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Abstract

Existing image-text matching approaches typically infer the
similarity of an image-text pair by capturing and aggregat-
ing the affinities between the text and each independent ob-
ject of the image. However, they ignore the connections be-
tween the objects that are semantically related. These objects
may collectively determine whether the image corresponds
to a text or not. To address this problem, we propose a Dual
Path Recurrent Neural Network (DP-RNN) which processes
images and sentences symmetrically by recurrent neural net-
works (RNN). In particular, given an input image-text pair,
our model reorders the image objects based on the positions
of their most related words in the text. In the same way as
extracting the hidden features from word embeddings, the
model leverages RNN to extract high-level object features
from the reordered object inputs. We validate that the high-
level object features contain useful joint information of se-
mantically related objects, which benefit the retrieval task. To
compute the image-text similarity, we incorporate a Multi-
attention Cross Matching Model into DP-RNN. It aggregates
the affinity between objects and words with cross-modality
guided attention and self-attention. Our model achieves the
state-of-the-art performance on Flickr30K dataset and com-
petitive performance on MS-COCO dataset. Extensive exper-
iments demonstrate the effectiveness of our model.

Introduction

Image-text matching involves the task to measure the simi-
larity between an image and a text. By image-text matching,
a system can retrieve the top corresponding images of a sen-
tence query, or retrieve the top corresponding sentences of
an image query.

Currently, approaches based on bottom-up attention
achieve the best performance on this task. Given an image
and a text as the input, these approaches first figure out
the affinity between image objects and words. After get-
ting these local matching informative snippets, they predict
the image-text similarity by aggregating them appropriately.
Approaches based on bottom-up attention perform much
better than directly extracting the global image and text fea-
tures and compute their similarity.

Copyright c© 2020, Association for the Advancement of Artificial
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Figure 1: An example to illustrate that the mismatch of an
image-text pair cannot be detected by any single object.

For the text branch, high-level semantic features are ex-
tracted from RNN, which captures the joint information of
adjacent and semantically related words. This becomes a
bridge to connect the “local” words and the “global” text.
However, for the image branch, current approaches based
on bottom-up attention consider each image object indepen-
dently. Typically, they compute the image-text similarity as
the average or weighted average of the similarities between
the text and each image object. In this process, essential
joint information of semantically related objects cannot be
extracted, preventing the model from making more accu-
rate predictions. Given the example of Figure 1, each object
in the green box will get a high predicted similarity score
to the query because it represents an important element of
the query, i.e. “people”. However, only by jointly modeling
these objects can the model predict that the image does not
correspond to the text, because the objects do not match the
description of “two people ride skis together”.

To address this problem, we propose a novel Dual Path
Recurrent Neural Network (DP-RNN) for image-text match-
ing. In particular, we consider the relation between image
and objects in accordance with the relation between sentence
and words. Given an image-text pair as the input, DP-RNN
“reads” the image objects in the corresponding order as the
text indicates. More concretely, for each object, the model
first searches its most related word in the text, regardless
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of whether the image and text match. After that, the model
reorders these objects based on the positions of their most
matching words in the text. Finally, the reordered object fea-
tures are fed into RNN, from which the high-level object em-
beddings are extracted to capture the joint information of se-
mantically related objects. We refer to the above process as
recurrent visual embedding. Given a training batch contain-
ing s images and texts, our model needs to perform recur-
rent visual embedding for s2 image-text pairs, thus suffering
from extremely high computational complexity. Therefore,
we design an effective pair early-selection strategy to adap-
tively filter out insignificant image-text pairs.

After extracting the high-level word and object features,
we propose a Multi-attention Cross Matching Model to pre-
dict the image-text similarity. More concretely, following the
idea of (Lee et al. 2018), we leverage a cross attention model
to symmetrically predict the similarity of each word to the
image (i.e. image-word similarity) and the similarity of each
object to the text (i.e. object-text similarity). In this process,
the model attends differentially to image objects and words
using both as the context to each other. This can be con-
sidered as cross-modality guided attention. Furthermore, we
feed two self-attention modules to predict the weight of each
word and each object. On one hand, the model figures out the
word-oriented image-text similarity by the predicted word
weights and the image-word similarity. On the other hand,
the model figures out the object-oriented image-text similar-
ity by the predicted object weights and the object-text simi-
larity. The final image-text similarity is the average of these
two types of similarities.

Our contributions are summarized as follows:

• We design and apply recurrent neural networks with a pair
early-selection strategy for visual embeddings. It adap-
tively extracts effective joint information from semanti-
cally related objects by object reordering.

• We propose a Multi-attention Cross Matching Model
to compute similarity to further improve the image-text
matching performance.

Related Work

Image-text matching has received much attention in recent
years due to the advances in computer vision and natural
language processing. Early image-text matching approaches
capture visual-textual correspondence at the level of im-
age and text. Frome et al. (Frome et al. 2013) propose the
first visual-semantic embedding framework for image-text
matching. The image feature and text feature are extracted
by CNN and Skip-Gram Language Model (Mikolov et al.
2013), respectively. Ranking loss is then implemented for
similarity learning. Kiros et al. (Kiros, Salakhutdinov, and
Zemel 2014), on the other hand, encode text by RNN and
design a hinge-based triplet ranking loss to train the model.
Faghri et al. (Faghri et al. 2017) leverage hard negatives in
the triplet loss to train the model, it shows better perfor-
mance than randomly sampling negative image-text pairs.
Gu et al. (Gu et al. 2018) integrate a generative module to
generate the corresponding images from the text feature and
guide the model to learn a better representation space.

Recent successes of attention models for visual-textual
learning tasks, such as for image captioning (Xu et al. 2015;
Lu et al. 2017; You et al. 2016; Pedersoli et al. 2017)
and visual question answering (VQA) (Yu et al. 2017;
Lu et al. 2016; Yang et al. 2016; Kim et al. 2016), moti-
vate researchers to solve image-text matching at the level of
image regions and words. Huang et al. (Huang, Wang, and
Wang 2017) incorporate a multimodal context-modulated at-
tention scheme that can selectively attend to a pair of in-
stances of image and sentence at each time step. Li et al.
(Li et al. 2017) design a latent co-attention mechanism to
relate each word to the corresponding image regions. Sim-
ilarly, Nam et al. (Nam, Ha, and Kim 2017) propose Dual
Attention Networks that attend to both specific regions in
images and words in text through multiple steps. Because of
the restriction of CNN, each image is typically divided into
a fixed number of regions (e.g 7× 7) of the same shape and
size. This prevents models from matching between words
and small image objects more accurately.

Anderson et al. (Anderson et al. 2018) propose bottom-up
attention for the task of image captioning and VQA. It di-
rectly constructs the connection between words and image
objects extracted by the object detection model (Ren et al.
2015). In accordance with image captioning and VQA, ap-
proaches based on bottom-up attention remarkably improve
the performance of image-text matching. Niu et al. (Niu et
al. 2017) propose a Hierarchical LSTM model to exploit the
hierarchical relations between objects and image, as well as
words and text. Huang et al. (Huang et al. 2018) predict an
image’s semantic concepts, including objects, properties and
actions to construct more accurate connection between vi-
sual and textual modality. Lee et al. (Lee et al. 2018) pro-
pose a stacked cross attention model to discover all possible
alignments between image objects and text words, and pre-
dict image-text matching with two complimentary formu-
lations. Following their work, we propose DP-RNN which
incorporates recurrent neural networks to extract visual fea-
tures. It should be noticed that (Niu et al. 2017) also em-
beds objects by a recurrent network structure. However, for
each phrase of the text, they only find and embed one object
with this phrase, which limits the model’s capacity to extract
the joint information of all possible semantically related ob-
jects. In addition, compared with (Huang et al. 2018) that
also considers the order of image concept, we assign a dy-
namic object order for an image based on the input text and
achieve better performance.

Method
In this section, we formally present our Dual Path Recur-
rent Neural Network (DP-RNN) model. Specifically, given
an image-text pair as input, the model aims to predict the
pair’s similarity by mapping the image objects and words
into a common embedding space. The overall architecture of
the proposed model is shown in Figure 2. We first introduce
the overall design of DP-RNN without recurrent visual em-
bedding, including the model’s architecture and training loss
function. After that, we present recurrent visual embedding
as a core module of DP-RNN for better object feature extrac-
tion. In the end, we present the training strategy of DP-RNN
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and propose an effective pair early-selection strategy to filter
out insignificant image-text pairs, which sharply reduces the
computation complexity of recurrent visual embedding.

Cross Matching with Multi-attention

Given an input image I , we pay attention to the level of
image object. Following Anderson et al. (Anderson et al.
2018), our image encoder utilizes Faster R-CNN (Ren et
al. 2015) to propose salient regions, each with an associated
feature vector from ResNet-101 (He et al. 2016). Consid-
ering each salient region as an object, for image I , we ex-
tract a set of objects {O1, O2, ..., Ok} with the correspond-
ing object features {f1, f2, ..., fk} where k = 36. The image
encoder also contains a fully-connected layer, which trans-
forms each fi ∈ {f1, f2, ..., fk} to a h-dimensional vector
foi. Different from (Anderson et al. 2018; Lee et al. 2018),
we additionally feed the object position information into the
model. Specifically, we extract a 4-dimensional feature that
contain the normalized width, height and the central coordi-
nate of each object Oi, we map it to a h-dimensional vector
poi by a fully-connected layer with sigmoid unit. The final
object feature oi of object Oi is the multiplication of foi
and poi. On the other hand, for the input text T with word
set {W1,W2, ...,Wn}, we feed it into a text encoder. The
text encoder is a combination of word-embedding module
and bi-directional GRU. For each word Wi of text T , it is
first embedded as a q-dimensional word representation xj .
After that, a forward GRU of bi-directional GRU reads T
from x1 to xn:

−→
hj =

−−−→
GRU(xj , hj−1), j ∈ [1, n] (1)

and a backward GRU reads T from xn to x1:

←−
hj =

←−−−
GRU(xj , hj+1), j ∈ [1, n] (2)

The final word feature wj is defined as:

wj =

−→
hj +

←−
hj

2
, j ∈ [1, n] (3)

where wj has the same dimension (i.e. h) as the object fea-
ture.

Our model predicts the similarity of pair (I, T ) in a sym-
metrical manner. As shown in Figure 2, we feed the set
of object and word features into a cross attention model,
which outputs the similarity between text T and each object
Oi ∈ {O1, O2, ..., Ok}, as well as the similarity between im-
age I and each word Wj ∈ {W1,W2, ...,Wn}. We denote
them as S(i, T ) and S(I, j), respectively.

To compute S(i, T ), following (Lee et al. 2018), the affin-
ity of object Oi to word Wj (denoted as Ai,j) is defined as:

Ai,j =
cossim+(oi, wj)√∑k
i=1(cossim+(oi, wj))2

,

cossim+(oi, wj) = max(
oTi wj

‖oi‖ ‖wj‖ , 0)
(4)

In other words, the affinity of Oi to Wj is high if the
cosine similarity between wj and oi is high while the

cosine similarities between wj and other object features are
low. After that, the weighted text feature ti based on oi is
defined as:

ti =

n∑
j=1

αi,jwj , αi,j =
exp(λ1Ai,j)∑n
j=1 exp(λ1Ai,j)

(5)

Equation 5 can be considered as a cross-modality guided
attention mechanism, αi,j is the cross attention weight for
Oi to Wj . Based on the object feature oi, the model is guided
to generate the text feature ti that focuses more on the words
with high Ai,j . λ1 is the inversed temperature of the softmax
function. When λ1 is large, the weighted text feature almost
only considers the word Wj that holds the highest Ai,j with
object Oi.

In the end, S(i, T ) is defined as the cosine similarity be-
tween oi and ti:

S(i, T ) =
oTi ti
‖oi‖ ‖ti‖

(6)

In a dual form, we define the affinity of word wj to the
object oi as:

Ãj,i =
cossim+(wj , oi)√∑n
j=1(cossim+(wj , oi))2

(7)

and the weighted image feature mj based on wj as:

mj =

k∑
i=1

α̃j,ioi, α̃j,i =
exp(λ2Ãj,i)∑k
i=1 exp(λ2Ãj,i)

(8)

and S(I, j) is defined as:

S(I, j) =
wT

j mj

‖wj‖ ‖mj‖
(9)

On the other hand, different objects/words have different
importance in an image/text to express the characteristics
of the image/text. Therefore, we incorporate a word atten-
tion module and an object attention module to compute the
self-attention weights of words and objects. In particular, the
word attention module contains a learnable 1×h matrix Ww,
and the word attention weight awj of word Wj is defined as:

awj =
exp(βwWwwj)∑n
j=1 exp(βwWwwj)

(10)

βw is also the inversed temperature to adjust the self-
attention. Likewise, the image attention module contains a
learnable 1 × h matrix Wo, and the object attention weight
ãoi of object Oi is defined as:

ãoi =
exp(βoWooi)∑k
i=1 exp(βoWooi)

(11)

In the end, the word-oriented and object-oriented image-
text similarity of (I, T ) are defined as:

Sw(I, T ) =

n∑
j=1

awj S(I, j), So(I, T ) =

k∑
i=1

ãoiS(i, T )

(12)
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Figure 2: The architecture of the proposed DP-RNN. It contains an image encoder (green), a text encoder (red), a recurrent
visual embedding module (orange) and a Multi-attention Cross Matching Model (blue) to predict the image-text similarity. The
objects are reordered based on the positions of their most related words in the text.

Following (Faghri et al. 2017), we adopt the triplet rank-
ing loss with hardest negatives in a mini-batch to train the
model. For a corresponding pair (I, T ), the hardest nega-
tives in a mini-batch are given by Î = argmaxb �=IS(b, T )

and T̂ = argmaxc �=TS(I, c). The triplet loss is defined as:

lhard(I, T ) = [γ − S(I, T ) + S(I, T̂ )]+

+[γ − S(I, T ) + S(Î , T )]+
(13)

γ is the margin of the triplet loss, [x]+ ≡ max(x, 0).
Following (Lee et al. 2018), for actual implementation,

we train two separate models by applying the triplet loss
on the word-oriented image-text similarity (i.e. S(I, T ) =
Sw(I, T )) and object-oriented image-text similarity (i.e.
S(I, T ) = So(I, T )), respectively. During the inference
process, we average the predicted similarity scores of the
two models as the final image-text similarity.

Recurrent Visual Embedding

We formally present the recurrent visual embedding as an
effective approach to extracting the joint information of se-
mantically related image objects. Given an input image-text
pair (I, T ) with the same denotation, we define P (i, j) as
the coefficient that Wj relates to Oi:

P (i, j) = awj (o
T
i wj) (14)

where awj is the attention weight of word Wj defined above.
For object Oi, we select the pth word as its most related
word where p = argmaxjP (i, j). After that, we reorder
the objects based on the position of its most related word. In
essence, the model aims to make two objects close to each
other if they are semantically related in the input text’s envi-
ronment. Therefore, given different texts as input, the object
order of a same image may change. As shown in Figure 2,
given an input text, the new order of the objects will be in
accordance with the order of the words in the text based on
their semantic meanings.

After reordering the objects of an image, we feed the ob-
ject features into another bi-directional GRU layer with the
same way as the word features. Specifically, we re-denote
the set of the ordered object features as {oold1 , oold2 , ..., ooldn }
so that the new object features are computed as:

−−→
hnew
i =

−−−→
GRU(ooldi , hnew

i−1 ),←−−
hnew
i =

←−−−
GRU(ooldi , hnew

i+1 ),

onewi =

−−→
hnew
i +

←−−
hnew
i

2
, i ∈ [1, k]

(15)

We incorporate the recurrent visual embedding module
into DP-RNN as in Figure 2. Given an input image-text pair
(I, T ), DP-RNN first extracts the word features and the orig-
inal object features by the text and image encoder. After
that, the new object features are extracted by the recurrent
visual embedding module in the above process. In the end,
the model feeds the word features and the new object fea-
tures into the Multi-attention Cross Matching Model as de-
scribed in the above subsection to compute the similarity of
pair (I, T ).

Pair Early-selection and Training Strategy

As mentioned in the above subsections, the triplet ranking
loss is based on hardest negatives. It means that given a mini-
batch that contains s image-text pairs as input, we need to
compute the similarity of all s2 image-text pairs to decide
the hardest negatives. In this process, for each image, there
will be s kinds of object orders correspond to s texts. The bi-
directional GRU of the recurrent visual embedding module
needs to perform a total of s2 times of computing for a batch,
which sharply increases the model’s computing complexity
and makes it inapplicable. Therefore, we design an early-
selection strategy to filter out insignificant image-text pairs
that have no chance to become the hardest negatives.

Given a mini-batch of input texts and images, to filter out
the non-corresponding pairs that have no chance to become
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hardest negatives, we compute an early matching score be-
tween each text and each image. For image I and text T , the
early matching score Sem(I, T ) is computed as:

Sem(I, T ) =

k∑
i=1

n∑
j=1

P (i, j) (16)

where P (i, j) is the coefficient that Wj relates to Oi defined
in the above subsection. Sem(I, T ) can be computed by the
word features of T and the original object features of I . For
each text in the mini-batch, we just reserve the top-d non-
corresponding images in the same mini-batch with highest
early matching score to the text, and compute their similarity
by DP-RNN. For each text, we can thus choose the hardest
negative image (i.e. the image with highest similarity to the
text) from this d images and train DP-RNN by Equation 13.
Likewise, for each image, we just choose the hardest neg-
ative text (i.e. the text with highest similarity to the image)
from the texts that have a computed similarity to the image.
This early-selection strategy sharply reduces the computing
times of the bi-directional GRU.

We adopt a multi-stage training strategy to train DP-RNN.
In the first training epoch, we train the Multi-attention Cross
Matching Model, updating the parameters of the text en-
coder, image encoder (only the fully-connected layer) and
attention modules. In the second epoch, we feed the recur-
rent visual embedding module into the network. We train the
parameters of the recurrent visual embedding module with
other parameters fixed. From the third epoch to the end, we
train the whole network with all the parameters updated.

Experiments

We perform extensive experiments to evaluate the proposed
model. The performance of sentence retrieval (image query)
and image retrieval (sentence query) are evaluated by the
standard recall at K (R@K), which is defined as the fraction
of queries for which the correct item belongs to the top-K
retrieval items. We first discuss the datasets and model set-
tings used in the experiments. We then compare and analyze
the performance of the proposed model with the state-of-the-
art image-text matching models.

Dateset

We evaluate our model on the MS-COCO and Flickr30K
datasets. Flickr30k (Young et al. 2014) consists of 31,783
images collected from the Flickr website. Each image cor-
responds to five human-annotated sentences. Following the
split of (Faghri et al. 2017; Lee et al. 2018), we ran-
domly select 1,000 images for validation and 1,000 im-
ages for testing, and use other images to train the model.
The original MS-COCO dataset (Lin et al. 2014) contains
82,783 training and 40,504 validation images, each im-
age is also annotated with five descriptions. We split the
dataset into 82,783 training images, 5,000 validation im-
ages and 5,000 test images. Following (Faghri et al. 2017;
Lee et al. 2018), we add the 30,504 images that are orig-
inally in the validation set but are not used for validat-
ing/testing into the training set. Following (Wang et al. 2019;

Hu et al. 2019), we report the results by averaging over 5
folds of 1K test images.

Implementation Details

Following (Lee et al. 2018), for each image, we extract a
36×2048 dimensional object features by the Faster R-CNN
model in conjunction with ResNet-101 pre-trained by An-
derson et al. (Anderson et al. 2018). We set the dimensional-
ity of the word embeddings (i.e. q) to 300, the dimensional-
ity of image encoder (i.e. h) to 1024, and the dimensionality
of the bi-directional GRUs for both image and text branches
to 1024. The hyper-parameters λ1, λ2 are set to 9 and 4, re-
spectively. For MS-COCO, βw and βo are set to 0.3 and 0 (i.e
average the object-text similarity). For Flickr30K, they are
set to 0.3 and 0.3. For the recurrent visual embedding mod-
ule, d is set as 10 for early-selection. The margin of triplet
loss γ is set to 0.2. We use the Adam optimizer (Kingma and
Ba 2014) to train the model with the batch size set as 128.
For MS-COCO and Flickr30K, the initial learning rate is set
to 0.0005 and 0.0002, and is divided by 10 every 10 epochs.

Quantitative Results

Table 1 shows the quantitative retrieval results of different
models on the MS-COCO dataset. From the results, we can
see that the proposed DP-RNN remarkably outperforms the
baseline SCAN model (Lee et al. 2018) and has competitive
performance compared with other state-of-the-art models.
In particular, we separately incorporate different modules
we propose to demonstrate the effectiveness. We first feed
the proposed recurrent visual embedding module into the
original SCAN model (i.e. “DP-RNN (SCAN-based)” in Ta-
ble 1). From the result of “1K Test Images”, R@1 improves
from 72.7 to 73.8 for sentence retrieval, and from 58.8 to
60.5 for image retrieval. When we feed it into our Multi-
attention Cross Matching Model, R@1 improves from from
73.4 to 75.3 for sentence retrieval, and from 60.2 to 62.5 for
image retrieval. If we shuffle the objects, the performance
of the SCAN models with/without the recurrent visual em-
bedding module becomes similar. This demonstrates the ef-
fectiveness and validness of recurrent visual embedding on
different image-text matching models.

From Table 2, we can see how different settings of hyper-
parameter d influence the performance of DP-RNN. d indi-
cates how many image-text pairs to preserve before we feed
them into the recurrent visual embedding modules. Note that
the performance drops if d is set to 5. This may be attributed
to the wrong discarding of real hard negatives in the pair
early-selection process.

Table 3 shows the performance of different models on the
Flickr30k dataset. Our model outperforms the state-of-the-
art approaches for both sentence retrieval or image retrieval.
Overall, on both datasets, our model achieves more improve-
ment for image retrieval. This relates to the essence of the re-
current visual embedding, which changes the object orders
based on the text. This attribute fits for the task of ranking
images by a reference text query (i.e. image retrieval) be-
cause in this process the reference text feature will not be
changed when computing its similarity to different images.
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Table 1: Comparison of the cross-modal retrieval results on MS-COCO. “Multi-ATT” represents the Multi-attention Cross
Matching Model without recurrent visual embedding. “DP-RNN (SCAN-based)” represents the model that directly feeds the
proposed recurrent visual embedding module into SCAN (Lee et al. 2018). “DP-RNN (SCAN-based, random order)” represents
the “DP-RNN (SCAN-based)” model that receives the object features with random order as input.

Sentence Retrieval Image Retrieval
Model R@1 R@5 R@10 R@1 R@5 R@10

1K Test Images
DVSA (R-CNN, AlexNet) (Karpathy and Fei-Fei 2015) 38.4 69.9 80.5 27.2 22.8 74.8

HM-LSTM (R-CNN, AlexNet) (Niu et al. 2017) 43.9 - 87.8 36.1 - 86.7
Order-embeddings (VGG) (Vendrov et al. 2015) 46.7 - 88.9 37.9 - 85.9

SM-LSTM (VGG) (Huang, Wang, and Wang 2017) 53.2 83.1 91.5 40.7 75.8 87.4
2WayNet (VGG) (Eisenschtat and Wolf 2017) 55.8 75.2 - 39.7 63.3 -

VSE++ (ResNet) (Faghri et al. 2017) 64.6 - 95.7 52.0 - 92.0
DPC (ResNet) GXN (ResNet) (Gu et al. 2018) 68.5 - 97.9 56.6 - 94.5

SCO (ResNet) (Huang et al. 2018) 69.9 92.9 97.5 56.7 87.5 94.0
SCAN (Faster R-CNN, ResNet) (Lee et al. 2018) 72.7 94.8 98.4 58.8 88.4 94.8
RDAN (Faster R-CNN, ResNet) (Hu et al. 2019) 74.6 96.2 98.7 61.6 89.2 94.7

PFAN (Faster R-CNN, ResNet) (Wang et al. 2019) 76.5 96.3 99.0 61.6 89.6 95.2
Ours (Faster R-CNN, ResNet):

DP-RNN (SCAN-based) 73.8 95.2 98.4 60.5 88.7 94.4
DP-RNN (SCAN-based, random order) 72.4 94.7 98.4 59.0 88.4 94.6

Multi-ATT 73.4 95.4 98.6 60.2 88.8 94.8
DP-RNN 75.3 95.8 98.6 62.5 89.7 95.1

Figure 3: On a corresponding image-text pair (PosImage)
and a non-corresponding pair (NegImage) sharing the same
text, we visualize (a) the image-word similarity S(I, j)
predicted by SCAN and DP-RNN (SCAN-based), and (b)
the object orders of the two images predicted by DP-RNN
(SCAN-based).

Qualitative Results

In order to prove that the recurrent visual embedding is ef-
fective, we provide examples of the MS-COCO test set to
show how recurrent visual embedding has an influence on
image retrieval. Given a query “a man that is on a soccer
field with a ball” with a corresponding image and a non-

Figure 4: Visualization of (a) word attention weight awj and
(b) heat map of word-to-object cross attention weight α̃j,i

on typical corresponding image-text pairs. awj and α̃j,i are
predicted by DP-RNN using the word features and recurrent
object features.

corresponding image, Figure 3 illustrates their correspond-
ing object orders predicted by “DP-RNN (SCAN-based)”.
Following the key words “man”, “soccer field” and “ball”
in the text, the model puts the corresponding objects in the
same order as the words for both images. For example, sev-
eral objects related to people are consecutively put in the
first several positions, while objects related to a ball are put
in the last several positions. This order helps the model to
extract the joint information from semantically related ob-
jects. As shown in Figure 3, the basic SCAN model predicts
close image-word similarity for each word to the two im-
ages, falsely predicting higher image-text similarity for the
non-corresponding image. The model that feeds the recur-
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Table 2: Performance of selecting different d for pair early-selection.
Sentence Retrieval Image Retrieval Per Batch

Model R@1 R@5 R@10 R@1 R@5 R@10 Training Time
1K Test Images

DP-RNN (d=5) 75.0 95.3 98.3 61.6 89.3 94.6 1.213
DP-RNN (d=10) 75.3 95.8 98.6 62.5 89.7 95.1 1.326
DP-RNN (d=20) 75.4 95.8 98.7 62.4 89.9 94.9 1.482

Table 3: Comparison of the cross-modal retrieval results on Flickr30K.
Sentence Retrieval Image Retrieval

Model R@1 R@5 R@10 R@1 R@5 R@10
HM-LSTM (R-CNN, AlexNet) (Niu et al. 2017) 38.1 - 76.5 27.7 - 68.8

SM-LSTM (VGG) (Huang, Wang, and Wang 2017) 42.5 71.9 81.5 30.2 60.4 72.3
2WayNet (VGG) (Eisenschtat and Wolf 2017) 49.8 67.5 - 36.0 55.6 -

DAN (ResNet) (Nam, Ha, and Kim 2017) 55.0 81.8 89.0 39.4 69.2 79.1
VSE++ (ResNet) (Faghri et al. 2017) 52.9 - 87.2 39.6 - 79.5

DPC (ResNet) (Zheng et al. 2017) 55.6 81.9 89.5 39.1 69.2 80.9
SCO (ResNet) (Huang et al. 2018) 55.5 82.0 89.3 41.1 70.5 80.1

SCAN (Faster R-CNN, ResNet) (Lee et al. 2018) 67.4 90.3 95.8 48.6 77.7 85.2
RDAN (Faster R-CNN, ResNet) (Hu et al. 2019) 68.1 91.0 95.9 54.1 80.9 87.2

PFAN (Faster R-CNN, ResNet) (Wang et al. 2019) 70.0 91.8 95.0 50.4 78.7 86.1
DP-RNN 70.2 91.6 95.8 55.5 81.3 88.2

Figure 5: Qualitative image retrieval and sentence retrieval comparison between DP-RNN and SCAN on the MS-COCO dataset.

rent visual embedding into SCAN predicts a higher image-
word similarity for each word to the corresponding image.
In particular, it figures out that “a man” is not a correspond-
ing phrase to the non-corresponding image after recurrently
encoding the objects related to people.

Figure 4 shows the word attention weight awj and word-
to-object cross attention weight α̃j,i of typical examples on
the MS-COCO test set. Overall, DP-RNN gives key words
of each text higher weights, such as “man”, “skateboard”,
“street”, “boat” and “buildings”. This strengthens the impor-
tance of their corresponding image-word similarity. From
the heat map of α̃j,i, DP-RNN accurately predicts high α̃j,i

between corresponding word-objects. We could see that the
model can even capture the corresponding object of a verb.
For example, the region that represents “the bottom of a boat
in the water” gains highest α̃j,i to the word “parking”.

Figure 5 shows the qualitative comparison of DP-RNN
and SCAN on the MS-COCO test set. For sentence retrieval,
given an image query, we show the top-5 retrieved sentences
predicted by DP-RNN and SCAN. For image retrieval, given
a sentence query, we show the top-3 retrieved images, rank-

ing from upper to bottom. We tick off the correct retrieval
items for each query. It could be seen that DP-RNN per-
forms better in finding key details from visual-textual in-
puts. Compared with SCAN, it can successfully match the
tricky phrases “hat of bananas”, “dirty pond”, “three differ-
ent horses” to the corrected images.

Conclusions

In this paper, we present a Dual Path Recurrent Neural Net-
work for image-text matching. Following the same way as
encoding text information, the image objects are reordered
adaptively based on their semantic meaning and encoded by
RNN. A pair early-selection strategy is proposed to make
the recurrent visual embedding tractable. Furthermore, we
integrate a Multi-attention Cross Matching Model to com-
pute the image-text similarity from recurrent visual and tex-
tual features. We conduct extensive experiments to demon-
strate how our model effectively captures the joint informa-
tion from semantically related objects and match the infor-
mation to the corresponding words in the text.
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