
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

End-to-End Learning of Object Motion Estimation
from Retinal Events for Event-Based Object Tracking

Haosheng Chen,1 David Suter,2 Qiangqiang Wu,1 Hanzi Wang1∗
1Fujian Key Laboratory of Sensing and Computing for Smart City,

School of Informatics, Xiamen University, China
2School of Science, Edith Cowan University, Australia

{haoshengchen, qiangwu}@stu.xmu.edu.cn, d.suter@ecu.edu.au, hanzi.wang@xmu.edu.cn

Abstract

Event cameras, which are asynchronous bio-inspired vision
sensors, have shown great potential in computer vision and
artificial intelligence. However, the application of event cam-
eras to object-level motion estimation or tracking is still in
its infancy. The main idea behind this work is to propose a
novel deep neural network to learn and regress a paramet-
ric object-level motion/transform model for event-based ob-
ject tracking. To achieve this goal, we propose a synchronous
Time-Surface with Linear Time Decay (TSLTD) represen-
tation, which effectively encodes the spatio-temporal infor-
mation of asynchronous retinal events into TSLTD frames
with clear motion patterns. We feed the sequence of TSLTD
frames to a novel Retinal Motion Regression Network (RM-
RNet) to perform an end-to-end 5-DoF object motion regres-
sion. Our method is compared with state-of-the-art object
tracking methods, that are based on conventional cameras or
event cameras. The experimental results show the superiority
of our method in handling various challenging environments
such as fast motion and low illumination conditions.

Introduction

Biological eyes are one of the most efficient and sophis-
ticated neural systems. As a vital part of eyes, the retina
can precisely and efficiently capture motion information
(Murphy-Baum and Awatramani 2018), especially for mo-
tions caused by moving objects (Olveczky, Baccus, and
Meister 2003), in natural scenes. Compared with the retina,
most state-of-the-art motion estimation approaches are still
limited by challenging conditions such as motion blur and
high dynamic range (HDR) illuminations. There have been
several attempts (e.g., (McIntosh et al. 2016)) trying to im-
itate the retina by using artificial neural networks (ANNs).
However, it is difficult for ANNs to imitate the asynchronous
nature of the retina. In contrast, event cameras (e.g., DAVIS
(Brandli et al. 2014)) are asynchronous visual sensors with
very high dynamic range and temporal resolution (>120 dB,
<1 ms). These bio-inspired sensors help event-based meth-
ods to perform better in many computer vision and artificial
intelligence tasks. In particular, event cameras can filter out
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Figure 1: An illustration of the encoding process of the pro-
posed TSLTD frames. The left and right sub-figures in the
first row show two snapshots, while the middle one shows
the retinal events between the two snapshots. Note that the
two snapshots are just for reference to show what a conven-
tional camera would have seen before and after the retinal
events occur. The second row shows a sequence of the en-
coded TSLTD frames of the retinal events.

non-motion information from the visual input, under stable
illumination conditions or infrequent light variations: thus
saving a lot of computation power, and giving clear clues
about where object movement occurred.

Several 3D 6-DoF ego-motion estimation methods for
event-based input, such as (Mueggler, Huber, and Scara-
muzza 2014; Kim, Leutenegger, and Davison 2016; Gallego
et al. 2017), have been proposed during recent years. They
have shown the superiority of event cameras on the motion
estimation task. However, there are only a few studies de-
voted to analyzing object-level motion, and most of these
studies are designed for some special scenarios (e.g., (Pi-
atkowska et al. 2012) is for the pedestrian tracking scenario).
Moreover, none of these methods are based on the regres-
sion methodology, which gives an explicit motion model for
retinal events. As shown in Fig. 1, the retinal events, col-
lected between the previous snapshot and the current snap-
shot, show clear visual patterns about object motions. With
this intuition, we present a 5-DoF object-level motion esti-
mation method based on the event camera inputs.
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In this study, we propose a novel deep neural network
(called Retinal Motion Regression Network, abbreviated as
RMRNet) to regress the corresponding 5-DoF object-level
motion for moving objects. Here, the 5-DoF object-level
motion is a 2D transform between the object bounding box
in the previous frame and the estimated object bounding
box in the current frame. The proposed RMRNet has a
lightweight network structure, and it is end-to-end train-
able. In order to leverage the proposed network, we encode
asynchronous retinal events into a sequence of synchronous
Time-Surface with Linear Time Decay (TSLTD) frames, as
shown in the second row of Fig. 1. The TSLTD represen-
tation, based on the Time-Surface representation (Lagorce
et al. 2017), contains clear spatio-temporal motion patterns
corresponding to the original retinal events, which is con-
venient for extracting motion information using RMRNet.
Overall, this study makes the following contributions:

• We present the TSLTD representation that is amenable
for preserving the spatio-temporal information of retinal
events, and for training motion regression networks.

• We introduce a 5-DoF object-level motion model to ex-
plicitly regress object motions for visual tracking.

• We propose a Retinal Motion Regression Network (RM-
RNet) that allows one to end-to-end estimate the 5-DoF
object-level motion, directly from TSLTD frames.

We evaluate our method on an event camera dataset and
an extreme event dataset. The results demonstrate the su-
periority of our method when it is compared with several
state-of-the-art object tracking methods.

Related Work

Event cameras have achieved great success on a variety of
computer vision and artificial intelligence tasks (Gallego
et al. 2019). Event-based motion estimation is a popular
topic in these tasks. For 2D motion estimation, event-based
optical flow can be calculated by using a sliding window
variational optimization algorithm (Bardow, Davison, and
Leutenegger 2016), or the best point trajectories of the event
data (Gallego, Rebecq, and Scaramuzza 2018), by using a
self-supervised neural network (Zhu et al. 2019), or a time-
slice block-matching method(Liu and Delbruck 2018). For
3D motion estimation, the event-based 6-DoF motion can
be predicted by using a line constraint (Mueggler, Huber,
and Scaramuzza 2014), using interleaved probabilistic fil-
ters (Kim, Leutenegger, and Davison 2016), or using pho-
tometric depth maps (Gallego et al. 2017). For event-based
visual-inertial data, the 3D motion information can also be
estimated by using an extended Kalman filter on image fea-
tures (Zihao Zhu, Atanasov, and Daniilidis 2017), using a
keyframe-based nonlinear optimization algorithm (Rebecq,
Horstschaefer, and Scaramuzza 2017) or using a continuous-
time representation (Mueggler et al. 2018). As described in
these works, event cameras have shown a unique and su-
perior ability for the motion estimation task. From their re-
sults, we can see that event cameras usually outperform con-
ventional cameras, especially when coping with some harsh
conditions such as fast motion and HDR scenes.

Despite the fact that event-based object tracking meth-
ods can benefit a lot from the high spatio-temporal resolu-
tion and high HDR features of event cameras (when com-
pared with conventional tracking methods e.g., (Fan and Xi-
ang 2017; Yun et al. 2017; Lan et al. 2018; Li et al. 2019b;
Qi et al. 2019; Huang and Zhou 2019)), there are only a few
works done in this area. These works can be roughly divided
into two categories. The works in the first category need a
clustering process to group events into clusters. The works
in the second category do not need the clustering process.

In the first category, (Piatkowska et al. 2012) proposes a
method for tracking multiple pedestrians with occlusions.
They use a Gaussian mixture model for clustering. Similarly,
(Camuñas-Mesa et al. 2017) also rely on a clustering algo-
rithm to track objects with occlusions using a stereo system
of two event cameras. In (Glover and Bartolozzi 2017), they
propose a variant of particle filter to track the cluster centers
grouped by a Hough transform algorithm.

In the second category, (Mitrokhin et al. 2018) proposes
an object detection and tracking method, which is built on
top of the motion compensation concept, and they use the
Kalman filter tracker for tracking. (Ramesh et al. 2018)
also proposes a detection and tracking method for long-term
tracking using a local sliding window approach. (Barranco,
Fermuller, and Ros 2018) presents a real-time method for
multi-target tracking based on both mean-shift clustering
and Kalman tracking.

For the above-mentioned studies, we have found that all of
them involve handcrafted strategies. However, in our study,
we prefer to learn an explicit 2D object motion model from
original retinal events, with minimal human intervention, in
an end-to-end manner.

Proposed Method

Our method can directly predict frame-wise 5-DoF in-
plane object-level motion (i.e., a 2D transform for bounding
boxes) from retinal events. The full pipeline of our method
is shown in Fig. 2. The retinal events are initially created by
an event camera (we use event channel data from a DAVIS
sensor (Brandli et al. 2014), as the input in this work), and
the events are converted into a series of synchronous Time-
Surface with Linear Time Decay (TSLTD) frames. Then the
TSLTD frames are fed to our new Retinal Motion Regres-
sion Network (RMRNet) to regress the corresponding 5-
DoF in-plane motions. In the remainder of this section, we
introduce the proposed method in detail.

Time-Surface with Linear Time Decay

The k-th event ek of retinal events E can be represented as a
quadruple:

ek
.
= (uk, vk, pk, tk), (1)

where uk and vk are the horizontal and vertical coordinates
of ek; pk indicates the polarity (On or Off ) of ek, and tk is
the timestamp of ek. Retinal events can occur independently
in an asynchronous manner, which makes it difficult for con-
ventional computer vision algorithms to directly process the
raw data. There are several attempts (Lagorce et al. 2017;
Sironi et al. 2018; Maqueda et al. 2018) that try to convert

10535



tk uk vk pk 
…… … … … 

.193453 142 150 0 

.193458 20 50 0 

.193460 236 158 1 

…… … … … 

.237515 135 127 0 

.237518 13 106 1 

.237519 185 170 0 

.237523 194 156 0 

…… … … … 

Retinal Events RMRNet Bounding Box Transform 

Integration 
 on every  

time window  

…… 

…… 

dx 

dy 

 

sx 

sy 

…… 

R t
…… 

 

…… 

…… 
……

TSLTD Frames and TSLTD Frames and
Object Patches Regression 

Figure 2: The full pipeline of the proposed method. Initially, retinal events are integrated and formatted as a sequence of TSLTD
frames. The input of RMRNet is the object patches cropped from the TSLTD frames for each object. These object patches are
sent to a set of convolutional layers (marked in blue) to extract deep features. Then, these features are stacked or they are in
one-by-one style, to pass through an LSTM module (marked in orange), for feature compression. Finally, the network is divided
into five branches of fully connected layers (marked in green) to predict 5-DoF object-level motions separately.

asynchronous retinal events to synchronous frames. For ex-
ample, (Lagorce et al. 2017) adopts a hierarchical model,
which is beneficial to the recognition task but containing
less motion information. (Sironi et al. 2018; Maqueda et al.
2018) use specially designed histograms to format retinal
events, which cut off the continuity of motion patterns in
the temporal domain. In contrast, we prefer to create a clear
and lightweight motion pattern for training our network with
the help of event cameras, which allows our method to use a
much smaller network structure, and maintain high precision
estimation and real-time performance simultaneously.

In this work, we propose a synchronous representation of
retinal events named Time-Surface with Linear Time De-
cay (TSLTD), as shown in Fig. 1. The TSLTD representa-
tion is based on the Time-Surface representation in (Lagorce
et al. 2017), but with two major differences: (1) the Time-
Surface representation, which is designed for object recog-
nition, consists of clear object contours with little motion in-
formation. We replace the exponential time decay kernel in
Time-Surface with a linear time decay kernel to efficiently
create effective motion patterns; (2) our TSLTD representa-
tion does not need the two hyper-parameters (i.e., the size of
neighborhood and the time constant of exponential kernel)
in Time-Surface. Thus, TSLTD can be effectively general-
ized to various target objects for motion estimation.

In TSLTD, motion information, captured by an event
camera, is encoded and represented as a set of TSLTD
frames over every time window T. The time window T will
be discussed later. Each of the TSLTD frames is initialized
to a three-dimensional zero matrix M ∈ N h×w×2. Here h
and w are the height and width of the event camera resolu-
tion, the third dimension indicates the polarity of events (and
the information from On or Off events will be stored sepa-
rately). Then asynchronous retinal events within the current
time window are used to update the matrix in an ascending
order in terms of their timestamps.

More specifically, supposing that we are processing a reti-
nal event set Ets,te which is collected between the start

timestamp ts and the end timestamp te = ts + T of the cur-
rent time window, to yield a new TSLTD frame Fts,te . Fts,te
is initialized to a 3D zero matrix Mts,te . During the updat-
ing process, we process Ets,te = {ei, ei+1, . . . , ej} from ei
to ej , where ei is the first event and ej is the last event. Each
of the events in Ets,te triggers an update, which assigns a
value g to Mts,te at the coordinates (u, v) corresponding to
the triggering event. The value gk for the k-th update caused
by ek is calculated using the following equation:

gk = round(255 ∗ (tk − ts) /T ), (2)

where tk is the timestamp of ek. So the assigned value for
each update is proportional to the timestamp of the triggered
event. tk − ts is the linear time decay, and we use 255/T
to normalize the decay. When a pixel of an object moves
to a new coordinate, an event will occur at that coordinate
and the TSLTD frame records a higher value of g than the
previous one at that coordinate. As a result, the time-motion
variation information is naturally embedded in the TSLTD
frames to form intensity gradients as shown in Fig. 2, which
have shown a clear pattern of the direction and magnitude of
the corresponding object motion. Therefore, the TSLTD for-
mat facilitates our network to extract the motion information
through intensity gradient patterns that are embedded in the
TSLTD frames.

There are two main problems that are related to the time
window T value, used in generating TSLTD frames. The first
problem is that if T is set to a large interval (e.g., more than
16 ms), there are two consequences for fast moving objects.
Since these objects move fast, they can return to the previ-
ous position or move far from the previous position, during
a large time interval. As a result, new motion patterns over-
lap and contaminate the previous patterns, or become too
large to recognize. On the contrary, if T is set to a small
interval (e.g., less than 3 ms), TSLTD can only capture a
very small movement, which may not be distinguished from
sensor noises, and thus it may cause an ambiguous motion
pattern (especially for a low-resolution event camera). After
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testing T with different objects and motions, we experimen-
tally set T to be 6.6ms (according to the sampling frequency
of 150 Hz) for good generalization performance.

Network Structure

Nowadays, pre-trained deep models, such as VGGNet (Si-
monyan and Zisserman 2014) and ResNet (He et al. 2016),
are very popular among many computer vision tasks. But
most of these pre-trained models were trained using three-
channel RGB images, which is not the optimal option
for two-channel TSLTD frames. In addition, since TSLTD
frames have clear motion patterns, we do not need very deep
and complex networks to extract very high-level features for
general pattern recognition.

Here we design a lightweight network, named RMRNet,
to learn object motions directly from TSLTD in an end-to-
end manner. Between every two adjacent video frames, there
are five TSLTD frames, which contain multiple objects. For
individual object motion estimation, we crop object patches
from the TSLTD frames. During the training stage, we crop
the object patches from adjacent five TSLTD frames accord-
ing to τ times of their axis-aligned bounding boxes, to pre-
form a joint training. Here τ is a parameter that renders the
cropped region slightly larger than the previous bounding
box to capture the full pattern of object motion. During the
test stage, we crop object patches frame-by-frame accord-
ing to τ times of their axis-aligned bounding boxes. Finally,
these object patches are resized to 64 × 64, and sent to the
proposed RMRNet as the input.

As shown in Fig. 2, the first part of RMRNet contains four
convolutional layers for feature extraction. The initial three
layers share the same kernel size of 3 × 3 with stride of 2,
which is similar to the VGG-Network (Simonyan and Zis-
serman 2014). The kernel size of the final layer, which is
used to reduce the feature dimensions, is 1 × 1 with stride
of 1. The filter numbers of the four layers are 32, 64, 128 and
32, respectively. The four convolutional layers are followed
by a batch normalization layer. A dropout layer is added in
the end during the training stage. Finally, the output feature
is flattened and sent to the next part. The second part of RM-
RNet is an LSTM module. This module contains three layers
with 1568 channels in each layer. By adding the LSTM mod-
ule, we can stack object patches in one regression process.
Then the LSTM module can fuse the stacked motion fea-
tures from the CNN part to regress an accumulated motion,
which is the motion between the first object patch and the
final object patch. The final part of RMRNet is a set of fully
connected layers, which are used to predict 5-DoF motions.
The first fully connected layer has 1568 channels. Then the
following layers are divided into five branches for different
components of the 5-DoF motion. Each branch contains two
layers, which respectively have 512 and 128 channels. This
network structure is chosen due to its desirable performance
on balancing both precision and speed. The output of RMR-
Net is a 5-DoF transform (e1 to e5), as described next.

A 5-DoF transform T o
i,j between a frame i and the next

frame j for an object o can be defined as a subset of the 2D
affine transform on an object bounding box in the i-th frame:

T o
i,j

.
= (dx, dy, θ, sx, sy), (3)

where T o
i,j is represented as a quintet, dx and dy are respec-

tively the horizontal and vertical displacement factors, sx
and sy are respectively the horizontal and vertical scale fac-
tors, and θ is the rotation factor. Note that the rotation factor
θ and the scaling factors sx and sy in T o

i,j are “in-place op-
erations”, which means that we will keep center alignment
before and after these two operations. The resulting coordi-
nate transform is as follows:[

x′
y′

]
=

[
sx 0
0 sy

]
⊗
[
cosθ −sinθ
sinθ cosθ

]
⊗
[
x+ dx
y + dy

]
. (4)

Here the original coordinates (x, y) of the bounding box of
object o in previous frame i are transformed into the new
coordinates (x′, y′) in current frame j through the transform
T o
i,j . The operator ⊗ indicates an in-place operation. Note

that the five parameters e1 to e5 predicted by RMRNet are
normalized to a range of [−1.0, 1.0] using the Tanh activa-
tion function. Then we set five boundary parameters p1 to
p5 for e1 to e5 to constrain the range of object movements.
Finally, the transform T o

i,j is calculated as follows:

T o
i,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx = e1 ∗ p1
dy = e2 ∗ p2
θ = (e3 ∗ p3) ∗ π/180
sx = 1 + e4 ∗ p4
sy = 1 + e5 ∗ p5

. (5)

In this paper, we respectively fix p1 to p5 to 72, 54, 30, 0.2
and 0.2, and fix τ to 1.2 according to the 240 × 180 resolu-
tion of the DAVIS camera for RMRNet. This parameter set-
ting will allow a relatively large range for object movements.
Thus, the setting is suitable for estimating the majority of
object motions, which includes most of the fast movements.

Learning Approach

There are two key points that should be mentioned in re-
lation to the training stage. The first one is that if we only
use B&W object samples (i.e., black objects with a white
background) as the training data, our network can only learn
some relatively simple motion patterns for the correspond-
ing object motions. Thus, we follow the standard five-fold
cross-validation protocol and use the object pairs (refer to
the next section) from the shapes 6dof, poster 6dof and
light variations sequences as the training and validation data
(while the other five sequences are unseen during the train-
ing stage) to train and validate the proposed RMRNet. The
second point is that it is difficult to learn an object motion
model from a single TSLTD frame. There are five TSLTD
frames for every object pair. A single TSLTD frame usually
includes only a small movement and it has only a weak mo-
tion pattern. After extensive experiments, we find that stack-
ing five TSLTD frames in one prediction has gained the op-
timal performance during the training stage.

The proposed network is trained using the ADAM solver
with a mini-batch size of 16. We use a fixed learning rate of
0.0001, and our loss function is the MSE loss:

MSEloss

(
T̂ , T

)
=

1

Ntrain

Ntrain∑
l=1

∥∥∥T̂l − Tl
∥∥∥2, (6)
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Table 1: The details of the ECD and EED datasets. The FM, BC, SO, HDR and OC, in the Challenges column, are fast motion,
background clutter, small object, HDR scene and occlusion, respectively.

Dataset Sequence names Feature Challenges
ECD shapes translation B&W shape objects mainly with translations FM
ECD shapes 6dof B&W shape objects with various 6-DoF motions FM
ECD poster 6dof Natural textures with cluttered background and various 6-DoF motions FM+BC
ECD slider depth Various artifacts at different depths with only translations BC
EED fast drone A fast moving drone under a very low illumination condition FM+SO+HDR
EED light variations Same with the upper one with extra periodical abrupt flash lights FM+SO+HDR
EED what is background A thrown ball with a dense net as foreground FM+OC
EED occlusions A thrown ball with a short occlusion under a dark environment FM+OC+HDR

where T̂ is the estimated 5-DoF motion, T is the corre-
sponding ground truth, Ntrain is the number of training
samples, and the subscript l indicates the l-th sample.

Experiments

Pre-processing

For our evaluation, we use a challenging mixed event dataset
including a part of the popular Event Camera Dataset (ECD)
(Mueggler et al. 2017) and the Extreme Event Dataset (EED)
(Mitrokhin et al. 2018), which were recorded using a DAVIS
event camera in real-world scenes. The details of the dataset
can be found in Table 1. Note that the mixed dataset contains
both the event data sequences and the corresponding video
sequences for every sequence. Since the ECD dataset does
not provide ground truth bounding boxes for object tracking,
we labeled a rotated or an axis-aligned rectangle bounding
box as the ground truth for each object in the dataset to eval-
uate all the competing methods.

We choose five state-of-the-art object tracking methods,
including SiamFC (Bertinetto et al. 2016), ECO (Danelljan
et al. 2017), SiamRPN++ (Li et al. 2019a), ATOM (Danell-
jan et al. 2019) and E-MS (Barranco, Fermuller, and Ros
2018), as our competitors. About these competitors: SiamFC
and SiamRPN++ are fast and accurate methods, which are
based on Siamese networks. ECO and ATOM are state-of-
the-art methods that have achieved great performance on
various datasets. E-MS (Barranco, Fermuller, and Ros 2018)
is recently proposed for event-based target tracking based on
mean-shift clustering and Kalman filter. We extend E-MS
to support bounding box-based tracking, by employing the
minimum enclosing rectangle of those events that belong to
an identical cluster center as its estimated bounding box.

To perform ablation studies, we also compare our RMR-
Net with an event-based variant of ECO (called as ECO-E)
and a variant of RMRNet (called as RMRNet-TS). ECO-
E, which uses our proposed TSLTD frames as its inputs,
is an event-based variant of ECO (Danelljan et al. 2017).
ECO-E is used to evaluate the performance of ECO on the
event data sequences. RMRNet-TS uses the classical Time-
Surface frames in Hots (Lagorce et al. 2017) instead of us-
ing the proposed TSLTD frames as its inputs. RMRNet-TS
is used to evaluate the performance of the classical Time-
Surface representation and our TSLTD representation. For
SiamFC, ECO, SiamRPN++ and ATOM, we use the video
sequences as their inputs. For ECO-E, E-MS, RMRNet-TS

and the proposed RMRNet, we use the event data sequences
(in quadruple format) as their inputs. For all the five com-
petitors, we use their released codes, default parameters and
best pre-trained models.

The output of our RMRNet is a 2D 5-DoF frame-wise
bounding box transform model, estimated between two adja-
cent frames. In order to evaluate the quality of the estimated
frame-wise bounding box transform model, we compare the
proposed RMRNet with all the competitors on frame-wise
object tracking, that is, our evaluation on these competing
methods is based on object pairs, each of which includes
two object regions on two adjacent frames corresponding to
an identical object. During the evaluation, we treat each of
the object pairs as a tracking instance in the corresponding
frame. In addition, all the competitors only estimate axis-
aligned bounding boxes, whereas the proposed RMRNet
can estimate both rotated and axis-aligned bounding boxes
(by using the 5-DoF motion model). Therefore, we evaluate
all the methods on the axis-aligned ground truth bounding
boxes for a fair precision comparison.

Evaluation Metrics

For evaluating the precision of all the methods, we calculate
the Average Overlap Rate (AOR) as follow:

AOR =
1

Nrep

1

Npair

Nrep∑
u=1

Npair∑
v=1

OE
u,v ∩OG

u,v

OE
u,v ∪OG

u,v

, (7)

where OE
u,v is the estimated bounding box in the u-th round

of the cross-validation for the v-th object pair, and OG
u,v is

the corresponding ground truth. Eq. (7) shows that the AOR
measure is related to the Intersection over Union (IoU). Nrep

is the repeat times of the cross-validation, and Npair is the
number of object pairs in the current sequence. We set Nrep

to 5 for all the following experiments.
We also calculate the Average Robustness (AR) to mea-

sure the robustness of all the competing methods as follow:

AR =
1

Nrep

1

Npair

Nrep∑
u=1

Npair∑
v=1

successu,v, (8)

where successu,v indicates that whether the tracking in the
u-th round for the v-th pair is successful or not (0 means
failure and 1 means success). If the AOR value obtained by
a method for one object pair is under 0.5, we will consider it
as a tracking failure case.
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Table 2: Results obtained by the competitors and our method on the ECD dataset. The best results are in bold.

Method shapes translation shapes 6dof poster 6dof slider depth
AOR AR AOR AR AOR AR AOR AR

SiamFC(Bertinetto et al. 2016) 0.812 0.940 0.835 0.968 0.830 0.956 0.909 1.000

ECO(Danelljan et al. 2017) 0.823 0.943 0.847 0.969 0.846 0.960 0.947 1.000

SiamRPN++(Li et al. 2019a) 0.790 0.942 0.779 0.972 0.753 0.899 0.907 1.000

ATOM(Danelljan et al. 2019) 0.815 0.945 0.803 0.974 0.835 0.961 0.897 1.000

ECO-E(Danelljan et al. 2017) 0.821 0.941 0.834 0.960 0.783 0.878 0.771 0.993
E-MS(Barranco, Fermuller, and Ros 2018) 0.675 0.768 0.612 0.668 0.417 0.373 0.447 0.350

RMRNet-TS 0.491 0.564 0.467 0.509 0.504 0.558 0.814 0.993
RMRNet 0.836 0.951 0.866 0.980 0.859 0.962 0.915 1.000

Table 3: Results obtained by the competitors and our method on the EED dataset. The best results are in bold.

Method fast drone light variations what is background occlusions
AOR AR AOR AR AOR AR AOR AR

SiamFC(Bertinetto et al. 2016) 0.766 1.000 0.772 0.947 0.712 0.833 0.148 0.000
ECO(Danelljan et al. 2017) 0.830 1.000 0.782 0.934 0.675 0.750 0.209 0.333

SiamRPN++(Li et al. 2019a) 0.717 0.941 0.497 0.500 0.653 0.833 0.096 0.167
ATOM(Danelljan et al. 2019) 0.763 1.000 0.652 0.921 0.725 0.917 0.387 0.500
ECO-E(Danelljan et al. 2017) 0.728 0.882 0.685 0.803 0.099 0.000 0.308 0.333

E-MS(Barranco, Fermuller, and Ros 2018) 0.313 0.307 0.325 0.321 0.362 0.360 0.356 0.353
RMRNet-TS 0.199 0.118 0.096 0.066 0.108 0.000 0.000 0.000

RMRNet 0.892 1.000 0.802 0.947 0.202 0.083 0.716 0.833

Evaluation on the Event Dataset

We use the mixed event dataset to evaluate the eight
competing methods. We choose the shapes translation,
shapes 6dof, poster 6dof and slider depth sequences from
the ECD dataset (Mueggler et al. 2017) as the representative
sequences for comparison. The first three sequences have
increasing motion speeds. The fourth sequence has a con-
stant motion speed. The object textures of these sequences
vary from simple B&W shapes to complicated artifacts. For
these sequences, we are mainly concerned with the perfor-
mance of all methods for various motions, especially for fast
6-DoF motion, and for different object shapes and textures.

For comparison, the quantitative results are reported in
Table 2. We also provide some representative qualitative re-
sults obtained by SiamFC, ECO, SiamRPN++, ATOM, E-
MS and our method in the top three rows of Fig. 3. From
Table 2, we can see that our method achieves the best perfor-
mance on the first three sequences and it achieves the second
best performance on the fourth sequence. SiamFC, ECO,
SiamRPN++ and ATOM also achieve competitive results.
However, as we can see in Fig. 3, our method has achieved
better performance in estimating fast motion. In comparison,
SiamFC, ECO, SiamRPN++ and ATOM usually lose the
tracked objects, due to the influence of motion blur. Com-
paring with the original ECO, ECO-E has achieved inferior
performance, which shows that state-of-the-art object track-
ing methods, like ECO, are not suitable to be directly ap-
plied to event data. The classical Time-Surface frames are
designed for object recognition and detection, which contain
less motion information for motion estimation and object
tracking. Thus, RMRNet-TS shows much inferior results in

this evaluation. By leveraging the high temporal resolution
feature of the event data, E-MS can also effectively handle
most fast motions. However, E-MS is less effective to handle
complicated object textures and cluttered backgrounds (e.g.,
for the poster 6dof and slider depth sequences). In contrast,
the proposed RMRNet outperforms E-MS by a large mar-
gin, which shows the superiority of our method in handling
various object textures and cluttered backgrounds.

Moreover, we also choose the EED dataset to evaluate the
eight competing methods. The EED dataset (Mitrokhin et
al. 2018) contains four challenging sequences: fast drone,
light variations, occlusions and what is background. The
first three sequences respectively record a fast moving drone
under low illumination environments. The fourth sequence
records a moving ball with a net as foreground. Using this
dataset, we want to evaluate the competing methods in low
illumination conditions and in occlusion situations.

The quantitative results and some representative qualita-
tive results are shown in Table 3 and Fig. 3, respectively.
From the results, we can see that our method achieves
the best performance on most sequences except for the
what is background sequence, on which our method has ob-
tained low AOR and AR. This is because that the fore-
ground net in the what is background sequence covers the
ball, which destroys the corresponding motion patterns. In
contrast, our method has achieved the highest AOR and AR
on the occlusions sequence. This is because that in this se-
quence, the occlusion time is short and only one object pair
involves the occlusion. Our method fails at tracking that ob-
ject pair but it successfully estimates the other object pairs.
As the competitors, SiamFC, ECO, SiamRPN++ and ATOM
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Figure 3: Tracking results obtained by SiamFC, ECO, SiamRPN++, ATOM, E-MS and our method. Each row represents a
sequence of the two datasets. From top to bottom, the corresponding sequences are shape 6dof, poster 6dof, slider depth,
light variations, what is background and occlusions, respectively. From left to right, the first, third and fifth columns show
the results of the competing methods with the axis-aligned GT. The second, fourth and sixth columns show the results of our
method with the rotated GT. The seventh column show the actual TSLTD frames of the second column. Best viewed in color.

show their low effectiveness with fast motion and low il-
lumination conditions. Moreover, ECO-E and RMRNet-TS
are respectively inferior to ECO and RMRNet. Although
SiamFC and ECO achieve relatively good results for the first
two sequences, the sequences include relatively clean back-
grounds, which helps the two methods to achieve the perfor-
mance. However, if we add a small amount of noise around
the objects, the performance of the two methods will be sig-
nificantly reduced. In contrast, our method can maintain its
performance even with the severe sensor noises of an event
camera, as shown in the seventh column of Fig. 3. Mean-
while, the performance of E-MS is highly affected by the
sensor noises in the HDR environments. Thus, E-MS show
unsatisfied results on the EED dataset.

Time Cost

Since the proposed RMRNet is a relatively shallow network,
our method has an advantage of relatively high efficiency.
The proposed RMRNet is implemented using PyTorch on a
PC with an Intel i7 CPU and an NVIDIA GTX 1080 GPU.
For the mixed dataset, our method achieves real-time perfor-
mance and the average computational time for each object
pair (including five TSLTD frames) is 38.57 ms.

Conclusion

In this paper, we demonstrate the great potential of event
cameras for object tracking under severe conditions such as
fast motion and low illumination scenes. By using the event
camera, our method only extracts motion related informa-

tion from the inputs. Then we present the TSLTD represen-
tation to encode input retinal events into a sequence of syn-
chronous TSLTD frames. TSLTD can represent the spatio-
temporal information with clear motion patterns. Finally, to
leverage the motion clues contained in TSLTD, we propose
the RMRNet to regress 5-DoF motion information in an end-
to-end manner. Extensive experiments demonstrate the su-
periority of our method over several other state-of-the-art
object tracking methods.
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