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Abstract

Though saliency detectors has made stunning progress re-
cently. The performances of the state-of-the-art saliency de-
tectors are not acceptable in some confusing areas, e.g., ob-
ject boundary. We argue that the feature spatial independence
should be one of the root cause. This paper explores the ubiq-
uitous relations on the deep features to promote the exist-
ing saliency detectors efficiently. We establish the relation
by maximizing the mutual information of the deep features
of the same category via deep neural networks to break this
independence. We introduce a threshold-constrained training
pair construction strategy to ensure that we can accurately
estimate the relations between different image parts in a self-
supervised way. The relation can be utilized to further ex-
cavate the salient areas and inhibit confusing backgrounds.
The experiments demonstrate that our method can signifi-
cantly boost the performance of the state-of-the-art saliency
detectors on various benchmark datasets. Besides, our model
is label-free and extremely efficient. The inference speed is
140 FPS on a single GTX1080 GPU.

1 Introduction

In the deep learning era, deep neural networks based mod-
els significantly boost the performance of saliency detection.
Nevertheless, these models are also unsure about some con-
fusing saliency area. As shown in figure 1c, the saliency de-
tector makes a wavering prediction on the boundary part.
Furthermore, component missing, shown in figure 1b, is also
a common problem in the saliency prediction.

However, human beings can easily distinguish all parts of
an object. Most of the DNNs based saliency detectors are
derived versions of the FCNs (Shelhamer, Long, and Dar-
rell 2016). In the common training strategy of the FCNs, the
feature vector at each pixel is assigned with an independent
ground truth label. The neighbor feature vectors have little
communication during the training and inference phases. We
call this phenomenon feature spatial independence. Dif-
ferent from these FCNs, human beings can utilize the color
similarity, material texture, and edge coherence to assist ob-
ject perception. Consequently, we believe that the feature
spatial independence should be one of the root cause of the
above-mentioned problems in saliency detection.
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Figure 1: Illustration of the saliency result refinement. (a)
The example natural image. (b) The result of the UCF
(Zhang et al. 2017b) saliency detector. The green dash line
surrounds the missing saliency area. The blue dash line indi-
cates the fake saliency area. We can use relations, marked by
the yellow arrow, to remedy the saliency result. (c) The wa-
vering boundary. (d) The ground truth (GT). (e) The result
refined by our method. The missing component surrounded
by the green dashed line appears. (f) The highlight of the
boundary refined by our method

We consider using the relation to break the indepen-
dence. Some conventional methods such as DenseCRFs
(Krähenbühl and Koltun 2013) use the conventional features
such as RGB value to build the relation. There is no doubt
that the deep features are more representative than the con-
ventional features. In this paper, we build deep relations to
break independence between deep feature vectors. Benefit-
ing from the deep relations, our method can not only elim-
inate the unconfirmed area (e.g., figure 1e is the refined re-
sult) but also enhance the blurry edge (e.g., figure 1f). To
establish the relations between deep features, we appeal to
mutual information (MI) (Kullback 1962), which is widely

Intelligence (www.aaai.org). All rights reserved.

10510



applied in natural language processing. The MI measures the
dependence between two variables. To some extent, MI is
the same as the similarity concept in human’s mind. In fig-
ure 1b, a high value of MI between the green dashed line
area and the salient region can help us refine the results in
that area. Therefore, the key is to ensure that the features of
similar regions have high mutual information. We propose a
simple but efficient model. Through jointly optimizing a fea-
ture extractor and a discriminator, the MI between the fea-
ture vectors of saliency areas is maximized. During the infer-
ence phase, we estimate the MI between the high-confidence
foreground feature vectors with all the feature vectors. As a
result, we can generate the refined saliency result by merging
the prior saliency map into the relation estimation output.

The experiments demonstrate that our method can signifi-
cantly promote the state-of-the-art saliency detectors includ-
ing conventional methods and deep-learning based meth-
ods. Notably, our method is label-free. Our training can be
performed with a self-supervised strategy. Moreover, our
method is extremely efficient. The inference speed of our
method is 140 fps on a single GTX 1080 GPU.

In summary, the main contributions of this paper are:

• We promote saliency detectors via learning the relations
on the deep feature maps by maximizing the mutual in-
formation (MI).

• Armed with our method, all the state-of-the-art methods
in our experiment are boosted significantly on four bench-
mark datasets.

• Our method is trained under a self-supervised scheme
without any ground truth. Moreover, our method is ex-
tremely fast.

2 Related Work

Saliency Detection. In the early days, saliency cues and
the handcrafted features were the main driving force of the
conventional saliency detectors. For example, Cheng et al.
(Cheng et al. 2014) utilize the global contrast to generate
the saliency map. Zhu et al. (Zhu et al. 2014) propose a ro-
bust background measure for saliency optimization. Qin et
al. (Qin et al. 2015) propose cellular automata dynamic evo-
lution model to intuitively detect the salient object. Recently,
the deep neural networks (DNNs), specifically the CNNs,
have been widely applied in various fields of computer vi-
sion. Many papers take advantage of the powerful feature
extracting ability of the CNNs to boost the performance of
the saliency detection models significantly. Li and Yu (Li
and Yu 2016) extract the multi-scale features from the DC-
NNs to replace the handcrafted feature. Liu et al. (Liu et al.
2015) fuse the bottom-up and top-down method. Hou et al.
(Hou et al. 2017) propose a salient object detection method
promoted by the short connections of a skip-layer within the
holistically-nested edge architecture. Zhang et al. (Zhang et
al. 2017a) argue there is no end of fusing the multi-level con-
volutional features and propose a generic framework to ag-
gregate it. Wang et al. (Wang et al. 2017b) propose a multi-
stage refinement mechanism for saliency detection. RADF
(Hu et al. 2018) use recurrently aggregated deep features

to detect saliency object. Zhuge et al. (Zhuge, Zeng, and
Lu 2019) argue that the noise in some features are harmful
to saliency detection. PiCANet (Liu, Han, and Yang 2018),
RAS (Chen et al. 2018), and PFA (Zhao and Wu 2019)) both
adopt the attention mechanism to get better saliency result.
R3Net (Deng et al. 2018) use a recurrent residual refinement
to more accurately detect salient regions.

Post Processing. The most relevant approach to ours is
Zeng et al. (Zeng et al. 2018). They propose a novel model to
promote the saliency detectors by embedding the image fea-
tures to the foreground and background anchors with some
ground truth. In contrast, our method can improve all exist-
ing saliency detection approaches in an unsupervised way.
DenseCRFs (Krähenbühl and Koltun 2013) is a widely used
post-processing method, which builds a graph of an image
and optimizes the energy function to refine the segmentation
prediction. DenseCRFs generates the unary item by deep
neural networks and uses some conventional features such
as RGB value to estimate the pairwise item. In this paper,
we use MI to estimate the pairwise relations between deep
features.

Mutual Information. MI is used to measure the mutual
dependence between two variables. The InfoMax optimiza-
tion principle (Bell and Sejnowski 1995; Linsker 1988),
which is the objective for the neural network, advocates
maximizing the mutual information between the input and
output. For so long, mutual information could not be ac-
curately estimated in neural networks. MINE proposed by
Belghazi et al. (Belghazi et al. 2018) estimates MI by gra-
dient descent with a neural network, and they apply it to
promote the generative adversarial networks. The other ap-
plication of mutual information in the neural network is DIM
(Hjelm et al. 2019) which is to learn the satisfactory repre-
sentation of the input image. They all use a discriminator to
train their models but discard it after training. In this paper,
we endeavor to construct the relationship between the fea-
ture vectors of different image areas via mutual information
to improve the saliency detection without any ground truth.
In addition, our discriminator is not only a tool for maximiz-
ing mutual information but also a key detector to generate
the saliency map.

3 MI for Deep Relation Estimation

In this section, we firstly describe our conception of mod-
eling relations by estimating mutual information with deep
neural networks. Then, we illustrate the derivation of the
conception.

3.1 Mutual Information in Saliency Detection

The existing conventional and deep saliency detectors can
almost distinguish the foreground and background areas but
they are still indecisive about some indistinguishable areas.
As mentioned previously, the relations, such as the material
similarity and the edge coherence, can tackle the ambiguous
area ascription problem caused by the feature spatial inde-
pendence.
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The widely applied MI measures the dependence between
two random variables. It quantifies the information of one
random variable we obtained after observing the other ran-
dom variable. Actually, in a saliency detection task, vague
areas which belong to the saliency object should have high
mutual information with the confident foreground area. This
property can help us eliminate vague areas. Therefore, we
can establish relations by maximizing the mutual informa-
tion between the deep features of the saliency object.

3.2 Derivation

Inspired by Belghazi et al. (Belghazi et al. 2018), we train
a deep neural network to estimate mutual information. Our
network consists of a feature extractor and a discrimiantor.

We use the convolutional feature extractor Eω with learn-
able parameters ω to extract the robust and representative
feature vectors of the input image. Let X and Y be two ran-
dom variables. In this paper, X denotes the deep feature vec-
tors of confident foreground areas and Y denotes the feature
vectors of random areas. Formally, the mutual information
of X and Y (Kullback 1962) can be defined as:

I(X;Y ) =

∫
Y

∫
X
p(x, y)log

(
p(x, y)

p(x)p(y)

)
dxdy, (1)

where the X and Y are both extracted by Eω . So, our target
is to obtain the best parameters ω which can maximize the
MI:

ω = argmax
ω

(I(X;Y )), (X,Y ∈ Eω(Image))1. (2)

To estimate MI, we consider the divergence between two
distributions: the joint distribution J(X,Y ) and the prod-
uct of two marginal distribution P(X) ⊗ P(Y ). The mutual
information between X and Y can be transformed to the
KL-divergence between these two distributions (Kullback
1962):

I(X;Y ) = DKL(J(X,Y )||P(X)⊗ P(Y )). (3)

Maximizing the mutual information is equivalent to maxi-
mizing the KL-divergence. Because there is no upper bound-
ary of KL-divergence, we use the JS-divergence to do the
maximizing optimization instead:

DJS(J(X,Y )||P(X)⊗ P(Y )) =

1

2
DKL

(
J(X,Y )

∣∣∣∣J(X,Y ) + P(X)⊗ P(Y )

2

)
+

1

2
DKL

(
P(X)⊗ P(Y )

∣∣∣∣J(X,Y ) + P(X)⊗ P(Y )

2

)
.

(4)

The upper boundary of JS-divergence is 1
2 log2. To esti-

mate the JS-divergence, we adopt the local variational in-
ference estimation proposed by Nowozin et al. (Nowozin,
Cseke, and Tomioka 2016):

1Here we slightly abuse the ∈.

DJS(J(X,Y )||P(X)⊗ P(Y )) =

max
F

(E(x,y)∼J(X,Y )[logσ(F (x, y))]+

E(x,y)∼P(X)⊗P(Y )[log(1− σ(F (x, y)))]),

(5)

where F indicates a discriminator that can determine which
distribution the sample (x, y) belongs to. If we simultane-
ously optimize the discriminator F and the feature extractor
Eω to maximize the value of the right hand of Eq. 5, we can
maximize DJS , which leads to MI maximization.

3.3 Optimization

Notably, Eq. 5 is very similar to the Binary Cross Entropy
Loss Function:

CELoss = −(y log(p) + (1− y) log(1− p)), (6)

where y is a binary indicator and p is the predicted proba-
bility of y = 1. In this paper, y indicates which distribution
the sample (x, y) belongs to. In the saliency detection task,
the confident saliency area and the area which probably be-
longs to the object commonly appear together. So, we sup-
pose that they can be the pair sampled from the joint distri-
bution J(X,Y ) with high MI. On the contrary, the confident
saliency area and the area which seems to be the random
background is the pair sampled from P(X)⊗P(Y ) with low
MI. The predicted probability p is calculated by σ(F (x, y)),
where σ is the sigmoid activation function.

We use the mini-batch gradient descent to minimize the
binary cross entropy loss with proper training pairs through
end-to-end training to optimize the loss function. When the
binary cross entropy loss converges, the extractor Eω can
generate the feature vectors of the confident and vague fore-
ground areas, which meet the requirement of mutual infor-
mation maximizing. We also get a satisfactory discriminator
F which can distinguish the pairs sampled from the joint
distribution. This discriminator can help us to determine
the high MI feature pairs. Therefore, we can promote the
saliency detection results by estimating the mutual informa-
tion between deep feature vectors of confident foreground
areas and vague areas.

4 Mutual Information Relation Model

In this section, we introduce the pipeline of the mutual infor-
mation relation model for promoting the saliency detection
results. As shown in figure 2, the network mainly consists of
three parts. The first one is a feature extractor. The second
part is composed of a multi-scale feature fusing layer and a
series of operations for training the whole model. The last
part illustrates the testing phase and the generation of the
final refined saliency map.

4.1 Multi-scale Feature Extraction

As shown in the left part of figure 2, we firstly feed an im-
age into a fully convolutional neural network to obtain the
deep features. In this paper, we use the MobileNet v2 (San-
dler et al. 2018) without the fully connected layer as our fea-
ture extractor. The low-resolution feature maps that obtained
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Figure 2: The pipeline of the proposed network to promote the saliency detection via maximizing the mutual information. The
fused stacked feature maps in testing phase are also produced by the multi-scale feature fusing layer.

from the high convolutional stages are insufficient for pro-
ducing the exact saliency map. Thus, we collect the feature
maps from convolutional layer 0, 3, 13, and 17. In the multi-
scale feature fusing module, we upsample these four groups
of feature maps to the same height and width via bilinear
interpolation. Then, we concatenate all the high-resolution
feature maps. The final feature maps are two times smaller
than the input image dimension. Inspired by the Deeplab
(Cheng et al. 2014), we apply an ASPP module on the high-
resolution feature maps and reduce their channel number to
32.

4.2 Training Samples

Guide masks. To provide the positive and negative train-
ing pairs to the discriminator, as shown in the upper-left
of figure 2, we use a baseline saliency detector to produce
the prior saliency map initially. The prior saliency map can
guide to construct the training pairs and suggest the labels
of the training pairs. Three kinds of masks are generated
by three different thresholds. θfg is the certain foreground
threshold. The first kind of mask generated by θfg is the
ForeGround mask (FG-mask) marked by 1© in figure 2.
Distinguishing most saliency areas is not a puzzle for ex-
isting detectors. Therefore, we assume that all the pixels
in the FG-mask area belong to the foreground object. The
second kind mask Approximate ForeGround Mask (AFG-
mask) marked by 2© and the third kind mask (ABG-mask)
marked by 3© are generated by Approximate ForeGround
and BackGround thresholds θa−fg and θa−bg . We assume
that most of the pixels in the AFG-mask or the ABG-mask
pertain to the foreground objects or the background.

Construct training pairs. We aggregate all the doubtless
foreground feature vectors masked by the FG-mask to one

foreground vector Ffg as below,

Ffg =
∑
i

pifi, (7)

where i indicates the pixel location in the FG-mask. fi is the
feature vectors at the location i. pi is the normalized saliency
probability calculated by pi = si∑

i si
, where si is the prior

saliency probability at the location i.
Then, we concatenate the feature vectors fafg located in

the approximate foreground area with the Ffg to construct
the positive pair u:

u = [Ffg, fafg], (8)

where [·, ·] denotes concatenation. The positive pair is the
one which sampled from the joint distribution of J in Eq. 5.
We also generate the negative pair v which are composed of
Ffg and the vectors fabg in the area masked by the ABG-
mask:

v = [Ffg, fabg]. (9)

The negative sample is the one which sampled from the
product distribution in Eq. 5.

Once we obtain the positive and negative training pairs,
we can send them to the discriminator and train the whole
network by the binary cross-entropy loss with the binary la-
bels, specifically 1 for positive and 0 for negative. The mu-
tual information between feature vectors is maximized when
the loss converges.

4.3 Saliency Map Generating

During inference phase, we concatenate the certain fore-
ground feature vector Ffg with all the feature vectors in the
fused stacked feature maps and send them to the trained dis-
criminator. The output of the discriminator represents not
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only the probability that the pair is the one sampled from
the joint distribution but also the probability that the pixel
belongs to the salient object.

Finally, we merge the output generated by the discrimina-
tor with the prior saliency result. For a saliency prediction si
at location i, we define the confidence value ci by:

ci =

{
si, si > 0.5

1− si, otherwise.
(10)

We calculate the confidence value ĉi for the new saliency
result ŝi produced by the discriminator, and ci for the prior
saliency result si. We produce the final saliency result ac-
cording to the confidence value:

si =

{
si, ci > ĉi
ŝi, otherwise.

(11)

5 Experiments

5.1 Datasets and Basic Algorithms

In our experiment, we use four well-known saliency bench-
mark datasets to evaluate our method. HKU-IS (Li and Yu
2016) contains 4447 images with multiple salient objects.
DUT-OMRON (Yang et al. 2013) includes 5168 compli-
cated images with one or two salient objects. Pascal-S (Li
et al. 2014) which contains 850 natural images is a subset of
the PASCAL VOC2010 dataset. ECSSD (Yan et al. 2013)
contains 1000 images with multiple objects of varying sizes.
The training dataset of our model is DUTS-TE (Wang et al.
2017a) which has 5019 images collected from the ImageNet
DET dataset (Deng et al. 2009).

We choose nine state-of-the-art deep learning methods
(i.e., Amulet (Zhang et al. 2017a), UCF (Zhang et al. 2017b),
ELD (Lee, Tai, and Kim 2016), NLDF (Luo et al. 2017),
SRM (Wang et al. 2017b), PiCANet (Liu, Han, and Yang
2018), RAS (Chen et al. 2018), R3Net (Deng et al. 2018),
and PFA (Zhao and Wu 2019)) and three conventional meth-
ods including MB+ (Zhang et al. 2015), wCtrO (Zhu et al.
2014) and BSCA (Qin et al. 2015) as our baseline saliency
detectors.

5.2 Evaluation Metrics

We adopt two widely used evaluation metrics. The first one
is the F-measure which is a comprehensive performance in-
dicator:

Fβ =
(1 + β2) · precision · recall
β2 · precision+ recall

, (12)

where the precision indicates the ratio of the correctly la-
beled saliency pixels in the predicted saliency map. The
recall is the ratio of the correctly labeled saliency pixels
in the ground truth. Following the suggestion of Achanta et
al. (Achanta et al. 2009), we use the double mean value of
the predicted saliency map as the threshold to measure the
F-measure. The β2 is set to 0.3.

The second metric is the mean absolute error (MAE)
which is used to measure the average discrepancy between
the saliency result and the ground truth:

MAE =
1

W ×H

W∑
i=1

H∑
j=1

|Sij −GTij |. (13)

5.3 Implementation Details

The training is operated on a PC with a GTX 2080ti GPU.
We use a single GTX 1080 during the inference phase.

The feature extractor mentioned in Section 4 is a Mo-
bileNet v2 (Sandler et al. 2018) pretrained on the Ima-
geNet dataset (Deng et al. 2009). The discriminator con-
sists of 5 convolutional layers. We use a sigmoid func-
tion as the output layer to generate the output. We illus-
trate the detailed architecture of the discriminator in the sup-
plementary material (submitted to the code repository). All
the thresholds for generating the masks are set as: θfg =
0.9, θa−fg = 0.8, θa−bg = 0.3. The code will be published
on https://github.com/ouc-ocean-group/LDPS soon.

We train our model on DUTS-TEST dataset which con-
tains 5019 images without the ground truth. We use the
saliency maps generated by PiCANet as the prior saliency
maps to construct the positive and negative pairs for opti-
mizing our model. The entire network is trained end-to-end
by SGD with backpropagation. We train our model on only
1 GPU for 20k iterations, with a learning rate of 5e-4 for
backbone and 5e-3 for the rest components. The learning
rates are decreased by the polynomial learning rate policy.

5.4 Performance

We evaluate the trained model on four benchmark datasets.
The F-measure and MAE scores of all the baseline saliency
detectors and our refined results are reported in table 1. We
summarize the significant improvements as follows:

(1) The F-measure scores of all baseline methods in-
crease dramatically after refining with our method. Not only
the conventional methods but also the state-of-the-art deep-
learning methods such as the RAS and the PFA also benefit
from our method.

(2) Our method can decrease MAE of all the methods in-
cluding the latest methods with ultra-low MAE scores.

(3) Notably, the best results of each benchmark dataset
are illustrated in bold respectively in table 1. We can see that
our method presents the best performance on all the datasets
by refining the state-of-the-art methods without any ground
truth.

(3) Our method can help the poor saliency detectors match
or even exceed the good detectors. For example, the F-
measure of the refined wCtrO on HKU-IS dataset is 0.8585,
which is higher than the raw Amulet, UCF, and ELD.

Figure 3 visualizes the results of some state-of-the-art
saliency detectors including SRM, RAS, and PFA as well
as the refined results with our method. We show more vi-
sualizations of all the prior detectors in the supplementary
material. Obviously, our method can highlight the neglected
object areas. Furthermore, the redundant background areas
are also restrained.
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Table 1: Improvement of the F-measure (higher is better) and MAE (lower is better) after refining by our method. The Baseline
is the basic performance of each method. The best methods are illustrated in bold respectively.

Datasets ECSSD DUT-O HKU-IS Pascal-S

Methods Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓
MB+ Baseline 0.6902 0.1708 0.5215 0.1679 0.6677 0.1503 0.6161 0.1983

Ours 0.8418 0.0841 0.666 0.1048 0.8357 0.0672 0.7504 0.1202

BSCA Baseline 0.7024 0.1824 0.5087 0.1907 0.6543 0.1748 0.5953 0.2238
Ours 0.8617 0.0817 0.6909 0.1022 0.8575 0.0680 0.7558 0.1233

wCtrO Baseline 0.6763 0.1713 0.5277 0.1438 0.6769 0.1424 0.5963 0.2012
Ours 0.8537 0.0893 0.7015 0.0866 0.8585 0.0658 0.7552 0.1225

Amulet Baseline 0.8682 0.0588 0.6472 0.0975 0.8408 0.0506 0.7632 0.0997
Ours 0.9079 0.0473 0.7105 0.0805 0.8912 0.0387 0.8037 0.0839

UCF Baseline 0.8435 0.0691 0.6205 0.1203 0.8231 0.0619 0.7305 0.1160
Ours 0.8964 0.0505 0.7125 0.0871 0.8893 0.0411 0.7808 0.0900

ELD Baseline 0.8157 0.0723 0.6571 0.0876 0.8164 0.0636 0.7126 0.1130
Ours 0.8884 0.0501 0.7418 0.0715 0.8919 0.0413 0.7901 0.0872

NLDF Baseline 0.8783 0.0626 0.6836 0.0795 0.8735 0.0477 0.7742 0.0989
Ours 0.9009 0.0514 0.7260 0.0703 0.8994 0.0395 0.8046 0.0869

SRM Baseline 0.8922 0.0544 0.7068 0.0693 0.8738 0.0459 0.7961 0.0852
Ours 0.9158 0.0460 0.7432 0.0637 0.9041 0.0379 0.8244 0.0759

PiCANet Baseline 0.8872 0.0456 0.7496 0.0653 0.8766 0.0413 0.8033 0.0782
Ours 0.9096 0.0406 0.7899 0.0603 0.9074 0.0359 0.8288 0.0723

RAS Baseline 0.8893 0.0564 0.7129 0.0617 0.8705 0.0453 0.7807 0.1037
Ours 0.9109 0.0499 0.7484 0.0580 0.8993 0.0394 0.8093 0.0937

R3Net Baseline 0.9148 0.0399 0.7562 0.0623 0.8941 0.0356 0.8029 0.0933
Ours 0.9208 0.0383 0.7667 0.0608 0.9038 0.0336 0.8111 0.0897

PFA Baseline 0.8863 0.0448 0.7842 0.0414 0.8847 0.0324 0.8224 0.0648
Ours 0.9138 0.0383 0.8147 0.0402 0.9127 0.0290 0.8472 0.0601

Comparison of other refinement method. We compare
our method to LPS (Zeng et al. 2018) which is a novel model
to promote saliency detectors. The official code and the offi-
cial pretrained model of LPS are implemented in our experi-
ments. Following LPS, we also use VGGNet (Simonyan and
Zisserman 2015) as the feature extractor to guarantee a fair
comparison. LPS trains their model on the DUTS-TRAIN
datasets (10000 images) with ground truth. The performance
comparison of LPS and our model is shown in table 2. All
the F-measure scores and the MAE scores of our method are
better than LPS. Moreover, our method can refine a result
with 256 × 256 resolution at 140+ fps with TensorRT (90+
fps without TensorRT), which is extremely faster than LPS
(11 fps).

In the comparison of our method with the DenseCRFs
(Krähenbühl and Koltun 2013), for the sake of fairness,
we also initialize our model for each image and refine the
prior saliency map relying on only one image. The learning
rate and the training iteration steps is set to 0.2 and 10 re-
spectively. Some results are shown in table 3. Our method
achieves better performance than DenseCRFs. Moreover, If

we use the training scheme mentioned in Section 5.2 to train
our model, our model can significantly outperform Dense-
CRFs. More detail of the network architecture and results
can be found in supplementary material.

5.5 Ablation Studies

In this section, we choose SRM, which is a stable and out-
standing saliency detector, as the prior detector to analyze
our method in detail.

Pairs sampling. We binarize the prior saliency maps with
the thresholds θfg . The true foreground ratio (TFR) is in-
vestigated, which indicates the ratio of correctly foreground
pixels in all binarized salient pixels. We take the SRM
on the DUTS-TEST dataset as an example. The TFR with
θfg = 0.9 is 0.9003 which means that almost all confident
areas fall into the ground truth area. So, we have confidence
to believe that the feature vector Ffg can represent the object
robustly.

Moreover, we set θfg to different values during testing
and investigate the different performance. As shown in table
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Table 2: Comparison of LPS and our method. The best results on each dataset are illustrated in bold respectively.

Datasets HKU-IS DUT-O Pascal-S ECSSD

Methods Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓ Fβ ↑ MAE ↓
BSCA LPS 0.7386 0.1075 0.5824 0.1650 0.6690 0.1654 0.7823 0.1043

Ours 0.8483 0.0897 0.6587 0.1607 0.7572 0.1488 0.8559 0.0929

Amulet LPS 0.8772 0.0446 0.6472 0.0975 0.7985 0.0920 0.8963 0.0509
Ours 0.8892 0.0401 0.6965 0.0951 0.8031 0.0885 0.9069 0.0464

UCF LPS 0.8530 0.0546 0.6423 0.1328 0.7703 0.1044 0.8805 0.0560
Ours 0.8862 0.0443 0.6893 0.1120 0.7869 0.0966 0.8921 0.0530

ELD LPS 0.8443 0.0511 0.6614 0.0885 0.7694 0.1022 0.8689 0.0577
Ours 0.8977 0.0404 0.7364 0.0797 0.7987 0.0894 0.8912 0.0497

SRM LPS 0.9042 0.0388 0.6938 0.068 0.8240 0.0810 0.9151 0.0465
Ours 0.9106 0.0366 0.7459 0.0655 0.8286 0.0757 0.9193 0.0451

PiCANet LPS 0.8667 0.0395 0.6825 0.0746 0.8232 0.0802 0.8569 0.0466
Ours 0.9159 0.0344 0.7923 0.0627 0.8349 0.0719 0.9164 0.0391

Table 3: Comparison of DenseCRFs(C) and our method(O)
over Pascal-S and ECSSD.

Methods UCF ELD NLDF

Datasets Fβ ↑ MAE↓ Fβ ↑ MAE↓ Fβ ↑ MAE↓
ECSSD C 0.847 0.067 0.841 0.071 0.875 0.065

O 0.878 0.055 0.866 0.057 0.885 0.060

HKU-IS C 0.842 0.056 0.832 0.061 0.882 0.048
O 0.864 0.047 0.866 0.047 0.886 0.045

Table 4: Quantitative effect evaluated of different θfg on EC-
SSD.

θfg Fβ ↑ MAE ↓
0.9 0.9158 0.0460
0.8 0.9154 0.0458
0.7 0.9152 0.0458

Table 5: Quantitative effect evaluated of different θafg and
θabg on ECSSD.

θafg θabg Fβ ↑ MAE ↓
0.7 0.4 0.9145 0.0457
0.8 0.3 0.9154 0.0458
0.9 0.2 0.9149 0.0471

4, our method performs steadily with various θfg . By the
way, we don’t use the approximate masks during the infer-
ence phase. Therefore, θa−fg and θa−bg have no effect on
the refined results generation. We adopt different θa−fg and
θa−bg during training and analyze the performance. The re-
sults are shown in table 5. There is no big fluctuation of the
Fβ and the MAE.

6 Conclusion

In this paper, we proposed an efficient method to promote
saliency detectors. We build the ubiquitous relations in the
deep features to break the feature spatial independence. To
the best of our knowledge, it is the first time of employing

(a) Image (b) Before (c) After (d) GT

Figure 3: We present the result of some state-of-the-art de-
tectors. GT means the ground truth. Our method can make
the edge more clear and eliminate fake saliency areas.

the relation of the deep features to promote saliency detec-
tors without any ground truth. We proved that the mutual in-
formation can be used as the measure to estimate the relation
and apply it into our method. Our experiments demonstrated
that existing saliency detectors are boosted on four bench-
mark datasets by our method, which means that the deep
relation is significantly profitable for saliency detection.
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