Figure 3: Visualization on MSCOCO and Open Images datasets
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Table 5: Human evaluation results. Where ‘coco’ means the
test set comes from MSCOCO dataset and ‘open image’ is
from Open Images dataset.

Options Word Incorporation Image Description
coco open image coco open image

FDM-net better 50.0 48.8 55.8 54.0
NBT better 18.0 21.0 16.9 19.4
Equally good 26.5 20.8 22.7 26.3
Neither is good 5.5 9.4 5.5 10.2

captioning than directly parsing and replacing. In the mean-
time, CBS algorithm makes an extra boosting on results, es-
pecially on F1 score. Finally, we can sum up that the more
augmented instances do not mean the better performance
when we compare the results of adding 500, 1000 and 1500
feature-text pairs in training data. Overall speaking, the best
novel object captioning performance is achieved by adding
1000 extra instances with all of the MLS, SGSR and CBS
strategies as shown in Tab. 3.
Comparison with Popular Methods. In this part, we com-
pare the results of our proposed FDM-net with popular
methods. In Tab. 4, comparing with popular methods sep-
arately on whether using CBS, we can see that our frame-
work with MLS and SGSR achieves the state-of-the-art score
among all the methods in terms of out-domain SPICE, ME-
TEOR, average F1 score; and all metrics tested on the in-
domain subset. Especially, our F1 score increases 15.4%
compared with the previous best score of NBT with CBS.
Our SPICE score increases 7.6% compared with the previ-
ous best score of PS3.

We introduce external knowledge by SGSR and MLS to
assist in generating reasonable pairs. Our proposed FDM-
net concentrates on generating valid objects to ensure higher
scores on the novel image captioning task. However, exist-
ing sentence reconstruction networks cannot generate sen-
tences as commonsensible and fluent as ground truth cap-
tions under some circumstances. So it is reasonable to bring
a higher score on SPICE which focuses on propositional se-
mantic content, while causes weak performance on CIDEr-
D. This is sensitive to the fluency and the correct grammar
of sentences.
Human Evaluation Results. To better evaluate the per-
formance on novel object captioning task of our proposed
method, we take experiments on marking sentences that are
generated by Neural Baby Talk (NBT) and ours by ask-
ing several people. We apply two test settings of MSCOCO
dataset and Open Image dataset. For MSCOCO dataset,
we directly use the out-of-domain testing set in NOC split.
While for Open Image dataset, we select 2000 images con-
taining 50 novel classes which do not appear in MSCOCO
as the Open Image testing split. Before that, we augment the
knowledge of these novel objects to NOC training dataset by
FDM-net in the training stage. As shown in Tab. 5, we use
Neural Baby Talk (Lu et al. 2018) as our competitor.

The sentences generated by FDM-net achieve better
scores over all metrics than NBT on all testing dataset. The
scores of our FDM-net are almost two times higher than
those of NBT, and it states clearly that our method can gener-

ate better sentences than NBT on describing both the whole
image and novel objects. Inspiringly, almost 90% of the sen-
tences generated by FDM-net and NBT are easy to read by
people. Furthermore, word incorporation scores are lower
than image description scores. It reflects a very interest-
ing phenomenon in our work that describing novel objects
probably is a bit harder than that of describing images with
proper sentences. To sum up, the proposed FDM-net is thor-
oughly evaluated in this work, and our model on novel object
captioning achieves the state-of-the-art results.

Qualitative Performance

Visualization on MSCOCO Dataset with Novel Object.
We display one instance which is generated by our proposed
FDM-net for each novel object in DCC testing dataset, as
shown in Fig. 3(a). The trained model employs 1000 novel
object feature-text pairs which are produced by our fea-
ture deformation and SGSR subsets. We can see that com-
pared with baseline without adding augmented data (first
line of Tab. 3), captions generated by our methods can cap-
ture novel objects and describe the key objects of images
correctly. It is impressive that several sentences can express
the coherent content of images, such as the content: ‘zebra’,
‘walking along’, ‘rocky path’ in the first instance.
Preliminary Experiments on Open Images Dataset. One
of our primary motivation in this work is to leverage very
rich visual concepts from object detection datasets to lim-
ited visual concepts from image caption models. We fur-
ther validate the generalization ability of our method to
a large-scale open-conceptual dataset - Open Image. We
train our model on MSCOCO image caption dataset. Ran-
domly chosen four classes as novel classes from Open Im-
age dataset. For each novel class, we randomly select 20 im-
ages to extract the features for FDM-net with the setting of
Base+1000+MLS+SGSR and another 20 images for evalua-
tion. In Fig. 3(b), we provide some images and the descrip-
tions our method generated. We give two out-domain suc-
cessful examples – the first two instances in Fig. 3(b), one
failure out-domain example – the fourth instance in Fig. 3(b)
and an in-domain example – the third instance in Fig. 3(b).
We can find that in two out-domain successful examples, the
descriptions generated by our model are better than the ones
from baseline. In some cases, we find that it will be help-
ful to describe the in-domain samples, since this novel data
deformation method will also increase the number of train-
ing samples of these objects. Furthermore, even in the failure
case, the produced sentence can still give us the main content
of the image. This further demonstrates the effectiveness of
our model.

Conclusion

We propose FDM-net combined with the prevailing
encoder-decoder framework to tackle the novel object cap-
tioning problem. In particular, it is a conceptually simple
but powerful approach that generates additional training in-
stances on the feature level. Our FDM-net aims to solve
the mismatching problem when doing deformation on the
spacial level in vision-language tasks. By creating new fea-
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ture maps with corresponding texts, we bridge the gap be-
tween expected visual information and actually generated
visual information. Extensive experiments demonstrate that
our approach has achieved the state-of-the-art performance
on novel object captioning task.
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