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Abstract

Person Search is a challenging task which requires to retrieve
a person’s image and the corresponding position from an im-
age dataset. It consists of two sub-tasks: pedestrian detec-
tion and person re-identification (re-ID). One of the key chal-
lenges is to properly combine the two sub-tasks into a unified
framework. Existing works usually adopt a straightforward
strategy by concatenating a detector and a re-ID model di-
rectly, either into an integrated model or into separated mod-
els. We argue that simply concatenating detection and re-ID
is a sub-optimal solution, and we propose a Hierarchical On-
line Instance Matching (HOIM) loss which exploits the hi-
erarchical relationship between detection and re-ID to guide
the learning of our network. Our novel HOIM loss func-
tion harmonizes the objectives of the two sub-tasks and en-
courages better feature learning. In addition, we improve the
loss update policy by introducing Selective Memory Refresh-
ment (SMR) for unlabeled persons, which takes advantage of
the potential discrimination power of unlabeled data. From
the experiments on two standard person search benchmarks,
i.e. CUHK-SYSU and PRW, we achieve state-of-the-art per-
formance, which justifies the effectiveness of our proposed
HOIM loss on learning robust features.

Introduction
In video surveillance, pedestrian detection and person re-
identification are two important tasks. They have attracted a
lot of research attention in recent years individually. Pedes-
trian detection requires to detect the bounding box of per-
sons in a panorama image regardless of their identity infor-
mation, while person re-ID aims to match the reappearance
of a probe person within pre-defined bounding boxes. Both
tasks are important but they are not directly applicable to
a surveillance system because of their limited functionality.
Therefore, person search is introduced by (Xu et al. 2014),
which consolidates the two sub-tasks into a unified system.
However, the task of person search is more challenging since
it gathers domain-specific difficulties from the two sub-tasks
together, e.g. viewpoint and pose variance, occlusion, com-
plex background, false alarms, misalignments, etc.
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Figure 1: The hierarchical relationship between detec-
tion (the first layer) and re-identification (the second layer).

On the topic of person search, a few works have been
proposed since the release of two large-scale person search
datasets (Xiao et al. 2017b; Zheng et al. 2017). Gener-
ally, these works can be clustered into two categories: one-
stage methods (Xiao et al. 2017b; 2017a; Liu et al. 2017a;
Chang et al. 2018; Munjal et al. 2019; Yan et al. 2019)
that solve detection and re-ID in an end-to-end model and
two-stage methods (Zheng et al. 2017; Chen et al. 2018;
Lan, Zhu, and Gong 2018) that split detection and re-ID into
two independent models. One-stage methods aim to learn a
mutual representation shared by the two sub-tasks, but they
suffer from contradictory objectives of the two sub-tasks
and conflicting focusing points as discussed in (Chen et al.
2018), since they are simple concatenations of a detector and
a linear embedding layer without harmonizing the two sub-
tasks. On the other hand, two-stage methods avoid this issue
by separated modeling and they usually yield better perfor-
mance, but neglect the inter-dependency between pedestrian
detection and re-ID and incur a higher computation cost.

Motivated by the discussion above, we propose to explic-
itly model the relationship between pedestrian detection and
re-ID, and further exploit it as a prior to guide the one-
stage model learning. Specifically, detection and re-ID form
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a hierarchical structure with two layers, as illustrated by
Fig. 1. The first layer describes the goal of pedestrian de-
tection, which captures the human commonness and aims
to distinguish person from background clutter given an ar-
bitrary proposal. The second layer interprets the objective
of re-ID, which is to classify the persons’ identities accord-
ing to their uniqueness. Based on the two-layered tree struc-
ture, we propose the Hierarchical Online Instance Match-
ing (HOIM) loss, which formulates the hierarchical relation-
ship with the law of total probability. By encoding the task
relationship into the training stage, the tasks of detection and
re-ID are deeply aggregated. hence the learned embeddings
are more robust since they describe the human commonness
for person/background separation and uniqueness for person
identity discrimination simultaneously. Additionally, the de-
tector performance, which is crucial to person search accu-
racy, is improved since the contradictory objectives of detec-
tion and re-ID is alleviated. Moreover, our method consumes
less memory and computational resources compared to two-
stage methods, since extracted features are shared between
the two sub-tasks.

Another major difference between person search w.r.t. re-
ID is that the datasets contain people with unknown identity,
which is under-exploited by conventional re-ID loss func-
tions. To take advantage of these unlabeled data, Online In-
stance Matching (OIM) loss (Xiao et al. 2017b) is proposed
by treating them as negative samples, which adopts a first-
in-first-out (FIFO) strategy to manage the embedding buffer.
However, FIFO only focuses on the life cycle of the embed-
dings, ignoring the relative importance between the candi-
dates and memorized entries. For instance, two persons with
similar appearances in the same batch would both be pushed
into the buffer by the ‘first-in’ rule and increase feature re-
dundancy, while discriminative embeddings located at the
tail of the buffer would be incorrectly popped out, follow-
ing the ‘first-out’ rule. Therefore, we propose a Selective
Memory Refreshment (SMR) strategy that assigns each em-
bedding an importance weight, which jointly considers the
hardness, diversity and existing time of each entry. A new
embedding would be pushed into the buffer only if its impor-
tance weight is larger than the minimum value of the existing
ones. At the same time, the embedding with the smallest im-
portance would be popped out. The proposed SMR policy
excels over the FIFO strategy of OIM in that it filters out
easy and redundant samples, hence improving the feature
learning efficiency.

In summary, our contribution is three-fold:
• A novel Hierarchical Online Instance Matching loss is

proposed to learn better embeddings for one-stage person
search models.
• We introduce a new Selective Memory Refreshment strat-

egy to optimize the loss updating procedure of OIM and
HOIM loss.
• Our proposed method achieves state-of-the-art perfor-

mance with a smaller model size and faster running speed.

Related Work
Person Search Person Search has drawn a lot of attention
recently. A straightforward solution is to use a pedestrian

detector and a person encoder sequentially. Zheng et al. con-
duct a systematic evaluation on various detectors and re-
ID descriptors, and provide novel insights on re-weighting
the person matching similarity with detection confidence
score. Lan, Zhu, and Gong point out the multi-scale match-
ing problem and proposed the Cross-Level Semantic Align-
ment method for person search. Chen et al. first reveal that
for the person search problem, two-stage methods are su-
perior to one-stage ones without reconciling the objective
contradiction. They also propose to exploit background in-
formation as a complementary cue for person matching.

Apart from two-stage methods, end-to-end models based
on Faster R-CNN are also a popular choice. Early works
concatenate an auxiliary linear layer upon the top convolu-
tional layer of Faster R-CNN for re-ID embedding genera-
tion. The whole model is jointly trained under the supervi-
sion of standard Faster R-CNN losses and OIM loss (Xiao
et al. 2017b) or Center Loss (Xiao et al. 2017a; Wen et al.
2016). Instead of generating a number of boxes on an im-
age, Liu et al. propose to match the probe person directly
on the panorama image by recursively shrinking the search
area. Chang et al. adopt a similar idea and further build
the first deep reinforcement-learning-based person search
framework. Yan et al. propose a sophisticated matching
method by building a graph using nearby persons as con-
text information. Munjal et al. fuse the query information
into a siamese network as guidance for feature learning, pro-
posal generation and similarity calculation. All of the above
methods ignore the association between detection and re-
identification. However, in this paper, we show that encod-
ing the task relationship as a prior into the network training
procedure is beneficial for person search.
Person re-ID Early works on person re-ID mainly focus on
designing hand-crafted features (Wang et al. 2007; Faren-
zena et al. 2010; Zhao, Ouyang, and Wang 2013; Liao et al.
2015) and effective distance metrics (Kostinger et al. 2012;
Li et al. 2015; Zhang, Xiang, and Gong 2016). Recent
progress is generally based on deep neural networks which
can be grouped into two classes, i.e. siamese models which
are trained with ranking losses such as contrastive loss (Yi
et al. 2014; Li et al. 2014; Ahmed, Jones, and Marks 2015;
Varior et al. 2016; Liu et al. 2017b; Xu et al. 2018) or triplet
loss (Ding et al. 2015; Cheng et al. 2016), and identifica-
tion models (Xiao et al. 2016; Zheng et al. 2016; 2017;
Fan et al. 2018; Xiang et al. 2018) which adopt cross entropy
loss for supervision. Fan et al. and Xiang et al. proposed to
project both the embeddings and classification weight vec-
tors onto a hypershpere. Our proposed HOIM loss has a
similar formulation, which renormalizes the embeddings to
have unit length. However, our method replaces the linear
projection weight with embedding buffers, which eliminates
the need for training by adaptively making use of the em-
bedding characteristics. Moreover, our method is scalable to
unlabeled persons and conducts implicit hard mining via Se-
lective Memory Refreshment.
Pedestrian Detection Hand-crafted features and linear clas-
sifiers are commonly adopted by early works on pedes-
trian detection, among which DPM (Felzenszwalb et al.
2009), ACF (Dollar et al. 2014) and ICF (Dollar et al. 2009;
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Figure 2: Overview of our framework. Our network is based on Faster R-CNN (Ren et al. 2017) with a ResNet-50 (He et al.
2016) backbone. An extra L2-normalized linear projection layer is appended for person embedding generation. We remove the
second-stage classification loss of the original Faster R-CNN and integrate its functionality into our HOIM loss.

Zhang, Bauckhage, and Cremers 2014; Zhang, Benenson,
and Schiele 2015) are three classical methods. Deep neu-
ral networks have been popular in recent years (Zhang
et al. 2016; 2018; Ouyang and Wang 2013; 2012) for its
exceptional feature learning capacity. Some of the CNN-
based works utilize the R-CNN architecture, which employs
weak pedestrian detectors such as ICF (Zhang et al. 2016;
2018) as proposals and CNNs for refinement. Faster R-
CNN (Ren et al. 2017) takes one step further by incorpo-
rating proposal generation and refinement into an end-to-
end network. It achieves leading performance on pedestrian
detection by applying proper adjustments (Zhang, Benen-
son, and Schiele 2017; Zhang, Yang, and Schiele 2018). Our
work is also based on the adjusted Faster R-CNN, except
that the classification loss on the head network is merged
into our proposed HOIM loss.

Method
In this section, we first present an overview of the whole
structure of our model. Then, we revisit the design philoso-
phy of OIM loss. Next, we describe the details of the hierar-
chical relationship between pedestrian detection and re-ID,
which aims to augment the vanilla OIM loss. Subsequently,
we describe the SMR strategy to enhance HOIM discrimina-
tion power. Finally, a useful add-on component to improve
the performance is introduced.

Overview
As shown in Fig. 2, our model is based on Faster R-
CNN (Ren et al. 2017), which is composed of a stem net-
work for spatial feature learning, a region proposal net-
work (RPN) for proposal sampling, and a head network (R-
CNN) for feature fine-tuning and classification. An extra L2-
normalized linear layer is added upon the top of the head
network to generate the feature embeddings for re-ID.

We follow the network configurations in (Xiao et al.
2017b) except that we replace the second-stage classification
loss and OIM loss with our HOIM loss. Together with RPN
classification loss, RPN and R-CNN bounding box regres-
sion losses, we train the whole model jointly using Stochas-
tic Gradient Descent (SGD).

During inference, our model takes in a scene image and
produces several bounding boxes as query candidates. Each
box also includes a detection confidence score and a d-
dimensional embedding. To find a specific probe person, we
first extract his/her embedding by freezing RPN and using
the provided box for RoI pooling directly, then calculate the
cosine similarities with the candidate embeddings. Finally, a
ranking list of the candidates is formed by sorting the simi-
larity scores in descending order.

Revisiting Online Instance Matching

OIM loss is the basis of our proposed HOIM loss. It is spe-
cially designed for the person search task, which has two
major differences to re-ID. Firstly, person search datasets in-
clude individuals with unknown identities. The widely used
loss functions in re-ID task, i.e. Cross Entropy and Triplet
loss, are not scalable to these data, while OIM loss makes
use of them by enacting them as negative samples to the la-
beled data, as is shown in the first and second row in Fig. 3.
Secondly, the training iterations of an end-to-end model for
simultaneous detection and re-ID are more ill-conditioned
than vanilla re-ID models, since the batch size is usually
much smaller, which in result reduces the class and instance
diversity. Therefore, Cross Entropy and Triplet loss would
suffer from unstable gradients and the consequent conver-
gence failure. Whereas the non-parametric property and the
tailored update policy of OIM loss ensure effective training.

Suppose there are N different identities in the training
dataset. OIM loss constructs a look-up table with size N ×d
to memorize the class centroid embeddings. Another circu-
lar queue with size M ×d is built up to store diverse embed-
dings of unlabeled persons. Together the look-up table and
circular queue forms a projection matrix W ∈ R

(N+M)×d.
Different from the projection matrix in a vanilla softmax
layer, W here is considered as an external buffer, which is
updated separately from the model parameters.

Given a person embedding x ∈ R
d, the cosine similarities

between x and the memorized embeddings are calculated by
a linear projection, as is comprehensively illustrated in the
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Figure 3: Comparison between vanilla softmax loss (a), OIM
loss (b) and HOIM loss (c). Blue, yellow and red squares
represent logits/cosine similarities of labeled persons, unla-
beled persons and background-clutters between the current
sample respectively.

second row of Fig. 3.

s = Wx ∈ R
N+M , (1)

where s = [s1, s2, . . . , sN , sN+1, . . . , sN+M ]

Then the probability of x belonging to identity t (denoted as
id = t), given the fact that x also represents a person (de-
noted as Λ), could be produced by a softmax function:

p(id = t,Λ) =
est/τ

∑N
j=1 e

sj/τ +
∑N+M

j=N+1 e
sj/τ

(2)

where τ is a temperature factor to control the softness of the
probability distribution. The final objective is to minimize
the negative log-likelihood:

LOIM = −Ex[log p(id = t,Λ)], t = 1, 2, . . . , N. (3)

During training, the look-up table is incrementally updated
with a momentum of η:

wt ← ηwt + (1− η)x, if x belongs to class t. (4)

The circular queue pops out old embeddings and pushes in
new ones to preserve a fixed size.

Hierarchical Relationship between Detection &
Re-ID
OIM loss deals only with person embeddings and leaves
background to another Cross Entropy loss. Our proposed
HOIM loss is meant to integrate the hierarchical structure
of pedestrian detection and person re-ID into OIM loss ex-
plicitly, in order to jointly process person and background
embeddings. The projection matrix W is firstly expanded to
a size of (N+M+B)×d, denoted as W′, by concatenating
another circular queue with size B × d to memorize a num-
ber of background embeddings. For an arbitrary embedding
x w.r.t. a valid proposal, we first calculate the augmented

probability distribution by projection and softmax normal-
ization:

s′ = W′x ∈ R
N+M+B , (5)

pi =
esi/τ

∑N+M+B
j=1 esj/τ

, i = 1, 2, . . . , N +M +B. (6)

Then the hierarchical structure could be described using the
law of total probability, as the probability of x being a person
is the sum over the probabilities of x being all the persons
memorized by W′:

p(Λ) =

N+M∑

j=1

p(id = j,Λ) =

N+M∑

i=1

pi (7)

The probability of x being background could be formulated
in the same manner:

p(Φ) =

N+M+B∑

i=N+M+1

pi (8)

The first level of HOIM loss for detection is formulated as a
binary cross entropy loss:

Ldet = −y log(p(Λ))− (1− y) log(p(Φ)) (9)

where y is a binary label indicating whether x is a person or
not.

For the second level, we slice s′ and ignore the back-
ground part. Thus the re-ID sub-loss shares the same for-
mulation to OIM loss described in the last subsection. The
calculation process is illustrated in the third row of Fig. 3.
The formal composition of our proposed HOIM loss is the
linear combination of the two-level losses:

LHOIM = Ldet + λLOIM, where λ = 2p(Λ)2 (10)

where λ is the loss weight for LOIM. It is dynamically
changed according to the detection confidence digit p(Λ).
Intuitively, if the detection confidence is high, more weight
could be put on distinguishing the detected person; other-
wise, the model should focus on the detection task.

By expanding the projection matrix of OIM for back-
ground memorizing, our HOIM loss aggregates pedestrian
detection and re-ID into a unified layer. Embeddings learned
by HOIM loss is not only able to identify different per-
sons, but also disassociates background clutter from per-
sons. Therefore, the embeddings are more robust for person
matching, especially when the detected boxes have low qual-
ity, i.e. false alarms and misalignments. Moreover, adding
background descriptors increases the feature diversity of the
projection matrix, which alleviates the risk of over-fitting.

Selective Memory Refreshment for Embedding
Buffer
In HOIM loss, the two circular queues in the projection
matrix W′, denoted as Q and Q̃, are used to store unla-
beled person and background-clutters respectively. During
training, they are updated in a FIFO manner (Xiao et al.
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2017b). However, it ignores the underlying manifold struc-
ture of all the embeddings in the current batch and the cir-
cular queues, i.e. similar embeddings would be pushed into
the queue while discriminative memories located at the tail
of the queue would be popped out, which in consequent in-
creases feature redundancy and triviality.

To alleviate this issue, we propose to rank the embeddings
by assigning each of them an importance factor ω. Embed-
dings in the current batch will be evaluated according to their
ω, and would only replace the existing ones with low impor-
tance if pushed into the queue. Specifically, the design of ω
should be able to describe three properties of the candidate
embeddings:
1. Hardness: For an unlabeled person, it is considered hard

to discriminate if it has high similarities to the embed-
dings in the look-up table. Hard samples are more fa-
vorable than easy ones since they could provide stronger
magnitude of gradients for effective training.

2. Diversity: Embeddings in the queue are supposed to be
different from each other to act as non-trivial negative
samples. Thus instances with high similarities to the ex-
isting queue should be assigned with low importance.

3. Mortality: As the training iterations proceed, the old em-
beddings become antiquated accordingly and should be
forgotten eventually. Hence the importance factors are
ought to decay alongside every iteration.

Based on the intuitions above, the importance factor for an
unlabeled person x is formulated as follows:

ω =
max(Lx)

max(Qx) + ε
· kι (11)

where L denotes the look-up table, k is a decay factor within
the range of (0, 1) and ι indicates the iteration number. ε is
a small constant to ensure numerical stability. Similarly, we
define the importance factor of a background clutter as:

ω̃ =
max([Lx,Qx])

max(Q̃x) + ε
· kι (12)

where [·, ·] represents the concatenation operation.
For an arbitrary embedding x, either from an unlabeled

person or a background clutter, its ω is calculated first. Then
we find the memory slot with the smallest importance fac-
tor ωmin from the corresponding queue and compare it with
the candidate importance factor. x would be pushed into
the memory slot only if ω is larger than ωmin. Otherwise, it
would be ignored. Compared to the FIFO strategy, our pro-
posed method chooses negative samples more intelligently.

Add-on: Focal Loss
The SMR strategy introduced above only deals with unla-
beled samples, i.e. persons without identity and background-
clutters. The labeled persons are left without weighting and
have a potential consequence of overwhelming the loss and
gradients. To solve this issue, we propose to add Focal
Loss (Lin et al. 2017) into the HOIM formulation, which
down-weights easy examples to reduce their contributions to
the total loss and focuses training on hard samples. Specif-
ically, a density factor is multiplied to the log-likelihood

within Ldet and LOIM:

log(p)← α(1− p)γ log(p) (13)

where α and γ are tun-able parameters.

Experiments
In this section, we first introduce the datasets and evalua-
tion protocols, describe the implementation details, followed
by ablation studies on the efficacy of each component and
model inspections. Finally, we compare the performance of
our model with state-of-the-art methods.

Datasets and Evaluation Protocol
CUHK-SYSU (Xiao et al. 2017b) is a large-scale dataset
that contains 18,184 images and 96,143 person bounding
boxes. The images are collected from hand-held cameras
and various movie screenshots, with diverse appearances on
illumination, viewpoint, gesture, background and occlusion.
We follow the standard train/test split pre-defined by the
dataset, where the training set consists of 11,206 images and
5,532 identities, whilst the testing set contains 2,900 probe
persons and 6,978 gallery images. In addition, each probe
image is assigned with several gallery subsets with different
sizes. We use the default gallery size 100 if not specified.
PRW (Zheng et al. 2017) is sampled from videos shot by
6 stationary cameras on a university campus. The dataset
holds 11,816 frames with 43,110 annotated bounding boxes,
where 34,304 of them are tagged with 932 identities. It splits
5,704 images with 482 different IDs for training and 2,057
probe persons w.r.t. 6,112 gallery images for testing. Differ-
ent from CUHK-SYSU, each probe image requires match-
ing from the whole gallery set instead of pre-defined subsets.
Evaluation Protocol Mean Average Precision (mAP) and
Cumulative Matching Characteristics (CMC top-K) are used
as the performance metrics. The mAP metric reflects both
precision and recall at every position in the ranked sequence
for each probe person. CMC top-K shows the percentage
of all the rank sequences where correct matches appear at
rank≤K. A candidate among the top-K results is considered
correct if its IoU to the ground truth is larger than 0.5.

Implementation Details1

Our implementation is based on PyTorch (Paszke et
al. 2017). The ResNet-50 backbone is initialized with
ImageNet-pretrained weights. The first convolutional block
is frozen during training. The appended embedding projec-
tion layers are followed by batch normalization (Ioffe and
Szegedy 2015) layers.

The momentum η, softmax temperature τ and importance
decay factor k of HOIM are set to 0.5, 1/30 and 0.99 re-
spectively. Sizes of the embedding buffers, i.e. N,M and B,
are set individually for different datasets. For CUHK-SYSU,
they are 5,532, 5,000 and 5,000; for PRW, N is set to 482,
while M and B are both reduced to 500 to balance the prob-
ability distribution.

We train our model jointly with a batch size of 5 on a sin-
gle NVIDIA Tesla P40 GPU. The training data are resized to

1https://github.com/DeanChan/HOIM-PyTorch
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Table 1: Ablation study results on CUHK-SYSU.

Method mAP(%) top-1(%) Δ(%)

OIM 75.5 78.7

OIM-base 83.6 87.4
+ Focal Loss 85.1 87.6 (+1.5, +0.2)

+ SMR 85.5 88.2 (+0.4, +0.6)
HOIM 89.7 90.8 (+4.2, +2.6)

have at least 900 pixels on the short side and at most 1,500
on the long side. Crop and zero-padding are used (if nec-
essary) to fit images with different resolutions into a batch.
The target learning rate is set to 0.003, which is gradually
warmed-up at the first epoch and decayed by a factor of 0.1
at the 16th epoch. The training process converges at epoch
22. During inference, it takes around 280 ms to detect the
persons in an image and extract the corresponding embed-
dings simultaneously.

Ablation Study
We present analytical experiments on CUHK-SYSU with a
gallery size of 100 to evaluate the efficacy of each compo-
nent in the proposed model. We start from a baseline, which
is refined from the successful OIM model (Xiao et al. 2017b)
by adding batch normalization, large-batch-size training and
learning rate warm-up. It shares the same network structure
with our proposed model except that it separates detection
and re-ID supervisions into two independent losses, i.e. R-
CNN classification loss and OIM loss. Experiment results
are recorded in Table 1, from which we can see that the
baseline model, denoted as ‘OIM-base’, achieves 83.6% and
87.4% in mAP and top-1 accuracy respectively, providing a
relatively good start point.

Next up, we add Focal Loss to both R-CNN classification
loss and OIM loss. We follow the suggested configurations
in (Lin et al. 2017) by setting the weighting factor α and
focusing parameter γ to 0.25 and 2.0 respectively. Addition-
ally, we find that increasing the α for R-CNN classification
from 0.25 to 1.0 yields slightly better performance. There-
fore, we stick to this parameter setting throughout the paper.
Comparing to the baseline, adding focal loss brings a per-
formance gain by 1.5 pp. and 0.2 pp. w.r.t. mAP and top-1
accuracy, showing that weighting samples according to their
relative hardness is beneficial to the task of person search.

Furthermore, we replace the FIFO rule of the OIM circu-
lar queue with the SMR strategy. From Table 1 we find that
the mAP and top-1 accuracy are slightly boosted by 0.4 and
0.6 pp. correspondingly. Hence we conclude that the pro-
posed SMR policy is superior to the FIFO rule of the original
OIM loss.

Finally, we put all the components together and present
our HOIM model, which takes the place of both R-CNN
classification and OIM loss. The mAP and top-1 accuracy
are lifted by 4.2 and 2.6 pp. The exceptional performance
substantially verifies our concept of modeling pedestrian de-
tection and re-ID by their hierarchical relationship.

Table 2: Detection performance of a vanilla detector and its
OIM/HOIM extensions

Method
RPN Faster R-CNN

Recall(%) AP(%) Recall(%) AP(%)

detector 89.27 69.07 93.12 87.02

OIM-base -9.1 -21.69 -12.01 -11.18
HOIM -0.73 -12.66 -1.36 -1.35

Model Inspection

To further understand why HOIM performs better than our
OIM baseline, we provide analysis on the detection perfor-
mance and embedding discriminability, which are the most
fundamental factors for person search accuracy. The analy-
sis is based on models from Ablation Study section and we
have the following findings:
HOIM has better detection accuracy than OIM. We list
the detection performance of a vanilla Faster R-CNN and its
extensions with OIM/HOIM loss heads in Tab. 2. All three
models are trained and tested under the same protocol. We
can see that adding re-ID losses to the vanilla Faster R-CNN
would harm the detection performance because of the con-
tradictory objectives (Chen et al. 2018). However, adding
HOIM harms less to the detector performance than the OIM
loss.
HOIM embeddings are more discriminative under false
detections. False detections commonly exist in the gallery,
some are misaligned boxes and others are misclassified
background patches. To be more specific, 1400/2900 probe-
galleries contain at least one false detections generated by
HOIM, and the portion of our OIM baseline is 1760/2900.
When matching to a probe person, our method would rank
down those false detections by producing lower similarities,
yielding a better ranking list. An intuitive example is shown
in Fig 4. When the bbox shifts from person to background,
HOIM embedding of misaligned bbox (marked in green) has
lower similarity to the target person (marked in red) com-
pared to OIM, especially when the box has an IoU < 0.5,
which would be labeled as a false alarm.

In addition, we make a visualized comparison between the
embeddings learned by the baseline and our proposed HOIM
model. Embeddings for both labeled and unlabeled persons
are extracted directly from each row of the projection ma-
trix. Background-clutters generated by HOIM also come
from the projection matrix. As for the baseline, we randomly
select 250 images from the dataset and crop 20 different
background regions each image to generate the embeddings.
Principle Component Analysis is adopted to project the 256-
dimensional embeddings into a 2D subspace. The scatter di-
agrams for the dimension-reducted embeddings are gathered
in Fig. 5, where the left column belongs to the OIM baseline,
and the right column belongs to our proposed HOIM model.
Generally, embeddings learned by HOIM are better at sep-
arating background and person, which is more robust when
matching false detections.
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Figure 4: Detection sensitivity analysis. (Left) Sequence of
boxes (marked in green) for calculating the similarities to
the perfectly-aligned first box (marked in red). (Right) Sim-
ilarity vs. IoU for the box sequence. Our method is better at
assigning lower similarities to false detections (IoU< 0.5).
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Figure 5: Embedding visualizations on CUHK-SYSU. The
left/right column shows the distribution of background-
clutters and persons encoded by our OIM baseline/HOIM
model respectively.

Comparison with the State-of-the-Arts
Table 3 reports the person search results on CUHK-SYSU
and PRW. All the candidate methods can be clustered into
two styles, namely two-stage methods (the upper block) and
one-stage ones (the lower block). ‘CNN’ in the table repre-
sents a Faster R-CNN detector. Our proposed HOIM model
reaches a performance of 89.7% and 90.8% w.r.t. the mAP
and top-1 metrics, which consistently outperforms all the
counterparts. We also evaluate the performance consistency
with varying gallery sizes, which is pre-defined in (Xiao et
al. 2017b). We can observe from the left column of Fig. 6
that all methods undergo a performance degeneration as the
gallery size extends. This indicates that person search be-
comes more challenging at larger search scales since more
hard samples are included in the matching domain. Our
method also ranks the best at all gallery sizes.

On PRW, our model achieves the best performance in both
mAP and top-1 accuracy among one-stage and two-stage
methods. It is also worth to notice that our model is more
resource-friendly. Unlike two-stage methods MGTS (Chen
et al. 2018), CLSA (Lan, Zhu, and Gong 2018) and one-
stage methods QEEPS (Munjal et al. 2019), CTXGraph (Yan
et al. 2019) which requires complex forward pass, our
method forwards an image directly through one network,
which reduces the model size and computational opera-
tions. A comparison on Floating Point Operations (FLOPs)
is shown in the right column of Fig. 6. We can see that our

Table 3: Performance Comparison with State-of-the-arts.

Method
CUHK-SYSU PRW
mAP top-1 mAP top-1

DPM + IDE w. CWS (Zheng et al. 2017) - - 20.5 48.3
CNN + MGTS (Chen et al. 2018) 83.0 83.7 32.6 72.1
CNN + CLSA (Lan, Zhu, and Gong 2018) 87.2 88.5 38.7 65.0

OIM (Xiao et al. 2017b) 75.5 78.7 21.3 49.9
IAN (Xiao et al. 2017a) 76.3 80.1 23.0 61.9
NPSM (Liu et al. 2017a) 77.9 81.2 24.2 53.1
RCAA (Chang et al. 2018) 79.3 81.3 - -
CTXGraph (Yan et al. 2019) 84.1 86.5 33.4 73.6
QEEPS (Munjal et al. 2019) 88.9 89.1 37.1 76.7
Ours 89.7 90.8 39.8 80.4

HOIM

CTXGraph

QEEPS
CLSA

MGTS

NPSM

OIM
IAN

Figure 6: (Left) Performance comparison on CUHK-SYSU
with varying gallery sizes. Dashed lines represent two-stage
methods while solid lines denote one-stage models. (Right)
mAP/computation trade-offs on PRW. Floating Point Oper-
ations (FLOPs) are estimated by their network backbones.
Sizes of the circles reflect the relative top-1 magnitudes.

proposed HOIM model excels both on speed and accuracy,
which could be more substantial in practical use.

Conclusion
In this paper, we make the first attempt to model the
inter-dependency between pedestrian detection and re-
identification explicitly, and further propose a novel Hier-
archical Online Instance Matching loss which exploits the
hierarchical relationship of the two tasks to guide the end-to-
end training. We also propose a Selective Memory Refresh-
ment strategy to evaluate the contribution of the unlabeled
persons for the classification loss. Extensive experiments on
two standard person search benchmarks demonstrate the ef-
fectiveness of our method.
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