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Abstract

Neural architecture search (NAS) can have a significant im-
pact in computer vision by automatically designing optimal
neural network architectures for various tasks. A variant, bi-
narized neural architecture search (BNAS), with a search
space of binarized convolutions, can produce extremely com-
pressed models. Unfortunately, this area remains largely un-
explored. BNAS is more challenging than NAS due to the
learning inefficiency caused by optimization requirements
and the huge architecture space. To address these issues,
we introduce channel sampling and operation space reduc-
tion into a differentiable NAS to significantly reduce the cost
of searching. This is accomplished through a performance-
based strategy used to abandon less potential operations. Two
optimization methods for binarized neural networks are used
to validate the effectiveness of our BNAS. Extensive exper-
iments demonstrate that the proposed BNAS achieves a per-
formance comparable to NAS on both CIFAR and ImageNet
databases. An accuracy of 96.53% vs. 97.22% is achieved
on the CIFAR-10 dataset, but with a significantly compressed
model, and a 40% faster search than the state-of-the-art PC-
DARTS.

Introduction

Neural architecture search (NAS) have attracted great at-
tention with remarkable performance in various deep learn-
ing tasks. Impressive results have been shown for rein-
forcement learning (RL) based methods (Zoph et al. 2018;
Zoph and Le 2016), for example, which train and evaluate
more than 20, 000 neural networks across 500 GPUs over 4
days. Recent methods like differentiable architecture search
(DARTs) reduce the search time by formulating the task in
a differentiable manner (Liu, Simonyan, and Yang 2018).
DARTS relaxes the search space to be continuous, so that the
architecture can be optimized with respect to its validation
set performance by gradient descent, which provides a fast
solution for effective network architecture search. To reduce
the redundancy in the network space, partially-connected
DARTs (PC-DARTs) was recently introduced to perform
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a more efficient search without compromising the perfor-
mance of DARTS (Xu et al. 2019).

Although the network optimized by DARTS or its vari-
ants has a smaller model size than traditional light models,
the searched network still suffers from an inefficient infer-
ence process due to the complicated architectures generated
by multiple stacked full-precision convolution operations.
Consequently, the adaptation of the searched network to an
embedded device is still computationally expensive and in-
efficient. Clearly the problem requires further exploration to
overcome these challenges.

One way to address these challenges is to transfer the
NAS to a binarized neural architecture search (BNAS),
by exploring the advantages of binarized neural networks
(BNNs) on memory saving and computational cost reduc-
tion. Binarized filters have been used in traditional convo-
lutional neural networks (CNNs) to compress deep mod-
els (Rastegari et al. 2016a; Courbariaux et al. 2016; Cour-
bariaux, Bengio, and David 2015; Xu, Boddeti, and Sav-
vides 2016), showing up to 58-time speedup and 32-time
memory saving. In (Xu, Boddeti, and Savvides 2016), the
XNOR network is presented where both the weights and in-
puts attached to the convolution are approximated with bi-
nary values. This results in an efficient implementation of
convolutional operations by reconstructing the unbinarized
filters with a single scaling factor. In (Gu et al. 2019), a pro-
jection convolutional neural network (PCNN) is proposed
to realize BNNs based on a simple back propagation algo-
rithm. In our BNAS framework, we re-implement XNOR
and PCNN for the effectiveness validation. We show that
the BNNs obtained by BNAS can outperform conventional
models by a large margin. It is a significant contribution
in the field of BNNs, considering that the performance of
conventional BNNs are not yet comparable with their corre-
sponding full-precision models in terms of accuracy.

The search process of our BNAS consists of two steps.
One is the operation potential ordering based on partially-
connected DARTs (PC-DARTs) (Xu et al. 2019) which
serves as a baseline for our BNAS. It is further sped up with
a second operation reduction step guided by a performance-
based strategy. In the operation reduction step, we prune one
operation at each iteration from one-half of the operations
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Figure 1: The main steps of our BNAS: (1) Search an architecture based on O(i,j) using PC-DARTS. (2) Select half the
operations with less potential from O(i,j) for each edge, resulting in O(i,j)

smaller. (3) Select an architecture by sampling (without
replacement) one operation from O(i,j)

smaller for every edge, and then train the selected architecture. (4) Update the operation
selection likelihood s(o

(i,j)
k ) based on the accuracy obtained from the selected architecture on the validation data. (5) Abandon

the operation with the minimal selection likelihood from the search space {O(i,j)} for every edge.

with less potential as calculated by PC-DARTS. As such, the
optimization of the two steps becomes faster and faster be-
cause the search space is reduced due to the operation prun-
ing. We can take advantage of the differential framework of
DARTS where the search and performance evaluation are
in the same setting. We also enrich the search strategy of
DARTS. Not only is the gradient used to determine which
operation is better, but the proposed performance evaluation
is included for further reduction of the search space. In this
way BNAS is fast and well built. The contributions of our
paper include:

• BNAS is developed based on a new search algorithm
which solves the BNNs optimization and architecture
search in a unified framework.

• The search space is greatly reduced through a
performance-based strategy used to abandon opera-
tions with less potential, which improves the search
efficiency by 40%.

• Extensive experiments demonstrate that the proposed al-
gorithm achieves much better performance than other
light models on CIFAR-10 and ImageNet.

Related Work

Thanks to the rapid development of deep learning, signif-
icant gains in performance have been realized in a wide
range of computer vision tasks, most of which are manually
designed network architectures (Krizhevsky, Sutskever, and
Hinton 2012; Simonyan and Zisserman 2014; He et al. 2016;
Huang et al. 2017). Recently, the new approach called neu-
ral architecture search (NAS) has been attracting increased
attention. The goal is to find automatic ways of design-
ing neural architectures to replace conventional hand-crafted

ones. Existing NAS approaches need to explore a very large
search space and can be roughly divided into three type of
approaches: evolution-based, reinforcement-learning-based
and one-shot-based.

In order to implement the architecture search within a
short period of time, researchers try to reduce the cost of
evaluating each searched candidate. Early efforts include
sharing weights between searched and newly generated net-
works (Cai et al. 2018a). Later, this method was general-
ized into a more elegant framework named one-shot archi-
tecture search (Brock et al. 2017; Cai, Zhu, and Han 2018;
Liu, Simonyan, and Yang 2018; Pham et al. 2018; Xie et al.
2018). In these approaches, an over-parameterized network
or super network covering all candidate operations is trained
only once, and the final architecture is obtained by sampling
from this super network. For example, Brock et al. (Brock
et al. 2017) trained the over-parameterized network using a
HyperNet (Ha, Dai, and V. Le 2016), and Pham et al. (Pham
et al. 2018) proposed to share parameters among child mod-
els to avoid retraining each candidate from scratch. The pa-
per (Liu et al. 2017) is based on DARTS, which introduces a
differentiable framework and thus combines the search and
evaluation stages into one. Despite its simplicity, researchers
have found some of its drawbacks and proposed a few im-
proved approaches over DARTS (Cai, Zhu, and Han 2018;
Xie et al. 2018; Chen et al. 2019).

Unlike previous methods, we study BNAS based on effi-
cient operation reduction. We prune one operation at each it-
eration from one-half of the operations with smaller weights
calculated by PC-DARTS, and the search becomes faster and
faster in the optimization.
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Binarized Neural Architecture Search

In this section, we first describe the search space in a general
form, where the computation procedure for an architecture
(or a cell in it) is represented as a directed acyclic graph.
We then review the baseline PC-DARTS (Xu et al. 2019),
which improves the memory efficiency, but is not enough for
BNAS. Finally, an operation sampling and a performance-
based search strategy are proposed to effectively reduce the
search space. Our BNAS framework is shown in Fig. 1 and
additional details of which are described in the rest of this
section.

Search Space

Following Zoph et al. (2018); Real et al. (2018); Liu et al.
(2018a;b), we search for a computation cell as the building
block of the final architecture. A network consists of a pre-
defined number of cells (Zoph and Le 2016), which can be
either normal cells or reduction cells. Each cell takes the
outputs of the two previous cells as input. A cell is a fully-
connected directed acyclic graph (DAG) of M nodes, i.e.,
{B1, B2, ..., BM}, as illustrated in Fig. 2(a). Each node Bi

takes its dependent nodes as input, and generates an output
through a sum operation Bj =

∑
i<j o

(i,j)(Bi). Here each
node is a specific tensor (e.g., a feature map in convolutional
neural networks) and each directed edge (i, j) between Bi

and Bj denotes an operation o(i,j)(.), which is sampled from
O(i,j) = {o(i,j)1 , ..., o

(i,j)
K }. Note that the constraint i < j

ensures there are no cycles in a cell. Each cell takes the out-
puts of two dependent cells as input, and we define the two
input nodes of a cell as B−1 and B0 for simplicity. Follow-
ing (Liu, Simonyan, and Yang 2018), the set of the opera-
tions O consists of K = 8 operations. They include 3 × 3
max pooling, no connection (zero), 3 × 3 average pooling,
skip connection (identity), 3 × 3 dilated convolution with
rate 2, 5 × 5 dilated convolution with rate 2, 3 × 3 depth-
wise separable convolution, and 5× 5 depth-wise separable
convolution, as illustrated in Fig. 2(b). The search space of a
cell is constructed by the operations of all the edges, denoted
as {O(i,j)}.

Unlike conventional convolutions, our BNAS is achieved
by transforming all the convolutions in O to binarized con-
volutions. We denote the full-precision and binarized ker-
nels as X and X̂ respectively. A convolution operation in
O is represented as Bj = Bi ⊗ X̂ as shown in Fig. 2(b),
where ⊗ denotes convolution. To build BNAS, one key step
is how to binarize the kernels from X to X̂ , which can be im-
plemented based on state-of-the-art BNNs, such as XNOR
or PCNN. As we know, the optimization of BNNs is more
challenging than that of conventional CNNs (Gu et al. 2019;
Rastegari et al. 2016b), which adds an additional burden to
NAS. To solve it, we introduce channel sampling and opera-
tion space reduction into differentiable NAS to significantly
reduce the cost of GPU hours, leading to an efficient BNAS.

PC-DARTS

The core idea of PC-DARTS is to take advantage of par-
tial channel connections to improve memory efficiency. Tak-
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Figure 2: (a) A cell contains 7 nodes, two input nodes B−1

and B0, four intermediate nodes B1, B2, B3, B4 that apply
sampled operations on the input nodes and upper nodes, and
an output node that concatenates the outputs of the four in-
termediate nodes. (b) The set of operations O(i,j) between
Bi and Bj , including binarized convolutions.

ing the connection from Bi to Bj for example, this involves
defining a channel sampling mask S(i,j), which assigns 1 to
selected channels and 0 to masked ones. The selected chan-
nels are sent to a mixed computation of |O(i,j)| operations,
while the masked ones bypass these operations. They are di-
rectly copied to the output, which is formulated as:

f (i,j)(Bi, S
(i,j))

=
∑

o
i,j
k

∈O(i,j)

exp{α
o
(i,j)
k

}
∑

o
(i,j)

k
′ ∈O(i,j) exp{αo

(i,j)

k
′
} · o

(i,j)
k (S(i,j) ∗Bi)

+ (1− S(i,j)) ∗Bi,
(1)

where S(i,j)∗Bi and (1−S(i,j))∗Bi denote the selected and
masked channels, respectively, and α

o
(i,j)
k

is the parameter

of operation o
(i,j)
k between Bi and Bj .

PC-DARTS sets the proportion of selected channels to
1/C by regarding C as a hyper-parameter. In this case, the
computation cost can also be reduced by C times. However,
the size of the whole search space is 2×K |EM|, where EM
is the set of possible edges with M intermediate nodes in
the fully-connected DAG, and the ”2” comes from the two
types of cells. In our case with M = 4, together with the two
input nodes, the total number of cell structures in the search
space is 2× 82+3+4+5 = 2× 814. This is an extremely large
space to search for a binarized neural architectures which
need more time than a full-precision NAS. Therefore, effi-
cient optimization strategies for BNAS are required.
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Sampling for BNAS

For BNAS, PC-DARTS is still time and memory consum-
ing because of the large search space, although it is already
faster than most of existing NAS methods. We introduce an-
other approach to increasing memory efficiency by reducing
the search space {O(i,j)}. According to {α

o
(i,j)
k

}, we can

select half the operations with less potential from O(i,j) for
each edge, resulting in O(i,j)

smaller. We then sample an opera-
tion from O(i,j)

smaller for each edge guided by a performance-
based strategy proposed in the next section in order to reduce
the search space. We follow the rule of sampling without re-
placement K/2 times. Here sampling without replacement
means that after one operation is sampled randomly from
O(i,j)

smaller, this operation is removed fromO(i,j)
smaller. For con-

venience of description, the K/2 operations in each edge are
transformed to a one-hot indicator vector. In other words we
sample only one operation according to the performance-
based strategy, which effectively reduces the memory cost
compared with PC-DARTS (Xu et al. 2019).

Performance-based Strategy for BNAS

Reinforcement learning is inefficient in the architecture
search due to the delayed rewards in network training, i.e.,
the evaluation of a structure is usually done after the net-
work training converges. On the other hand, we can perform
the evaluation of a cell when training the network. Inspired
by (Ying et al. 2019), we use a performance-based strategy
to boost the search efficiency by a large margin. Ying et al.
(Ying et al. 2019) did a series of experiments showing that
in the early stage of training, the validation accuracy rank-
ing of different network architectures is not a reliable indi-
cator of the final architecture quality. However, we observe
that the experiment results actually suggest a nice property
that if an architecture performs badly in the beginning of
training, there is little hope that it can be part of the final
optimal model. As the training progresses, this observation
shows less uncertainty. Based on this observation, we derive
a simple yet effective operation abandoning process. During
training, along with the increasing epochs, we progressively
abandon the worst performing operation in each edge.

To this end, we randomly sample one operation from the
K/2 operations in O(i,j)

smaller for every edge, then obtain the
validation accuracy by training the sampled network for one
epoch, and finally assign this accuracy to all the sampled op-
erations. These three steps are performed K/2 times by sam-
pling without replacement, leading to each operation having
exactly one accuracy for every edge.

We repeat it T times. Thus each operation for every edge
has T accuracies {y(i,j)k,1 , y

(i,j)
k,2 , ..., y

(i,j)
k,T }. Then we define

the selection likelihood of the kth operation in O(i,j)
smaller for

each edge as:

ssmaller(o
(i,j)
k ) =

exp{ȳ(i,j)
k }

∑
m exp{ȳ(i,j)

m }
, (2)

where ȳ(i,j)k = 1
T

∑
t y

(i,j)
k,t . And the selection likelihoods of

the other operations not in O(i,j)
smaller are defined as:

slarger(o
(i,j)
k )

=
1

2
(max
o
(i,j)
k

{ssmaller(o
(i,j)
k )}+ 1

�K/2�
∑

o
(i,j)
k

ssmaller(o
(i,j)
k )),

(3)
where �K/2� denotes the smallest integer ≥ K/2. The rea-
son to use it is because K can be an odd integer during it-
eration in the proposed Algorithm 1. Eq. 3 is an estimation
for the rest operations using a value balanced between the
maximum and average of ssmaller(o

(i,j)
k ). Then, s(o(i,j)k ) is

updated by:

s(o
(i,j)
k )←1

2
s(o

(i,j)
k ) + q

(i,j)
k ssmaller(o

(i,j)
k )+

(1− q
(i,j)
k )slarger(o

(i,j)
k ),

(4)

where q
(i,j)
k is a mask, which is 1 for the operations in

O(i,j)
smaller and 0 for the others.
Finally, we abandon the operation with the minimal selec-

tion likelihood for each edge. Such that the search space size
is significantly reduced from 2×|O(i,j)|14 to 2× (|O(i,j)|−
1)14. We have:

O(i,j) ← O(i,j) − {argmin
o
(i,j)
k

s(o
(i,j)
k )}. (5)

The optimal structure is obtained when there is only one
operation left in each edge. Our performance-based search
algorithm is presented in Algorithm 1. Note that in line 1,
PC-DARTS is performed for L epochs as the warm-up to
find an initial architecture, and line 14 is used to update the
architecture parameters α

o
(i,j)
k

for all the edges due to the

reduction of the search space {O(i,j)}.
Optimization for BNAS

In this paper, the binarized kernel weights are computed
based on XNOR (Rastegari et al. 2016b) or PCNN (Gu et al.
2019). Both methods are easily implemented in our BNAS
framework, and the source code will be publicly available
soon.

Binarizing CNNs, to the best of our knowledge, shares
the same implementation framework. Without loss of gen-
erality, at layer l, let Dl

i be the direction of a full-precision
kernel X l

i , and Al be the shared amplitude. For the binarized
kernel X̂ l

i corresponding to X l
i , we have X̂ l

i = Al � Dl
i,

where � denotes the element-wise multiplication between
two matrices. We then employ an amplitude loss function to
reconstruct the full-precision kernels as:

LA =
θ

2

∑

i,l

‖Xl
i − X̂l

i‖2 =
θ

2

∑

i,l

‖Xl
i −Al �Dl

i‖2, (6)

where Dl
i = sign(X l

i). The element-wise multiplication
combines the binarized kernels and the amplitude matrices
to approximate the full-precision kernels. The amplitudes Al
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Algorithm 1: Performance-Based Search
Input: Training data, Validation data, Searching hyper-graph:

G, K = 8, s(o(i,j)k ) = 0 for all edges;
Output: Optimal structure α;

1 Search an architecture for L epochs based on O(i,j) using
PC-DARTS;

2 while (K > 1) do

3 Select O(i,j)
smaller consisting of �K/2� operations with

smallest α
o
(i,j)
k

from O(i,j) for every edge;

4 for t = 1, ..., T epoch do

5 O′(i,j)
smaller ← O(i,j)

smaller;
6 for e = 1, ..., �K/2� epoch do
7 Select an architecture by sampling (without

replacement) one operation from O′(i,j)
smaller for

every edge;
8 Train the selected architecture and get the

accuracy on the validation data;
9 Assign this accuracy to all the sampled

operations;
10 end

11 end

12 Update s(o
(i,j)
k ) using Eq. 4;

13 Update the search space {O(i,j)} using Eq. 5;
14 Search the architecture for V epochs based on O(i,j)

using PC-DARTS;
15 K = K − 1;
16 end

are solved in different BNNs, such as (Gu et al. 2019) and
(Rastegari et al. 2016b). The complete loss function L for
BNAS is defined as:

L = LS + LA, (7)

where LS is the conventional loss function, e.g., cross-
entropy.

Experiments

In this section, we compare our BNAS with state-of-the-art
NAS methods, and also compare the BNNs obtained by our
BNAS based on XNOR (Rastegari et al. 2016b) and PCNN
(Gu et al. 2019).

Experiment Protocol

In these experiments, we first search neural architectures on
an over-parameterized network on CIFAR-10, and then eval-
uate the best architecture with a stacked deeper network on
the same data set. Then we further perform experiments to
search architectures directly on ImageNet. We run the exper-
iment multiple times and find that the resulting architectures
only show slight variation in performance, which demon-
strates the stability of the proposed method.

We use the same datasets and evaluation metrics as ex-
isting NAS works (Liu, Simonyan, and Yang 2018; Cai et
al. 2018b; Zoph et al. 2018; Liu et al. 2018). First, most
experiments are conducted on CIFAR-10 (Krizhevsky, Hin-
ton, and others 2009), which has 50K training images and

10K testing images with resolution 32 × 32 and from 10
classes. The color intensities of all images are normalized
to [−1,+1]. During architecture search, the 50K training
samples of CIFAR-10 is divided into two subsets of equal
size, one for training the network weights and the other
for finding the architecture hyper-parameters. When reduc-
ing the search space, we randomly select 5K images from
the training set as a validation set (used in line 8 of Algo-
rithm 1). To further evaluate the generalization capability,
we stack the discovered optimal cells on CIFAR-10 into a
deeper network, and then evaluate the classification accu-
racy on ILSVRC 2012 ImageNet (Russakovsky et al. 2015),
which consists of 1, 000 classes with 1.28M training images
and 50K validation images.

In the search process, we consider a total of 6 cells in
the network, where the reduction cell is inserted in the sec-
ond and the fourth layers, and the others are normal cells.
There are M = 4 intermediate nodes in each cell. Our ex-
periments follow PC-DARTS. We set the hyper-parameter
C in PC-DARTS to 2 for CIFAR-10 so only 1/2 features are
sampled for each edge. The batch size is set to 128 during the
search of an architecture for L = 5 epochs based on O(i,j)

(line 1 in Algorithm 1). Note for 5 ≤ L ≤ 10, the larger L
has little effect on the final performance, but will cost more
search time. We freeze the network hyper-parameters such
as α, and only allow the network parameters such as filter
weights to be tuned in the first 3 epochs. Then in the next 2
epochs, we train both the network hyper-parameters and the
network parameters. This is to provide an initialization for
the network parameters and thus alleviates the drawback of
parameterized operations compared with free parameter op-
erations. We also set T = 3 (line 4 in Algorithm 1) and
V = 1 (line 14), so the network is trained less than 60
epochs, with a larger batch size of 400 (due to few opera-
tion samplings) during reducing the search space. The initial
number of channels is 16. We use SGD with momentum to
optimize the network weights, with an initial learning rate of
0.025 (annealed down to zero following a cosine schedule),
a momentum of 0.9, and a weight decay of 5 × 10−4. The
learning rate for finding the hyper-parameters is set to 0.01.

After search, in the architecture evaluation step, our ex-
perimental setting is similar to (Liu, Simonyan, and Yang
2018; Zoph et al. 2018; Pham et al. 2018). A larger network
of 20 cells (18 normal cells and 2 reduction cells) is trained
on CIFAR-10 for 600 epochs with a batch size of 96 and an
additional regularization cutout (DeVries and Taylor 2017).
The initial number of channels is 36. We use the SGD opti-
mizer with an initial learning rate of 0.025 (annealed down
to zero following a cosine schedule without restart), a mo-
mentum of 0.9, a weight decay of 3 × 10−4 and a gradient
clipping at 5. When stacking the cells to evaluate on Ima-
geNet, the evaluation stage follows that of DARTS, which
starts with three convolution layers of stride 2 to reduce the
input image resolution from 224 × 224 to 28 × 28. 14 cells
(12 normal cells and 2 reduction cells) are stacked after these
three layers, with the initial channel number being 64. The
network is trained from scratch for 250 epochs using a batch
size of 512. We use the SGD optimizer with a momentum
of 0.9, an initial learning rate of 0.05 (decayed down to
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Architecture
Test Error # Params Search Cost Search

(%) (M) (GPU days) Method

ResNet-18 (He et al. 2016) 3.53 11.1 (32 bits) - Manual
WRN-22 (Zagoruyko and Komodakis 2016) 4.25 4.33 (32 bits) - Manual
DenseNet (Huang et al. 2017) 4.77 1.0 (32 bits) - Manual
SENet (Hu, Shen, and Sun 2018) 4.05 11.2 (32 bits) - Manual
ResNet-18 (XNOR) 6.69 11.17 (1 bit) - Manual
ResNet-18 (PCNN) 5.63 11.17 (1 bit) - Manual
WRN22 (PCNN) (Gu et al. 2019) 5.69 4.29 (1 bit) - Manual
Network in (McDonnell 2018) 6.13 4.30 (1 bit) - Manual
NASNet-A (Zoph et al. 2018) 2.65 3.3 (32 bits) 1800 RL
AmoebaNet-A (Real et al. 2018) 3.34 3.2 (32 bits) 3150 Evolution
PNAS (Liu et al. 2018) 3.41 3.2 (32 bits) 225 SMBO
ENAS (Pham et al. 2018) 2.89 4.6 (32 bits) 0.5 RL
Path-level NAS (Cai et al. 2018b) 3.64 3.2 (32 bits) 8.3 RL
DARTS(first order) (Liu, Simonyan, and Yang 2018) 2.94 3.1 (32 bits) 1.5 Gradient-based
DARTS(second order) (Liu, Simonyan, and Yang 2018) 2.83 3.4 (32 bits) 4 Gradient-based
PC-DARTS 2.78 3.5 (32 bits) 0.15 Gradient-based
BNAS (full-precision) 2.84 3.3 (32 bits) 0.08 Performance-based
BNAS (XNOR) 5.71 2.3 (1 bit) 0.104 Performance-based
BNAS (XNOR, larger) 4.88 3.5 (1 bit) 0.104 Performance-based
BNAS (PCNN) 3.94 2.6 (1 bit) 0.09375 Performance-based
BNAS (PCNN, larger) 3.47 4.6 (1 bit) 0.09375 Performance-based

Table 1: Test error rates for human-designed full-precision networks, human-designed binarized networks, full-precision net-
works obtained by NAS, and networks obtained by our BNAS on CIFAR-10. Note that the parameters are 1 bit in binarized
networks, and are 32 bits in full-precision networks. For fair comparison, we select the architectures by NAS with similar
parameters (< 5M). In addition, we also train an optimal architecture in a larger setting, i.e., with more initial channels (44 in
XNOR or 48 in PCNN).

zero following a cosine schedule), and a weight decay of
3 × 10−5. Additional enhancements are adopted including
label smoothing and an auxiliary loss tower during training.
All the experiments and models are implemented in PyTorch
(Paszke et al. 2017).

Results on CIFAR-10

We compare our method with both manually designed
networks and networks searched by NAS. The manu-
ally designed networks include ResNet (He et al. 2016),
Wide ResNet (WRN) (Zagoruyko and Komodakis 2016),
DenseNet (Huang et al. 2017) and SENet (Hu, Shen, and
Sun 2018). For the networks obtained by NAS, we clas-
sify them according to different search methods, such as
RL (NASNet (Zoph et al. 2018), ENAS (Pham et al. 2018),
and Path-level NAS (Cai et al. 2018b)), evolutional algo-
rithms (AmoebaNet (Real et al. 2018)), Sequential Model
Based Optimization (SMBO) (PNAS (Liu et al. 2018)), and
gradient-based methods (DARTS (Liu, Simonyan, and Yang
2018) and PC-DARTS (Xu et al. 2019)).

The results for different architectures on CIFAR-10 are
summarized in Tab. 1. Using BNAS, we search for two bina-
rized networks based on XNOR (Rastegari et al. 2016b) and
PCNN (Gu et al. 2019). In addition, we also train a larger
XNOR variant with 44 initial channels and a larger PCNN
variant with 48 initial channels. We can see that the test er-
rors of the binarized networks obtained by our BNAS are
comparable to or smaller than those of the full-precision hu-

man designed networks, and are significantly smaller than
those of the other binarized networks.

Compared with the full-precision networks obtained by
other NAS methods, the binarized networks by our BNAS
have comparable test errors but with much more compressed
models. Note that the numbers of parameters of all these
searched networks are less than 5M, but the binarized net-
works only need 1 bit to save one parameter, while the full-
precision networks need 32 bits. In terms of search effi-
ciency, compared with the previous fastest PC-DARTS, our
BNAS is 40% faster (tested on our platform (NVIDIA GTX
TITAN Xp). We attribute our superior results to the proposed
way of solving the problem with the novel scheme of search
space reduction.

Our BNAS method can also be used to search full-
precision networks. In Tab. 1, BNAS (full-precision) and
PC-DARTS perform equally well, but BNAS is 47% faster.
Both the binarized methods XNOR and PCNN in our BNAS
perform well, which shows the generalization of BNAS. Fig.
3 and Fig. 4 show the best cells searched by BNAS based on
XNOR and PCNN, respectively.

We also use PC-DARTS to perform a binarized architec-
ture search based on PCNN on CIFAR10, resulting in a net-
work denoted as PC-DARTS (PCNN). Compared with PC-
DARTS (PCNN), BNAS (PCNN) achieves a better perfor-
mance (95.12% vs. 96.06% in test accuracy) with less search
time (0.18 vs. 0.09375 GPU days). The reason for this may
be because the performance based strategy can help find bet-
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Architecture
Accuracy (%) Params Search Cost Search
Top1 Top5 (M) (GPU days) Method

ResNet-18 (Gu et al. 2019) 69.3 89.2 11.17 (32 bits) - Manual
MobileNetV1 (Howard et al. 2017) 70.6 89.5 4.2 (32 bits) - Manual
ResNet-18 (PCNN) (Gu et al. 2019) 63.5 85.1 11.17 (1 bit) - Manual
NASNet-A (Zoph et al. 2018) 74.0 91.6 5.3 (32 bits) 1800 RL
AmoebaNet-A (Real et al. 2018) 74.5 92.0 5.1 (32 bits) 3150 Evolution
AmoebaNet-C (Real et al. 2018) 75.7 92.4 6.4 (32 bits) 3150 Evolution
PNAS (Liu et al. 2018) 74.2 91.9 5.1 (32 bits) 225 SMBO
DARTS (Liu, Simonyan, and Yang 2018) 73.1 91.0 4.9 (32 bits) 4 Gradient-based
PC-DARTS (Xu et al. 2019) 75.8 92.7 5.3 (32 bits) 3.8 Gradient-based
BNAS (PCNN) 71.3 90.3 6.2 (1 bit) 2.6 Performance-based

Table 2: Comparison with the state-of-the-art image classification methods on ImageNet. BNAS and PC-DARTS are obtained
directly by NAS and BNAS on ImageNet, others are searched on CIFAR-10 and then directly transferred to ImageNet.
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Figure 3: Detailed structures of the best cells discovered on
CIFAR-10 using BNAS based on XNOR. In the normal cell,
the stride of the operations on 2 input nodes is 1, and in the
reduction cell, the stride is 2.

ter operations for recognition.

Results on ImageNet

We further compare the state-of-the-art image classification
methods on ImageNet. All the searched networks are ob-
tained directly by NAS and BNAS on ImageNet by stacking
the cells. Our binarized network is based on PCNNs. From
the results in Tab. 2, we have the following observations: (1)
BNAS (PCNN) performs better than human-designed bina-
rized networks (71.3% vs. 63.5%) and has far fewer pa-
rameters (6.1M vs. 11.17M). (2) BNAS (PCNN) has a per-
formance similar to the human-designed full-precision net-
works (71.3% vs. 70.6%), with a much more highly com-
pressed model. (3) Compared with the full-precision net-
works obtained by other NAS methods, BNAS (PCNN) has
little performance drop, but is fastest in terms of search effi-
ciency (0.09375 vs. 0.15 GPU days) and is a much more
highly compressed model due to the binarization of the net-
work. The above results show the excellent transferability of
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Figure 4: Detailed structures of the best cells discovered on
CIFAR-10 using BNAS based on PCNN. In the normal cell,
the stride of the operations on 2 input nodes is 1, and in the
reduction cell, the stride is 2.

our BNAS method.

Conclusion

In this paper, we have proposed BNAS, the first binarized
neural architecture search algorithm, which effectively re-
duces the search time by pruning the search space in early
training stages. It is faster than the previous most effi-
cient search method PC-DARTS. The binarized networks
searched by BNAS can achieve excellent accuracies on
CIFAR-10 and ImageNet. They perform comparable to the
full-precision networks obtained by other NAS methods, but
with much compressed models.
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