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Abstract

Few-shot learning is a challenging task that aims at train-
ing a classifier for unseen classes with only a few training
examples. The main difficulty of few-shot learning lies in
the lack of intra-class diversity within insufficient training
samples. To alleviate this problem, we propose a novel gen-
erative framework, Diversity Transfer Network (DTN), that
learns to transfer latent diversities from known categories
and composite them with support features to generate diverse
samples for novel categories in feature space. The learning
problem of the sample generation (i.e., diversity transfer) is
solved via minimizing an effective meta-classification loss in a
single-stage network, instead of the generative loss in previous
works. Besides, an organized auxiliary task co-training over
known categories is proposed to stabilize the meta-training
process of DTN. We perform extensive experiments and abla-
tion studies on three datasets, i.e., miniImageNet, CIFAR100
and CUB. The results show that DTN, with single-stage train-
ing and faster convergence speed, obtains the state-of-the-art
results among the feature generation based few-shot learning
methods. Code and supplementary material are available at:
https://github.com/Yuxin-CV/DTN.

Introduction

Deep neural networks (DNNs) have shown tremendous suc-
cess in solving many challenging real-world problems when
a large amount of training data is available (Krizhevsky,
Sutskever, and Hinton 2012; Simonyan and Zisserman 2014;
He et al. 2015). Common practice suggests that models with
more parameters have the greater capacity to fit data and
more training data usually provide better generalization abil-
ity. However, DNNs struggle to generalize given only a few
training data while humans excel at learning new concepts
from just a few examples (Bloom 2000). Few-shot learning
has therefore been proposed to close the performance gap
between machine learner and human learner. In the canonical
setting of few-shot learning, there are a training set Dtrain

(seen, known) and a testing set Dtest (unseen, novel) with dis-
joint categories. Models are trained on the training set while
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tested in an N -way K-shot scheme (Vinyals et al. 2016)
where the models need to classify the queries into one of
the N categories correctly when only K samples of each
novel category are given. This unique setting of few-shot
learning poses an unprecedented challenge in fully utiliz-
ing the prior information in the training set Dtrain, which
corresponds to the known information or historical infor-
mation of the human learner. Common approaches to ad-
dress this challenge either learn a good metric for novel
tasks (Snell, Swersky, and Zemel 2017; Vinyals et al. 2016;
Sung et al. 2018) or train a meta-learner for fast adaptation
(Finn, Abbeel, and Levine 2017; Munkhdalai and Yu 2017;
Ravi and Larochelle 2017).

Recently, the generation based approach is becoming
an effective solution for few-shot learning (Hariharan and
Girshick 2017; Schwartz et al. 2018; Wang et al. 2018;
Zhang et al. 2018), since it directly alleviates the problem of
lacking training samples. We propose a Diversity Transfer
Network (DTN) for sample generation. In DTN, the offset
between a random sample pair from the known category is
composited with a support sample in the novel category in
the latent feature space. Then, the generated features, as well
as the support features, are averaged as the proxy of the novel
category. At last, query samples are evaluated by the proxy.
Only if the generated samples follow the distribution of the
real samples to be diverse, can the meta-classifier (i.e., the
proxy) be robust enough to classify queries correctly.

In addition to the new sample generation scheme, we uti-
lize an effective meta-training curriculum called OAT (Orga-
nized Auxiliary task co-Training), inspired by the auxiliary
task co-training in TADAM (Oreshkin, Rodrı́guez López, and
Lacoste 2018) and curriculum learning (Bengio et al. 2009).
OAT organizes auxiliary tasks and meta-tasks reasonably
and effectively reduces training complexity. Experiments
show that by applying OAT, our DTN converges much faster
compared with the naı̈ve meta-training strategy (i.e., meta-
training from scratch), the multi-stage training strategy used
in Δ-encoder (Schwartz et al. 2018) and the auxiliary task
co-training strategy used in TADAM.

The main components of DTN are integrated into a single
network and can be optimized in an end-to-end fashion. Thus,
DTN is very simple to implement and easy to train. Our ex-
perimental results show that this simple method outperforms
many previous works on a variety of datasets.
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Related Work

Metric Learning Based Approaches

Metric learning is the most common and straightforward so-
lution for few-shot learning. An embedding function can be
learned by a myriad of instances of known categories. Then
some simple metrics, such as Euclidean distance (Snell, Swer-
sky, and Zemel 2017) and cosine distance (Vinyals et al. 2016;
Qiao et al. 2018; Qi, Brown, and Lowe 2018), are used to
build nearest neighbor classifiers for instances in unseen
categories. Furthermore, to model the contextual informa-
tion among support images and query images, bidirectional
LSTM and attention mechanism are adopted in Matching
Network (Vinyals et al. 2016). Besides measuring the dis-
tances of a query to its support images, there is a new so-
lution that compares the query to the center of the support
images of each class in feature space, such as Snell, Swer-
sky, and Zemel; Qiao et al.; Qi, Brown, and Lowe; Gidaris
and Komodakis. The center is usually termed as a proxy of
the class. Specifically, squared Euclidean distance is used
in Prototypical Network (Snell, Swersky, and Zemel 2017),
and cosine distance is used in the other works. Snell, Swer-
sky, and Zemel; Qi, Brown, and Lowe directly calculate
proxies by averaging the embedding features, while Qiao
et al.; Gidaris and Komodakis take a small network to pre-
dict proxies. Based on Prototypical Network, TADAM (Ore-
shkin, Rodrı́guez López, and Lacoste 2018) further proposes
a dynamic task conditioned feature extractor by predicting
the layer-level element-wise scale and shift vectors for each
convolutional layer. Different from simple metrics, Relation
Network (Sung et al. 2018) takes the neural network as a non-
linear metric and directly predicts the similarities between
the query and support images. TPN (Liu et al. 2019) performs
transductive learning on the similarity graph contains both
query and support images to obtain high-order similarities.

Meta-Learning Based Approaches

Meta-learning approaches have been widely used in few-shot
learning scenarios by optimization learning for fast adapta-
tion, aiming to learn a meta-learner that can solve the novel
task quickly. Meta Network (Munkhdalai and Yu 2017) and
adaResNet (Munkhdalai et al. 2018) are memory-based meth-
ods. Example and task level information in Meta Network
are preserved in fast and slow weights, respectively. AdaRes-
Net performs rapid adaptation by mimicking conditionally
shifted neurons which modify activation values with task-
specific shifts retrieved from a memory module. An LSTM-
based update rule of the parameters of a classifier is proposed
in Ravi and Larochelle, where both short-term knowledge
within a task and long-term knowledge common among all
the tasks are learned. MAML (Finn, Abbeel, and Levine
2017), LEO (Rusu et al. 2019) and MT-net (Lee and Choi
2018) all differentiate through gradient update steps to opti-
mize performance after fine-tuning. While MAML operates
directly in high dimensional parameter space, LEO performs
meta-learning within a low-dimensional latent space. Differ-
ent from MAML that assumes a fixed model, MT-net chooses
a subset of its weights to fine-tune. Franceschi et al. propose a

method based on bi-level programming that unifies gradient-
based hyper-parameter optimization and meta-learning.

Generation Based Approaches

Sample synthesis using the generative models has recently
emerged as a popular direction for few-shot learning (Zhu
et al. 2017; Goodfellow et al. 2014). How to synthesize new
samples based on a few examples remains an interesting open
problem. AGA (Dixit et al. 2017) and FATTEN (Liu et al.
2018) are attribute-guided (w.r.t. pose and depth) augmenta-
tion methods in feature space by leveraging a corpus with
attribute annotations. Hariharan and Girshick tries to trans-
fer transformations from a pair of examples from a known
category to a “seed” example of a novel class. Finding spe-
cific generation targets requires a carefully designed pipeline
with heuristic steps. Δ-encoder (Schwartz et al. 2018) also
tries to extract intra-class deformations between image pairs
sampled from the same class. Wang et al. proposes to gen-
erate samples by adding random noises to support features.
Different from previous methods, MetaGAN (Zhang et al.
2018) generates fake samples that need to be discriminated
by the classifier instead of augmentation, which sharpens the
decision boundaries of novel categories.

Our proposed DTN shares a philosophical similarity with
image hallucination (Hariharan and Girshick 2017) and Δ-
encoder (Schwartz et al. 2018) with distinct differences in the
following aspects. The first difference is that DTN does not
require to set specific target points for the generator. More
specifically, Δ-encoder takes a pair of images X1

a and X2
a

from the same class and learns to infer the diversity between
them by reconstructing X2

a . The image hallucination method
collects quadruples (X1

a , X
2
a , X

1
b , X

2
b ) for training based on

clustering and traversal; each quadruple contains two image
pairs from two classes a and b; a generation network is trained
to predict a sample X2

a from the quadruple when the rest
three (X1

a , X
1
b , X

2
b ) are given as input. Then, synthesized

samples are used to train a linear classifier. The input of the
generator in DTN is also a triplet (X1

a , X
1
b , X

2
b ) as Hariharan

and Girshick, but the generated sample X̂2
a is used directly to

construct the meta-classifier, and the generator is optimized
by minimizing the meta-classification loss instead of setting
specific generation targets. Secondly, DTN integrates feature
extraction, feature generation, and meta-learning into a single
network and enjoys the simplicity and effectiveness of end-
to-end training, while Hariharan and Girshick; Schwartz et
al. are stage-wise methods.

More recent work based on sample generation and data
augmentation are IDeMe-Net (Zitian Chen 2019) and SalNet
(Zhang, Zhang, and Koniusz 2019). The former utilizes an
additional deformation sub-network with a large number
of parameters to synthesize diverse deformed images, the
latter needs to pre-train a saliency network on the MSRA-B
dataset. In contrast to these approaches, our method is based
on a simple diversity transfer generator that learns a better
proxy of each category with fewer parameters and faster
convergence speed. Besides, our method can be regarded as
an instance of compositional learning (Yuille 2011) in the
latent feature space.
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Figure 1: Illustration of the proposed diversity transfer network. The branch indicated by orange arrows is the meta-task, which
is trained in a meta-learning way. The orange solid arrows indicate the process of meta-training, while the orange dashed arrows
indicate the process of meta-testing. During meta-training, the features of the support image and reference images from the
feature extractor are fed into the feature generator to generate new features. The parameters of the meta-classifier are formed by
the averaged proxies of the support features and generated features. Then the query image is fed to evaluate the performance of
the meta-classifier during meta-testing. The branch indicated by grey arrows is the auxiliary task aimed to accelerate convergence
and improve the generalization ability.

Method

Problem Definition

Different from the conventional classification task, where
the training set Dtrain and the testing set Dtest consist of
samples from the same classes, few-shot learning aims to
address the problem where the label spaces are disjoint be-
tween Dtrain and Dtest. We follow the standard N -way
K-shot classification scenario defined in Vinyals et al. to
study the few-shot learning problem. An N -way K-shot
task is termed as an episode. An episode is formed by N
classes sampled from the training/testing set firstly. Then
K images sampled from each of the N classes constitute
the support set {(Xn,k

s , Y n,k
s )}, where n ∈ [1, 2, ..., N ] and

k ∈ [1, 2, ...,K]. For the sake of simplicity, we take N -way
1-shot (i.e., K = 1) classification for example in the fol-
lowing sections, and the support set will be simplified to
{(Xn

s , Y
n
s )}. The query sample (Xq, Yq) is sampled from

the rest images of the N classes. The goal is to classify the
query into one of the N classes correctly based only on the
support set and the prior meta-knowledge learned from the
training set Dtrain.

An Overview of Diversity Transfer Network

The overall structure of the Diversity Transfer Network
(DTN) is shown in Fig. 1. DTN contains four modules and
is organized into two task branches. The task branch indi-
cated by orange arrows is the meta-task, which is trained in
a meta-learning way. The input for the meta-task consists of

the following three parts: support images Xn
s , a query im-

age Xq and reference images Xh,j
r , where n ∈ [1, 2, ..., N ],

h ∈ [1, 2, ..., H], j ∈ [1, 2]. All images are mapped to L2-
normalized feature vectors z = F (X) by a feature extractor
F , where z ∈ R

C . zh,1r and zh,2r are feature vectors of two
reference images. They come from the same category and
make up a reference pair. The diversity of the pair is trans-
ferred to the support feature zns to generated a new feature
by the feature generator G. The generated feature zn,hg is
supposed to belong to the same category with zns . For each
support feature, there are H samples generated based on it.
Since a meta-task is an N -way 1-shot image classification
task, the meta-classifier is an N -way classifier consisting of a
weight matrix W and a trainable temperature α. The values
in the W are determined by the proxies formed by support
features and features generated by them. The meta-classifier
is differentiable, so the feature extractor F and feature genera-
tor G can be updated by standard back-propagation according
to the loss function defined by the cosine similarity between
the query and the proxies. The task branch indicated by grey
arrows in Fig. 1 is the auxiliary task, aiming to accelerate and
stabilize the training of DTN. It is a conventional classifica-
tion task over all categories of the training set Dtrain.

Feature Generation via Diversity Transfer

Each image X is mapped to a feature vector z = F (X) by
the feature extractor F . zq, zns and {zh,1r , zh,2r } are feature
vectors of the query image Xq, the support image Xn

s and
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Figure 2: Feature generator in DTN. The three input features
are mapped into a latent space by the mapping function φ1.
Then the diversity (i.e., offset) between the reference features
is added with the support feature in this space. Then it is
mapped by the φ2 to keep the same size as inputs. The output
is a generated feature which is supposed to be a sample
belonging to category n.

the reference images pair {Xh,1
r ,Xh,2

r } respectively, where
n ∈ [1, 2, ..., N ], h ∈ [1, 2, ..., H]. For a specific support
feature zns , during both meta-training and meta-testing phase,
the reference image pairs {Xh,1

r ,Xh,2
r } are always sampled

from the training set Dtrain (seen, known). Specifically, we
first randomly sample H classes from the whole training
classes Dtrain with replacement. For each sampled class, we
then randomly sample two different images Xh,1

r and Xh,2
r

to form a reference pair. We do not sample any images from
Dtest (unseen, novel) during the whole process. The conven-
tional few-shot evaluation setting, termed as N -way K-shot
setting, requires to get a N -way classifier with the support
of only K samples for each novel class and the prior meta-
knowledge from the whole training set Dtrain. Therefore, our
sampling method strictly complies with the few-shot learning
protocol.

As shown in Fig. 2, the feature generator G of DTN
consists of two mapping functions φ1 and φ2. Three input
features are firstly mapped into a latent space ẑ = φ1(z),
ẑ ∈ R

C′
. The elementwise difference ẑh,1r − ẑh,2r measures

the diversity between the two reference features. It is ap-
plied to the support feature by a simple linear combination
ẑns + (ẑh,1r − ẑh,2r ). After mapping it by φ2, we get a feature
zn,hg which has the same size of the input zns and should be-
long to the same category with the support feature zns . More
specifically:

zn,hg =G(zns , z
h,1
r , zh,2r )

=φ2(φ1(z
n
s ) + φ1(z

h,1
r )− φ1(z

h,2
r )).

(1)

Given H different reference pairs for a single support
feature zns , there will be H generated features that enrich
the diversity of category n. They are helpful to construct a
more robust classifier for unseen categories. When K > 1,
each of the K support samples is taken as a “seed” and H
samples are generated based on it. Therefore, there will be
K support samples and K ×H generated samples for each
novel category.

Meta-Learning Based on Averaged Proxies

The meta-task branch of DTN is shown in Fig. 1 indicated
by orange arrows. The orange solid arrows and dashed ar-

rows indicate the process of meta-training and meta-testing,
respectively. Each image X is mapped to a feature vector
z = F (X). Similar to Qiao et al.; Gidaris and Komodakis; Qi,
Brown, and Lowe, all the features here are L2-normalized
vectors (i.e., ‖z‖2 = 1). The support feature zns and all the
H reference feature pairs {zh,1r , zh,2r }(h ∈ [1, 2, ..., H]) are
fed into the generator G to generate H new features zn,hg (H
is set to 3 in Fig. 1 for example). So we get H + 1 features
for the n-th category. The meta-task is an N -way classifi-
cation task, therefore the meta-classifier is represented by a
matrix W ∈ R

N×C , in which each row wn ∈ R
C can be

viewed as a proxy (Movshovitz-Attias et al. 2017) of the n-th
category. After obtaining all the H + 1 features for category
n, the n-th row wn of W, termed as averaged proxy, is the
L2-normalized average of those features:

ŵn =
1

H + 1

(
zns +

H∑
h=1

zn,hg

)
, (2)

wn =
ŵn

‖ŵn‖ . (3)

All the averaged proxies are also L2-normalized vectors,
so that the meta-classifier essentially becomes a cosine-
similarity based classification model. After constructing the
meta-classifier, the L2-normalized query feature zq is fed into
it for evaluation. The prediction p = zqW

� is the combina-
tion of n classification scores pn = zqw

�
n of each category.

To further increase stability and robustness when dealing
with a large number of categories, we adopt a learnable tem-
perature α in our meta-task loss as Qi, Brown, and Lowe,
where α is updated by back-propagation during training. The
meta-task loss L can be defined as follow:

L = − log
exp (αzqwYq

�)∑N
n=1 exp (αzqwn

�)
. (4)

Organized Auxiliary Task Co-training

In order to accelerate the convergence of training and get
better generalization ability, the meta-learning network in
DTN is jointly trained with an auxiliary task. The auxiliary
task is a conventional classification for all N ′ categories in
Dtrain. It shares the same feature extractor F with the meta-
task branch. Different from the meta-classifier W ∈ R

N×C ,
which consists of the averaged proxies, the auxiliary classifier
W′ ∈ R

N ′×C after the feature extractor F are randomly
initialized and updated via back-propagation. The mini-batch
{(Xi, Yi)} is randomly sampled from the training set Dtrain,
where i ∈ [1, 2, ..., B], and B is the batch size. The auxiliary
task loss L′ has the same form as the meta-task loss L:

L′ = − log
exp (α′ziw

′
Yi

�
)∑N ′

n=1 exp (α
′ziw′

n
�)

, (5)

where zi is one of the training features in the mini-batch,
w′

n ∈ R
C is the n-th row of W′, and α′ is learnable.

In TADAM (Oreshkin, Rodrı́guez López, and Lacoste
2018), the auxiliary task is sampled with a probability that
is annealed exponentially. We observe some positive effects
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Table 1: Few-shot images classification accuracies on miniImageNet. ‘-’: not reported.
Methods Ref. Backbone 5-way 1-shot 5-way 5-shot

Matching Network (Vinyals et al.) NeurIPS’16 64-64-64-64 43.56%± 0.84% 55.31%± 0.73%
Meta-Learn LSTM (Ravi and Larochelle) ICLR’17 64-64-64-64 43.44%± 0.77% 60.60%± 0.71%
MAML (Finn, Abbeel, and Levine) ICML’17 32-32-32-32 48.70%± 1.84% 63.11%± 0.92%
Prototypical Network (Snell, Swersky, and Zemel) NeurIPS’17 64-64-64-64 49.42%± 0.78% 68.20%± 0.66%
Relation Network (Sung et al.) CVPR’18 64-96-128-256 50.44%± 0.82% 65.32%± 0.70%
MT-net (Lee and Choi) ICML’18 64-64-64-64 51.70%± 1.84% -
MetaGAN� (Zhang et al.) NeurIPS’18 64-96-128-256 52.71%± 0.64% 68.63%± 0.67%
Qiao et al. CVPR’18 64-64-64-64 54.53%± 0.40% 67.87%± 0.20%
Gidaris and Komodakis CVPR’18 64-64-64-64 56.20%± 0.86% 73.00%± 0.64%
DTN (Ours)� 64-64-64-64 57.89%± 0.84% 73.28%± 0.65%

Gidaris and Komodakis CVPR’18 ResNet-12 55.45%± 0.89% 70.13%± 0.68%
adaResnet (Munkhdalai et al.) ICML’18 ResNet-12 56.88%± 0.62% 71.94%± 0.57%
TADAM (Oreshkin, Rodrı́guez López, and Lacoste) NeurIPS’18 ResNet-12 58.50%± 0.30% 76.70%± 0.30%
Qiao et al. CVPR’18 WRN-28-10 59.60%± 0.41% 73.74%± 0.19%
STANet (Yan, Zhang, and He) AAAI’19 ResNet-12 58.35%± 0.57% 71.07%± 0.39%
TPN (Liu et al.) ICLR’19 ResNet-12 59.46% 75.65%
LEO (Rusu et al.) ICLR’19 WRN-28-10 61.76%± 0.08% 77.59%± 0.12%
Δ-encoder (Schwartz et al.)� NeurIPS’18 VGG-16 59.9% 69.7%
IDeMe-Net (Zitian Chen)� CVPR’19 ResNet-18♠ 59.14%± 0.86% 74.63%± 0.74%
SalNet Intra-class Hal. (Zhang, Zhang, and Koniusz)� CVPR’19 ResNet-101♣ 62.22%± 0.87% 77.95%± 0.65%
Deep DTN (Ours)� ResNet-12 63.45%± 0.86% 77.91%± 0.62%

� Generation based approaches ♠ Using a deformation sub-network ♣ Using a saliency network pre-trained on MSRA-B

from this training strategy compared with naı̈ve meta-training
and multi-stage training in our DTN.

However, the inadequacy of this approach is: the random-
ness in both the frequency and the order of the two tasks
affects the final result to some extent, and the distribution of
auxiliary tasks are unpredictable rather than annealed expo-
nentially, especially when the number of training epochs is
not very large. Another problem brought by the randomness
is that it is hard to determine the training schedule, e.g., the
learning rate, the number of training epochs, etc., since the
permutation of auxiliary tasks and meta-tasks varies accord-
ing to the random seed. We empirically find that the stochastic
auxiliary task co-training strategy used in TADAM results in
a large fluctuation in the meta-classification accuracy (over
4%, see Table 3 for details) when using different random
seeds. This randomness makes the choice of hyperparameters
as well as the training schedule more difficult.

Therefore, we propose the OAT (Organized Auxiliary task
co-Training) strategy, which organizes auxiliary tasks and
meta-tasks in a more orderly and more reasonable manner.
More specifically, there are two kinds of training epochs: the
auxiliary training epoch A and the meta-training epoch M
. We select T training epochs to form one training unit U ,
the i-th training unit Ui has γi meta-training epochs, and
(T − γi) auxiliary training epochs. The array of γi is denoted
as γ = {γi}Li=1, where L is the total number of training units.
Then the total number of training epochs is T × L, and the
whole training sequence S can be expressed as follow:

S =

L∑
i=1

(
(T − γi)A+ γiM

)
. (6)

By changing T and γ, we can obtain different training
sequences arranged in different frequency and order, which is
proven to be more manageable and effective compared with

Table 2: The 5-way 1-shot/5-way 5-shot images classifica-
tion accuracies on CIFAR100 and CUB. ‘-’: not reported.

Methods CIFAR100 CUB

Nearest neighbor 56.1%/68.3% 52.4%/66.0%
Meta-Learn LSTM (Ravi and Larochelle) - 40.4%/49.7%
Matching Network (Vinyals et al.) 50.5%/60.3% 49.3%/59.3%
MAML (Finn, Abbeel, and Levine) 49.3%/58.3% 38.4%/59.1%
Δ-encoder (Schwartz et al.) 66.7%/79.8% 69.8%/82.6%
Deep DTN (Ours) 71.5%/82.8% 72.0%/85.1%

the training strategy used in TADAM. Intuitively, we would
like to gradually add harder few-shot classification tasks into
a series of simpler auxiliary classification tasks. Therefore
the setting of T and γ is quite simple and straightforward.
We choose T = 5 and γ = [0, 0, 1, 1, 2, 2] for training DTN,
though a more careful scheduling may achieve better perfor-
mance. Therefore the whole training sequence S is organized
as follow:

S = 5A× 2 + (4A+ 1M)× 2 + (3A+ 2M)× 2. (7)

Initially, the auxiliary tasks could be considered as a sim-
pler curriculum(Bengio et al. 2009), later they bring regu-
larization effects to meta-tasks. Ablation studies show that
compared with the training strategy used in TADAM, DTN
trained by OAT obtains better and more robust results with a
faster convergence speed.

Experiments

Implementation Details

Dataset. The proposed method is evaluated on multi-
ple datasets: miniImageNet, CIFAR100 and CUB. The
miniImageNet dataset has been widely used by few-shot
learning since it is firstly proposed by Vinyals et al.. There
are 64, 16 and 20 classes for training, validation, and testing
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Figure 3: Visualization of generated samples, support samples, and real samples. The light dots indicate real samples, the shapes
(circle, square, triangle, pentagon and diamond) with black border indicate support samples which are also real samples, and
the shapes without border indicate generated samples. There are 64 generated samples for each support sample. The top row
shows the results of 3-way 1-shot learning and the bottom row shows the results of 3-way 5-shot learning. The data in the left
two columns are from the training set and the data in the right two columns are from the testing set.

respectively. The hyper-parameters are optimized on the vali-
dation set. After that, it will be merged into the training set
for the final results. The CIFAR100 dataset (Krizhevsky and
Hinton 2009) contains 6000 images of 100 classes. We use
64, 16, and 20 classes for training, validation, and testing,
respectively. The CUB dataset (Wah et al. 2011) is a fine-
grained dataset from 200 categories of birds. It is divided
into training, validation, and testing sets with 100, 50, and
50 categories respectively. The splits of CIFAR100 and CUB
follow Schwartz et al..

Architectures. The feature extractor for DTN is a CNN with
4 convolutional modules. Each module contains a 3 × 3
convolutional layer with 64 channels followed by a batch
normalization(BN) layer, a ReLU non-linearity layer, and
a 2 × 2 max-pooling layer. The structure of feature extrac-
tor is the same as those in former methods, e.g., Vinyals et
al.; Snell, Swersky, and Zemel for fair comparisons. Many
other works also use deeper networks for feature extraction
to achieve better accuracy, e.g., Munkhdalai et al.; Oreshkin,
Rodrı́guez López, and Lacoste. To make a comparison with
them, we also implement our algorithm with ResNet-12 ar-
chitecture(He et al. 2015). The output of the feature extractor
is a 1024-dimensional vector. The mapping function φ1 in the
feature generator G is a fully-connected (FC) layer with 2048
units followed by a leaky ReLU activation (max(x, 0.2x))
layer, and a dropout layer with 30% dropout rate. The map-
ping function φ2 has the same settings with φ1 except that
the number of units of the FC layer is 1024.

Results

Quantitative Results. Table 1 provides comparative re-
sults on the miniImageNet dataset. All these results are re-
ported with 95% confidence intervals following the setting in
Vinyals et al.. Under the 4-CONV feature extractor setting,
our approach significantly outperforms the previous state-of-
the-art works, especially in the 5-way 1-shot task. As for the
comparisons with models using deep feature extractor, deep
DTN also surpasses other alternatives in the 5-way 1-shot sce-
nario and achieves very competitive results under the 5-way
5-shot setting. The results confirm that our feature generation
method is extremely useful to address the problem of learn-
ing with scarce data, i.e., the 5-way 1-shot scenario. DTN is
also one of the simplest and lightweight feature generation
methods which learns to enrich intra-class diversity, and does
not rely on any extra information from other datasets, such as
the salient object information in Zhang, Zhang, and Koniusz.

Table 2 shows that DTN also gets large improvements on
the CIFAR100 and CUB datasets compared with existing
state-of-the-arts in both 5-way 1-shot task and 5-way 5-shot
task, which confirms DTN is generally useful for different
few-shot learning scenarios.
Visualization Results. To better understand the results,
Fig. 3 shows tSNE (Maaten and Hinton 2008) visualizations
of generated samples, support samples and real samples. It
can be seen that our method can greatly enrich the diversity
of an unseen class with only a single or a few support exam-
ples given. Most of the generated samples fit the distribution
of real samples, which means that the category information
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Table 3: Ablation studies on the fluctuation of the results obtained by AT and OAT on miniImageNet. AT: auxiliary task co-training
strategy used in TADAM. OAT: organized auxiliary task co-training. The representation of the training sequence follows the
notation introduced in the previous section, and the training sequence of AT is completely determined by the random seed. The
results show that compared with the AT strategy(over 4% fluctuation), the model trained by OAT (less than 1.5% fluctuation)
obtains better and more robust results.

Random seed
Training sequence of AT

(number of total training epochs = 30)
Results of AT Training sequence of OAT

(number of total training epochs = 30)
Results of OAT

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

Seed #1 13A-1M-2A-1M-1A-1M-2A-1M-2A-1M-5A 58.60% 72.78%

10A-4A-1M-4A-1M-3A-2M-3A-2M

62.78% 77.58%
Seed #2 11A-1M-7A-1M-7A-3M 60.71% 74.10% 62.19% 76.82%
Seed #3 13A-1M-9A-1M-4A-2M 61.61% 75.52% 63.45% 77.91%
Seed #4 18A-1M-2A-1M-1A-1M-2A-2M-1A-1M 60.97% 75.77% 62.48% 77.22%
Seed #5 14A-1M-4A-1M-3A-2M-3A-2M 62.37% 77.45% 63.17% 77.47%

Table 4: Ablation studies for different feature generators on
miniImageNet.

Methods 5-way 1-shot 5-way 5-shot

1 Gaussian noise generator 60.14%± 1.24% 75.57%± 0.96%
2 Δ-encoder† 60.38%± 1.12% 73.44%± 0.92%
3 DTN w/ two-stage training 61.95%± 0.85% 76.52%± 0.65%
4 DTN w/ OAT (Ours) 63.45%± 0.86% 77.91%± 0.62%

† Our reimplementation, which outperforms the original.

Table 5: Ablation studies for different training strategies on
miniImageNet. AT: auxiliary task co-training strategy used
in TADAM . OAT: organized auxiliary task co-training.

Methods 5-way 1-shot 5-way 5-shot

1 DTN w/ naı̈ve meta-training 59.81%± 1.36% 74.97%± 1.01%
2 DTN w/ two-stage training 61.95%± 0.85% 76.52%± 0.65%
3 DTN w/ AT 62.65%± 0.86% 77.12%± 0.65%
4 DTN w/ OAT (Ours) 63.45%± 0.86% 77.91%± 0.62%

of each support sample is well preserved by the generated
sample, and they are close to the center of the real distribu-
tion even when the support sample lies on the edge. From the
diagrams of 3-way 5-shot learning, it can be seen that gen-
erated features from 5 support samples can cover the major
distribution of the real samples, which facilitates to build a
more robust classifier for unseen classes.

Ablation Study

In this section, we study the impact of the feature generator,
the training strategy and the number of generated features.
We conduct the following ablation studies using models with
deep feature extractor on miniImageNet. All the results are
summarized in Table 3, Table 4, Table 5 and Table 6.

First, we make a comparison between different feature
generators. For the sake of fairness, we use exactly the same
meta-classifier (cosine-similarity based classifiers) and the
same training strategy (two-stage training), only the feature
generators are different. All models are trained until conver-
gence. Experiments show that diversity transfer generator
outperforms Gaussian noise seeded generator (by 1.81% in
5-way 1-shot, 0.95% in 5-way 5-shot. Table 4, Row 1 and
Row 3) and Δ-encoder (by 1.57% in 5-way 1-shot, 3.08% in
5-way 5-shot. Table 4, Row 2 and Row 3).

Second, we study the effects of different training strategies.
Obviously, OAT (Table 5, Row 4) surpasses the naı̈ve meta-

Table 6: Ablation studies for DTN trained with different
number of generated features on miniImageNet. Numbers
in the ”( )” are difference in meta-classification accuracies
compared with the result with 64 generated features.

Number of 5-way 5-way
generated features 1-shot 5-shot

2 60.71% (−2.74%) 75.56% (−2.35%)
4 61.18% (−2.27%) 76.17% (−1.74%)
16 61.87% (−1.58%) 76.76% (−1.15%)
32 62.58% (−0.87%) 77.14% (−0.77)%
64 63.45% (−0.00%) 77.91% (−0.00%)
96 63.09% (−0.36%) 77.45% (−0.46%)
128 63.26% (−0.19%) 77.99% (+0.08%)

training (Table 5, Row 1) and two-stage training (Table 5,
Row 2). As mentioned before, a large fluctuation was ob-
served (e.g., from 58.60% to 62.37% for 5-way 1-shot, from
72.78% to 77.45% for 5-way 5-shot, see Table 3 for details)
in the meta-classification accuracy if the DTN is trained with
auxiliary task sampled via a probability in 30 epochs. The
result becomes better and more stable if we increase the total
number of training epochs to 60 (Table 5, Row 3), but this
is still worse than the result obtained via DTN trained with
OAT in only 30 epochs (Table 5, Row 4). A comparison in the
result’s fluctuation between two training strategies is detailed
in Table 3.

Finally, in Table 6 we study the impact on the number of
generated features. The results gradually become better as
the number of generated features increases. No improvement
was observed when the number of generated features exceeds
64. We attribute this to the fact that 64 generated features
have been well fitted to the real sample distribution.

Conclusion and Future Work

In this work, we propose a novel generative model, Diversity
Transfer Network (DTN), for few-shot image recognition. It
learns transferable diversity from the known categories and
augments the unseen category with the sample generation.
DTN achieves competitive performance on three benchmarks.
We believe that the proposed generative method can be uti-
lized in various problems challenged by the scarcity of su-
pervision information, e.g., semi-supervised learning, active
learning and imitation learning. These interesting research
directions will be explored in the future.
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