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Abstract

Depth Completion deals with the problem of converting a
sparse depth map to a dense one, given the correspond-
ing color image. Convolutional spatial propagation network
(CSPN) is one of the state-of-the-art (SoTA) methods of
depth completion, which recovers structural details of the
scene. In this paper, we propose CSPN++, which further im-
proves its effectiveness and efficiency by learning adaptive
convolutional kernel sizes and the number of iterations for
the propagation, thus the context and computational resource
needed at each pixel could be dynamically assigned upon
requests. Specifically, we formulate the learning of the two
hyper-parameters as an architecture selection problem where
various configurations of kernel sizes and numbers of itera-
tions are first defined, and then a set of soft weighting param-
eters are trained to either properly assemble or select from
the pre-defined configurations at each pixel. In our experi-
ments, we find weighted assembling can lead to significant
accuracy improvements, which we referred to as ”context-
aware CSPN”, while weighted selection, ”resource-aware
CSPN” can reduce the computational resource significantly
with similar or better accuracy. Besides, the resource needed
for CSPN++ can be adjusted w.r.t. the computational bud-
get automatically. Finally, to avoid the side effects of noise
or inaccurate sparse depths, we embed a gated network in-
side CSPN++, which further improves the performance. We
demonstrate the effectiveness of CSPN++ on the KITTI depth
completion benchmark, where it significantly improves over
CSPN and other SoTA methods 1.

Introduction

Image guided depth completion, or depth completion for
short in this paper, is the task of converting a sparse depth
map from devices such as LiDAR or algorithms such as
structure-from-motion (SfM) and simultaneously localiza-
tion and mapping (SLAM) to a per-pixel dense depth map
with the help of reference images. The technique has a wide
range of applications for the perception of indoor/outdoor
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1http://www.cvlibs.net/datasets/kitti/eval depth.php?
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Figure 1: Output assembling or selection over an unrolled
CSPN. The color of each dot indicates the computational re-
sources need at the point, where blue indicates low resource
usage while red indicates high resource usage.

moving robots such as self-driving vehicles, home/indoor
robots, or applications such as augmented reality.

One of the state-of-the-art (SoTA) methods for this task is
CSPN (Cheng, Wang, and Yang 2018a), which is an efficient
local linear propagation model with learned affinity from a
convolutional neural network (CNN). CSPN claims three
important properties should be considered for the depth
completion task, 1) depth preservation, where the depth
value at sparse points should be maintained, 2) structure
alignment, where the detailed structures, such as edges and
object boundaries in estimated depth map, should be aligned
with the given image, and 3) transition smoothness, where
the depth transition between sparse points and their neigh-
borhoods should be smooth.

In real applications, depths from devices like LiDAR, or
algorithms such as SfM or SLAM could be noisy (Van Gans-
beke et al. 2019) due to system or environmental errors.
Datasets like KITTI adopt stereo and multiple frames to
compensate the errors for evaluation. Here in this paper,
we do not assume that the sparse depth map is the ground
truth, rather, we consider that it may include errors as well.
So the depth value at sparse points should be conditionally
maintained with respect to its accuracy. Secondly, all pixels
are considered equally in CSPN, while intuitively the pixels
at geometrical edges and object boundaries should be more
focused for structure alignment and transition smoothness.
Therefore, in CSPN++, we propose to find a proper propa-
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gation context, to further improve the performance of depth
completion.

To be specific, as illustrated in Fig. 1, in CSPN++, nu-
merous configurations of convolutional kernel size and num-
ber of iteration are first defined for each pixel x, then
we utilize αx to weight different proposals of kernel size,
and use λx to weight outputs after different iterations.
Based on these hyper-parameters, we induce context-aware
and resource-aware variants for CSPN++. In context-aware
CSPN (CA-CSPN), we propose to assemble the outputs,
and CSPN++ is structurally similar to networks such as In-
ceptionNet (Szegedy et al. 2016) or DenseNet (Huang et
al. 2017a), where gradient from the final output can be di-
rectly back-propagated to earlier propagation stages. We find
the model learns stronger representation yielding significant
performance boost comparing to CSPN.

In resource-aware CSPN (RA-CSPN), CSPN++ sequen-
tially selects one convolutional kernel and one number of
iteration for each pixel by minimizing the computational re-
source usage, where the learned computational resource al-
location speeds up CSPN significantly (2ˆ „5ˆ in our ex-
periments) with improvements of accuracy. In addition, RA-
CSPN can also be automatically adapted to a provided com-
putational budget with the awareness of accuracy through a
budget rounding operation during the training and inference.

In summary, our contribution lies in two aspects:

1. Base on the observation of error sparse depths, we pro-
pose a gate network to guide the depth preservation, and
make the output more robust to noisy sparse depths.

2. We propose an effective method to adapt the kernel sizes
and iteration number for each pixel with respect to image
content for CSPN, which induces two variants, named
as context-aware and resource-aware CSPN. The for-
mer significantly improves its performance, and the later
speeds up the algorithm and makes the CSPN++ adapt to
computational budgets.

Related Work

Depth estimation, completion, enhancement/refinement and
models for dense prediction with dynamic context and com-
pression have been center problems in computer vision and
robotics for a long time. Here we summarize those works in
several aspects without enumerating them all due to space
limits, and we majorly clarify their core relationships with
CSPN++ proposed in this paper.

Depth Completion. The task of depth completion (Uhrig
et al. 2017) recently attracts lots of interests in robotics
due to its wide application for enhancing 3D perception for
robotics (Liao et al. 2017). The provided depths are usu-
ally from LiDAR, SfM or SLAM, yielding a map with valid
depth partially available in some of the pixels. Within this
field, some works directly convert sparse 3D points to dense
ones without image guidance (Uhrig et al. 2017), which pro-
duce impressive results with deep learning. However, con-
ventionally, jointly considering the structures from reference
images for guiding depth completion/enhancement (Liu and
Gong 2013) yields better results. With the rising the deep

learning for depth estimation from a single image (Wang
et al. 2016), researchers adopt similar strategies to image
guided depth completion. For example, (Ma and Karaman
2018) propose to treat sparse depth map as an additional in-
put to a ResNet based depth predictor (Laina et al. 2016),
producing superior results than the depth output from CNN
with solely image inputs. Later works are further proposed
by focusing on improving the efficiency (Ku, Harakeh, and
Waslander 2018), separately modeling the features from im-
age and sparse depths (Tang et al. 2019), recovering the
structural details of depth maps (Cheng, Wang, and Yang
2018a), combing with multi-level CRF (Xu et al. 2018) or
adopting auxiliary training losses using normal (Zhang and
Funkhouser 2018) or 3D representation (Chen et al. 2019)
from self-supervised learning strategy (Ma, Cavalheiro, and
Karaman 2019).

Among all of these works, we treat CSPN (Cheng, Wang,
and Yang 2018a) as our baseline strategy due to its clear
motivation and good theoretical guarantee in the stability of
training and inference, and our resulted CSPN++ provides a
significant boost both on its effectiveness and efficiency.

Context Aware Architectures. Assembling multiple con-
texts inside a network for dense predictions has been an
effective component for recognition tasks in computer vi-
sion. In our perspective, the assembling strategies could be
horizontal or vertical. Horizontal strategies assemble out-
puts from multiple branches in a single layer of a network,
which include modules of Inception/Xception (Szegedy et
al. 2016), pyramid spatial pooling (PSP) (Zhao et al. 2016),
atrous spatial pyramid pooling (ASPP) (Chen et al. 2017),
and vertical strategies assemble outputs from different lay-
ers include modules of HighwayNet (Srivastava, Greff, and
Schmidhuber 2015), DenseNet (Huang et al. 2017a), etc.
Some recent works combine these two strategies together
such as networks of HRNet (Sun et al. 2019) or models of
DenseASPP (Yang et al. 2018). Most recently, to make the
context to be better conditioned on each pixel or provided
image, attention mechanism with the cost of additional com-
putation is further induced inside the network for context
selection such as skipnet (Wang et al. 2018b), non-local net-
works (Wang et al. 2018a) or context deformation such as
spatial transformer networks (Jaderberg et al. 2015) or de-
formable networks (Zhu et al. 2019).

In the field of depth completion, (Cheng, Wang, and Yang
2018b) propose the atrous convolutional spatial pyramid
fusion (ACSF) module which extends ASPP by addition-
ally adding affinity for each pixel, yielding stronger perfor-
mance, which can be treated as a case of combining hor-
izontal assembling with attention from affinity values. In
our case, CA-CSPN of CSPN++ extends context assembling
idea into CSPN with both horizontal and vertical strate-
gies via attention. Horizontally, it assembles multiple kernel
sizes, and vertically it assembles the outputs from different
iteration stages as illustrated in Fig. 1. Here we would like to
note that although mathematically in forward process, per-
forming one step CA-CSPN with kernels of 7ˆ7, 5ˆ5, 3ˆ3
together is equivalent to performing CSPN with a single 7ˆ7
kernel since the full process are linear, the backward learn-
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Figure 2: Framework of our networks for depth completion with resource and context aware CSPN (best view in color). At the
end of the network, we generate the depth confidence for each sparse point, affinity matrix for CSPN, and weighting variables
αx and λx for model assembling and selection.

ing process is different due to the auxiliary parameters (αx,
λx), and our results are significantly better.

Resource Aware Inference. In addition, the dynamic con-
text intuition can be also applied for efficient prediction by
stopping the computation after obtained a proper context,
which is also known as adaptive inference. Specifically, the
relevant strategies have been adopted in image classification
such as a multi-scale dense network (MSDNet) (Huang et al.
2018), object detection such as trade-off balancing (Huang
et al. 2017b) or semantic segmentation such as regional con-
volution network (RCN) treating each pixel differently (Li
et al. 2017).

In RA-CSPN of CSPN++, we first embed such an idea in
depth completion, and adopt functionality of RCN in CSPN
for efficient inference. To minimize the computation, each
pixel chooses one kernel size and then one number of it-
erations sequentially from the proposed configurations. Be-
sides, we can easily add a provided computation budget,
such as latency or memory constraints, into our optimiza-
tion target, which could be back-propagated for operation
selection similar to resource constraint architecture search
algorithms (Cai, Zhu, and Han 2019).

Preliminaries

To make the paper self-contained, we first briefly review
CSPN (Cheng, Wang, and Yang 2018b), and then demon-
strate how we extend it with context and resource aware-
ness. Given one depth map Do P R

mˆn that is output from
a network taken input as an image I P R

mˆn, CSPN up-
dates the depth map to a new depth map Dn. Without loss of
generality, we follow their formulation by embedding depth
to a hidden representation H P R

mˆnˆc, and the updating
equation for one step propagation can be written as,

Hx,t`1 “ φCSP pHx,t,Hx,0|kq
“ κxpxq d Hx,0 `

ÿ

xnPNk

κxpxnq d Hxn,t

where,

κxpxnq “ κ̂xpxnq{
ÿ

xnPN
|κ̂xpxnq|,

κxpxq “ 1 ´
ÿ

xnPN κxpxnq (1)

where φCSP pq represents one step CSPN given a predefined
size of convolutional kernel k. Nk is the neighborhood pix-
els in a kˆk kernel, and the affinities output from a network
κ̂xpq are properly normalized which guarantees the stability
of the module. The whole process will iterate N times to ob-
tain the final results. Here, k,N needs to be tuned in the ex-
periments, which impacts the final performance significantly
in their paper.

For depth completion, CSPN preserves the depth value at
those valid pixels in a sparse depth map Ds by adding a re-
placement operation at the end of each step. Formally, let Hs

to be the corresponding embedding for Ds, the replacement
step after performing Eq. (1) is,

Hx,t`1 “ p1 ´ mxqHx,t`1 ` mxH
s
x, (2)

where mx “ Ipdsx ą 0q is an indicator for the validity of
sparse depth at x.

Context and Resource Aware CSPN

In this section, we elaborate how CSPN++ enhances CSPN
by learning a proper configuration for each pixel by intro-
ducing additional parameters to predict. Specifically, pre-
dicting αx “ tαxpkqu for weighting various convolutional
kernel size and λx “ tλxpk, tqu for weighting different
number of iterations given a kernel size k. As shown in Fig.
2, both variables are image content dependent, and are pre-
dicted from a shared backbone with CSPN affinity and esti-
mated depths.

Context-Aware CSPN

Given the provided αx and λx, context-aware CSPN (CA-
CSPN) first assembles the results from different steps. For-
mally, the propagation from t to t ` 1 could be written as,

H`
x,t`1,k “ λxpk, t ` 1q ˚ φCSP pHt,H0|x, kq ` H`

x,t,k

λxpk, tq “ σpλ̂xpk, tqq{
ÿ

tPt1¨Nu σpλ̂xpk, tqq (3)

where, σpq is the sigmoid function, and λ̂x is the outputs
from the network. In the process, H`

x,t`1,k progressively ag-
gregates the output from each step of CSPN based on λx.
Finally, we assemble different outputs from various kernels
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after N iterations,

H`
x,N “

ÿ
kPK αxpkqH`

x,N,k

αxpkq “ σpα̂xpkqq{
ÿ

kPK σpα̂xpkqq (4)

Here, both αx and λx are properly normalized with their l1
norm, so that our output H`

x,N maintains the stabilization
property of CSPN for training and inference.

When there are sparse points available, CSPN++ adopts
a confidence variable gx predicted at each valid depth in the
sparse depth map, which is output from the shared backbone
in our framework (Fig. 2). Therefore, the replacement step
for CSPN++ can be modified accordingly,

H`
x,t`1 “ p1 ´ gxqH`

x,t`1 ` gxH
s
x, (5)

where gx “ Ipdsx ą 0qσpĝxq, where ĝx is predicted from a
network after a convolutional layer.

Complexity and computational resource analysis. From
CSPN, we know that theoretically with sufficient amount
of GPU cores and large memory storage, the overall com-
plexity for CSPN with a kernel size of k and iteration N is
Oplogpk2qNq. In CA-CSPN, with induced K convolutional
kernels, the computation complexity is Oplogpk2maxqNq,
where kmax is the maximum kernel size since all branch
can be performed simultaneously.

However, in the real application, the expected computa-
tional resource is limited and latency of memory request
with large convolutional kernel could be time consuming.
Therefore, we need to utilize a better metric for estimating
the cost. Here, we adopt the popularly used memory cost
and Mult-Adds/FLOPs as an indicator of latency or compu-
tational resource usage on a device. Specifically, based on
the CUDA implementation of convolution with im2col,
performing CSPN with a kernel k would require memory
cost of Opk2q, and FLOPs of OpNk2q, given a single feature
block with a size of hˆwˆc. In summary, given K kernels,
the latency from big O estimation for CA-CSPN would be
OpNk2maxq. Finally, we would like to note that the memory
and computational configuration varies with given devices,
so does the latency estimation. A better strategy would be
directly testing over the target device as proposed in (Cai,
Zhu, and Han 2019). Here, we just provide a reasonable es-
timation with the commonly used GPU.
Network architectures. As illustrated in Fig. 2, for the
backbone network, we adopt the same ResNet-34 structure
proposed in (Ma, Cavalheiro, and Karaman 2019). The
only modification is at the end of the network, it outputs
the per-pixel estimation of assembling parameters λx, αx,
noisy guidance for replacement gx and affinity matrix κx

using a convolutional layer with a 3 ˆ 3 kernel. For han-
dling the affinity values for various propagation kernels, we
use a shared affinity matrix since the affinity between differ-
ent pixels should be irrelevant to the context of propagation,
which saves the memory cost inside the network.
Training context-aware CSPN. Given the proposed archi-
tecture, based on our computational resource analysis w.r.t.
latency, we add additional regularization term inside the
general optimization target, which minimizes the expected

2 3
1

1

2 3
1

2 3
1

3 2 3 2

Figure 3: The proposed regional im2col and conv. oper-
ation for efficient testing. Here, let the regions of green ( 1©),
red ( 2©) and blue ( 3©) have kernel size of 3, 7, 5 and iteration
number of t, t+1, t+1 respectively. We convert each region to
a matrix of |fi|ˆ|Ri| for performing parallel conv. through
im2col, where |fi| “ ki ˆ ki ˆ c is the feature dimension,
and |Ri| is the number of pixels in the corresponding re-
gion. If pixels belong to a region does not need propagation
(i.e. region 1© at time step t as illustrated), we direct copy
its feature to next step.

computational cost c by treating αx, λx as probabilities of
configuration selection. It is shown to be effective in improv-
ing the final performance in our experiments. Formally, the
overall target for training CA-CSPN can be written as,

min
w

LtrainpD,D˚|wq ` η1}w}22 ` η2Epc|tαx, λxuq
LtrainpD,D˚|wq “ }D ´ D˚}22
Epc|tαx, λxuq “ 1

hw

ÿ
x
Epcx|αx, λxq (6)

Epcx|αx, λxq “ 1

pNk2maxq
ÿ

k,t
λxpk, tqαxpkqtk2

where w is the network parameters, and }w}22 is weight
decay regularization. Epc|¨q is the expected computational
cost given the assembling variables based on our analysis.
h,w are height and width of the feature respectively. D and
D˚ is the output depth map from CA-CSPN and ground
truth depth map correspondingly. Here, our system can be
trained end-to-end.

Resource Aware Configuration

As introduced in our complexity analysis, CSPN with large
kernel size and long time propagation is time consuming.
Therefore, to accelerate it, we further propose resource-
aware CSPN (RA-CSPN), which selects the best kernel size
and number of iteration for each pixel based on the estimated
αx, λx. Formally, its propagation step can be written as,

Hx,t`1 “ φCSP pHt,H0|x, k˚q
where k˚ “ argmax

k
αxpkq, t ď argmax

t
λxpk, tq (7)

Here each pixel is treated differently by selecting a best
learned configuration, and we follow the same process of
replacement as Eq. (2) for handling depth completion.
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Computational resource analysis. Given the selected
configuration of convolutional kernel and number of iter-
ation at each pixel, the latency estimation for each image
that we proposed in Sec. is changed to Opk̂2t̂q, where
k̂ “ 1

hw

ř
x kx̊ and t̂ “ 1

hw

ř
x tx̊ are the average itera-

tion step and kernel size in the image respectively. Both of
the numbers are guaranteed to be smaller than the maximum
number of iteration N and kernel size kmax.

Training RA-CSPN. In our case, training RA-CSPN does
not need to modify the multi-branch architecture shown
in Fig. 1, but switches from the weighted average assem-
bling as described in Eq. (3) and Eq. (4) to max selection
that only one path is adopted for each pixel. In addition, we
need modify our loss function in Eq. (6) by changing the
expected computational cost as,

Epcx|αx, λxq “ pkx̊q2tx̊{pNk2maxq
where k˚ “ argmax

k
αxpkq, t˚ “ argmax

t
λxpk˚, tq (8)

In practice, to implement configuration selection, we can
reuse the same training pipeline as CA-CSPN via converting
the obtained soft weighting values in αx and λx to one-hot
representation through an argmax operation.

Efficient testing. Practically, there are two issues we need
to handle when making the algorithm efficient at testing:
1) how to perform different convolution simultaneously
at different pixels, and 2) how to continue the propaga-
tion for pixels whose neighborhood pixels stop their diffu-
sion/propagation process. To handle these issues, we follow
the idea of regional convolution (Li et al. 2017).

Specifically, as shown in Fig. 3, to tackle the first one,
we group pixels to multiple regions based on our predicted
kernel size, and prepare corresponding matrix before convo-
lution for each group using region-wise im2col. Then, the
generated matrix can be processed simultaneously at each
pixel using region-wise convolution. To tackle the second
issue, when the propagation of one pixel x stops at time step
t, we directly copy the feature of x to the next step t ` 1
for computing convolution at later stages. In summary, RA-
CSPN can be performed in a single forward pass with less
resource usage.

Learning with provided computational budget. Finally,
in real applications, rather than providing an optimal com-
putational resource, usually there is a hard constraint for a
deployed model, either the memory or latency of inference.
Thanks to the adaptive resource usage of CSPN++, we are
able to directly put the required budget into our optimiza-
tion target during training. Formally, given a target memory
cost Cm and a latency cost Cl for resource-aware CSPN, our
optimization target in Eq. (6) could be modified as,

min
w

LtrainpD,D˚|wq ` η1}w}22 ` η2Epc|tαx, λxuq
s.t. Epcm|tαx, λxuq ď Cm,Epc|tαx, λxuq ď Cl (9)

where Epcm|t¨, ¨uq “ 1
hwk2

max

ř
xpkx̊q2 is the expected

memory cost, and Epc|t¨, ¨uq is the expected latency cost de-
fined in Eq. (8). The two constraints can be added to our

target easily with Lagrange multiplier. Formally, our opti-
mization target with resource budges is,

min
w

LtrainpD,D˚|wq ` η1}w}22` (10)

η1
2rEpc|t¨, ¨u ´ Cls` ` η3rEpcm|t¨, ¨uq ´ Cms`

where the hinge loss rxs` “ maxpx, 0q is adopted as our
surrogate function for satisfying the constraints.

Last but not the least, since our primal problem, i.e. op-
timization with deep neural network, is highly non-convex,
thus during training, there is no guarantee that all samples
will satisfy the constraints. In addition, during testing, the
predicted configuration might also violate the given con-
straints, e.g. Epc|t¨, ¨uq´Cl ą 0. Therefore, for these cases,
we propose a resource rounding strategy to hard constraint
its overall computation within the budgets. Specifically, we
calculate the average cost at each pixel, and for the pixels
violating the cost, as illustrated in Fig. 1, we are are able
to find the Pareto optimal frontier (Mock 2011) that satisfy-
ing the constraint, and we pick the one with largest iteration
since it obtains the largest reception field.

Experiments

In this section, we will first introduce the dataset, metrics
and our implementation details. Then, extensive ablation
study of CSPN++ is conducted on the validation set to verify
our insight of each proposed components. Finally, we pro-
vide qualitative comparison of CSPN++ versus other SoTA
method on testing set.

Experimental setup

KITTI Depth Completion dataset. The KITTI Depth
Completion benchmark is a large self-driving real-world
dataset with street views from a driving vehicle. It consists
86k training, 7k validation and 1k testing depth maps with
corresponding raw LiDAR scans and reference images. We
use the official 1k validation images in as our validation
set while merge the remained images to training set. The
sparse depth maps are obtained by projecting the raw Li-
DAR points through the view of camera, and the ground
truth dense depth maps are generated by first projecting the
accumulated LiDAR scans of multiple timestamps, and then
removing outliers depths from occlusion and moving objects
through comparing with stereo depths from image pairs.
NYU v2 dataset. The NYU-Depth-v2 dataset consists of
RGB and depth images collected from 464 different indoor
scenes. We use the official split of data, where 249 scenes are
used for training and we sample 50K images out of the train-
ing set with the same manner as (Cheng, Wang, and Yang
2018a). For testing, following the standard setting (Cheng,
Wang, and Yang 2018a), the small labeled test set with 654
images is used the final performance. The original image of
size 640ˆ480 are first downsampled to half and then center-
cropped, producing a network input size of 304ˆ228.
Metrics. We adopt error metrics same as KITTI depth
completion benchmark, including root mean square er-
ror (RMSE), mean abosolute error (MAE), inverse RMSE
(iRMSE) and inverse MAE (iMAE), where inverse indicates
inverse depth representation, i.e.converting dx to 1.0{dx.
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Table 1: Ablation Study on KITTI Depth Completion validation dataset. ‘GR‘ stands for guided replacement.‘LR‘ stands for
latency regularization for the model. ‘CPSN++‘ is our proposed strategies.

Method SPP
CSPN configuration

GR LR
Results (Lower the better)

Normal assemble kernel assemble iter. RMSE(mm) MAE(mm)
(Ma, Cavalheiro, and Karaman 2019) 799.08 265.98
(Ma, Cavalheiro, and Karaman 2019) � 788.23 247.55

CSPN � � 765.78 213.,54
CSPN � � � 756.27 215.21
CA-CSPN � � � 732.46 210.61
CA-CSPN � � � � 732.34 209.20
CA-CSPN � � � � � 725.43 207.88

Figure 4: Framework of our networks for depth completion with resource and context aware CSPN(best view in color).

Implementation details. For kitti dataset, we train our net-
work with four NVIDIA Tesla P40, and use batchsize of 8.
In all our experiments, we adopt kernel sizes of 3 ˆ 3, 5 ˆ 5
and 7ˆ 7, and sample outputs after 3, 6, 9, 12 times of prop-
agation. All our models are trained with Adam optimizer
with β1 “ 0.9, β2 “ 0.999. The learning rate start from
10´5 and reduce by half for every 5 epochs. Here, for train-
ing context-aware CSPN in Eq. (6), the parameter for weight
decay, i.e. η1, is set to 0.0005, and the parameter for resource
regularization, i.e. η2 is set to 0.1. For training resource-
aware CSPN in Eq. (8), we set η1

2 “ 1.0 and η3 “ 1.0.
All our parameters are induced for balancing value scale of
different losses without exhaustively tuning. While training
on NYU dataset, we keep the same configuration with CSPN
(Cheng, Wang, and Yang 2018a), and adopt same kernel and
iteration configuration with kitti dataset.

Ablation studies

Ablation study of context-aware CSPN (CA-CSPN).
Here, we conduct experiments to verify each mod-
ule adopted in our framework, including our baselines,
i.e. CSPN with spatial pyramid pooling(SPP), and our newly
proposed modules in context-aware CSPN. Specifically, to
make the validation efficient, we only train each network 10
epochs to obtain its results. For SPP, we adopt pooling sizes
of 12, 6, 4, 2 and for CSPN, we use the kernel size of 7 ˆ 7
and set the number of iteration as 12. As shown in Tab 1, by
adding SPP and CSPN module to the baseline from (Ma,
Cavalheiro, and Karaman 2019), we can significantly re-
duce the depth error due to the induced pyramid context in
SPP and refined structure with CSPN. With additional confi-
dence guided replacement(GR) (Eq. (5)), our module better
handles the noisy sparse depths, and the RMSE is signifi-

cantly reduced from 765.78 to 756.27. Then, at rows with
‘assemble kernel‘, we add the component of learning to hor-
izontally assemble predictions from different kernel size via
the learned αx. It further reduce the error from 756.27 to
732.46. At rows with ‘assemble iter.‘, we include the compo-
nent of learning to vertically assemble outputs after different
iterations via the learned λx. Finally, at rows with ‘LR‘, we
add our proposed latency regularization term (Eq. (6)) into
the training losses, yielding the best results of our context-
aware CSPN.

In Fig. 4, we visualize the learned configurations of αx

and λx at each pixel. Typically, we find majority pixels on
ground and walls only need small kernel and few iterations
for recovery, while pixels further away and around object
and surface boundary need large kernels and more iterations
to obtain larger context for reconstruction. This agrees with
our intuition since in real cases, sparse points are denser
close by and the structure is simpler in planar regions, thus
it is easier for depth estimation.
Ablation study of resource-aware CSPN (RA-CSPN). To
verify the efficiency of our proposed RA-CSPN, we study
the computational improvement w.r.t. vanilla CSPN and CA-
CSPN. As list in Tab 2, at row ‘CSPN‘, we list its memory
cost and latency on device. At row ‘CA-CSPN‘, although the
memory cost and latency are in practice larger, but the ex-
pected kernel size Epkq and iteration steps Eptq are much
smaller using our latency regularization terms. This indi-
cates that most pixels only need small kernel and few itera-
tion for obtaining better results. At row of ‘RA-CSPN‘, we
train with resource-aware objective as in Eq. (8), and show
that RA-CSPN not only outperforms CSPN for efficiency
(almost 3ˆ faster), but also improves RMSE from 756.27
to 732.32. More importantly, we can train RA-CSPN with
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Table 2: Comparison of efficiency between CSPN and CSPN++. Epkq is the expected kernel size and Eptq is the expected
number of iterations using learned αx and λx. Cm is the real cost of memory and Cl is the real time latency on device. m.c.
is short for memory constraints and l.c. is short for latency constraints. Both constraints and expected values are normalized by
the corresponding resource used in the CSPN baseline. Note here the number of memory cost is not proportion to Epkq since
the majority is taken by affinity matrix in our case. Here, we set a minimum cost of using kernel size of 3 ˆ 3 and propagation
steps of 3, and one may achieve additional acceleration by dropping the minimum cost.

DataSet Method kernel iter. m. c. l. c.
Lower the Better

Epkq Eptq Cm(MB) Cl(ms) RMSE(mm)

KITTI

CSPN 7x7 12 1.0 1.0 829 28.88 756.27
CA-CSPN assemble 12 0.680 1.0 2125 67.23 732.46
CA-CSPN assemble assemble 0.316 0.446 2125 67.23 725.43

RA-CSPN select select 0.268 0.439 626.29 10.03 732.32
RA-CSPN select select 0.35 0.35 0.333 0.303 625.30 9.84 742.17

NYU v2
CSPN 7x7 12 1.0 1.0 628 21.03 121.49

CA-CSPN assemble assemble 0.373 0.451 1691 50.47 115.73

RA-CSPN select select 0.40 0.40 0.386 0.395 531.27 10.03 118.70

Figure 5: Qualitative comparison with UberATG-FuseNet on KITTI test set, where the zoom regions show that our method
recover better and detailed structure.

computational budget to fit different devices as proposed
in Eq. (10). At the last row, with a hard constrain that the
m.c. and l.c. is less than 35% of the vanilla CSPN, we found
that, our method will adjust kernel sizes and iteration ac-
tively. In this case, the Eptq reduce from 0.439 to 0.303 but
Epkq increase from 0.268 to 0.333, which means that the
network chooses larger kernel sizes with less iteration au-
tomatically to satisfied our hard constraints, while still pro-
duces better results and demonstrate the effectiveness of our
method.

Experiments on NYU v2 dataset

To verify the generalization capability of our method in in-
door scenes, we adopt same experiments on NYU v2 dataset.
As shown in Tab. 2, we draw similar conclusions with the
KITTI dataset, which shows the effectiveness of our method
again.

Comparisons against other methods

Finally, to compare against other SoTA methods for depth
estimation accuracy, we use our best obtained model from
CA-CSPN, and finetune it with another 30 epochs before
submitting the results to KITTI test server. As summarized
in Tab. 3, CA-CSPN outperforms all other methods signifi-
cantly and currently rank 2nd on the bench mark. However,

our results are better in three out of the four metrics. Here,
we would like to note that our results are also better than
methods adopted additional dataset, e.g. DeepLiDAR (Qiu
et al. 2019) uses CARLA (Dosovitskiy et al. 2017) to bet-
ter learn dense depth and surface normal tasks jointly, and
FusionNet (Van Gansbeke et al. 2019) used semantic pre-
trained segmentation models on CityScape (Cordts et al.
2016). Our plain model only trained on KITTI dataset and
outperforms all other methods.

In Fig. 5, we qualitatively compare the dense depth
maps estimated from our proposed mehtod with UberATG-
FuseNet (Chen et al. 2019) together with the corresponding
error maps. We found our results are better at detailed scene
structure recovery.

Conclusion

In this paper, we propose CSPN++ for depth completion,
which outperforms previous SoTA strategy CSPN (Cheng,
Wang, and Yang 2018b) by a large margin. Specifically,
we elaborate two variants using the same framework of
model selection, i.e. context-aware CSPN and resource-
aware CSPN. The former significantly reduces estimation
error, while the later achieves much better efficiency with
comparable accuracy with the former. We hope CSPN++
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Table 3: Comparisons against state-of-the-art methods on
KITTI Depth Completion benchmark.

Method
iRMSE
(1/km)

iMAE
(1/km)

RMSE
(mm)

MAE
(mm)

SC (Uhrig et al. 2017) 4.94 1.78 1601.33 481.27
CSPN (Cheng, Wang, and Yang 2018a) 2.93 1.15 1019.64 279.46
NC (Eldesokey, Felsberg, and Khan 2019) 2.60 1.03 829.98 233.26
StD (Ma, Cavalheiro, and Karaman 2019) 2.80 1.21 814.73 249.95
FN (Van Gansbeke et al. 2019) 2.19 0.93 772.87 215.02
DL (Qiu et al. 2019) 2.56 1.15 758.38 226.25
Uber (Chen et al. 2019) 2.34 1.14 752.88 221.19
CA-CSPN 2.07 0.90 743.69 209.28

could motivate researchers to better adopt data-driven strate-
gies for effective learning hyper-parameters in various tasks.
In the future, we would like merge the two variants, and
consider replacing more modules in network with CSPN for
multiple tasks such as segmentation and detection.
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