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Abstract
Human gaze is essential for various appealing applications.
Aiming at more accurate gaze estimation, a series of recent
works propose to utilize face and eye images simultaneously.
Nevertheless, face and eye images only serve as independent
or parallel feature sources in those works, the intrinsic corre-
lation between their features is overlooked. In this paper we
make the following contributions: 1) We propose a coarse-
to-fine strategy which estimates a basic gaze direction from
face image and refines it with corresponding residual pre-
dicted from eye images. 2) Guided by the proposed strategy,
we design a framework which introduces a bi-gram model
to bridge gaze residual and basic gaze direction, and an at-
tention component to adaptively acquire suitable fine-grained
feature. 3) Integrating the above innovations, we construct a
coarse-to-fine adaptive network named CA-Net and achieve
state-of-the-art performances on MPIIGaze and EyeDiap.

Introduction
Human gaze implicates important cues for applications such
as saliency detection (Alshawi, Long, and AlRegib 2018),
human-computer interaction (Zhang, Sugano, and Bulling
2017) and virtual reality (Patney et al. 2016).

Gaze estimation methods can be divided into model-
based methods and appearance-based methods. Model-
based methods generally achieve accurate gaze estimation
with dedicated devices, but are mostly limited to laboratory
environment due to short working distance (typically within
60cm) and high failure rate in the wild. Appearance-based
methods attract much attention recently, they require only a
webcam to capture images and directly learn the mapping
from images to gaze directions. As human eye appearance
can be influenced by various factors in the wild such as head
pose, CNN-based methods are proposed and significantly
outperform classical methods thanks to CNN’s superior abil-
ity in learning very complex mapping functions.

CNN-based methods estimate gaze directions from face
or eye images. Zhang et al. (Zhang et al. 2015) first propose
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Figure 1: The process of coarse-to-fine strategy. We extract
coarse-grained feature from face image to estimate basic
gaze direction gb and extract fine-grained feature from eye
images to estimate gaze residual gr. We use gr to refine gb
and acquire the outputted gaze direction g.

a network to estimate gaze directions from eye images. Af-
terwards face images are put forward (Zhang et al. 2017a).
Recently, methods simultaneously utilizing face and eye im-
ages achieve even better results (Chen and Shi 2018). Nev-
ertheless, previous methods treat face and eye images only
as independent or parallel feature sources, thus neglecting
their intrinsic relationship at the level of feature granularity.
In fact, eye image provide fine-grained feature focusing on
gaze, while face image supplies coarse-grained feature with
richer information.

To make full use of the feature relationship between face
and eyes, we propose a coarse-to-fine strategy in this pa-
per, which achieve state-of-the-art performances on the most
common benchmarks. The core idea of proposed coarse-to-
fine strategy is to estimate a basic gaze direction from
face image and refine it with corresponding residual pre-
dicted from eye images. Specifically, since face image car-
ries richer information than eye images, we utilize it to es-
timate an approximation of gaze direction. Then we extract
fine-grained feature from eye images to refine the basic gaze
direction and finally acquire coarse-to-fine gaze direction.

As shown in Figure 1, we first design a CNN to ex-
tract coarse-grained feature from face image and predict the
basic gaze direction. Next, another CNN is set up to ex-
tract the fine-grained feature from eye images and generate
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gaze residual. At last, we acquire the final gaze direction by
adding the basic gaze direction and gaze residual vectorially.

However, there still remain two key problems to be con-
sidered. The first problem is how to ensure the estimated
gaze residual is effective for refining its corresponding base
gaze direction. The second problem is how to enforce the
fine-grained features extracted from eye images to be suit-
able for estimating the gaze residual. Inspired from NLP al-
gorithms, we generalize the coarse-to-fine process as a bi-
gram model to solve the first problem. The bi-gram model
bridges gaze residual and basic gaze direction, and produces
gaze residual coupling with basic gaze direction. For the sec-
ond problem, an attention component is proposed to adap-
tively acquire suitable fine-grained features.

Integrating above algorithms, we finally propose the
coarse-to-fine adaptive network (CA-Net) for gaze estima-
tion, which can adaptively acquire suitable fine-grained fea-
ture and estimates 3D gaze directions in a coarse-to-fine
way. To the best of our knowledge, we are the first to con-
sider the intrinsic correlation between face and eye images
and propose a framework for coarse-to-fine gaze estimation.

In summary, the contributions of this work are threefold:
1. We propose a novel coarse-to-fine strategy for gaze esti-

mation.
2. We propose an ingenious framework for coarse-to-fine

gaze estimation. The framework introduces a bi-gram
model, which bridges coarse-grained gaze estimation and
fine-grained gaze estimation, and an attention compo-
nent, which adaptively acquires suitable fine-grained fea-
ture.

3. Based on the proposed framework, we design a network
named CA-Net and achieve state-of-the-art performances
on MPIIGaze and EyeDiap.

Related work
Gaze estimation methods can be simply divided into model-
based and appearance-based (Hansen and Ji 2010).

Model-based methods
Model-based methods can estimate gaze with good accuracy
by building geometric eye models (Guestrin and Eizenman
2006). They typically fit the model by detecting eye fea-
tures such as near infrared corneal reflections (Nakazawa
and Nitschke 2012), pupil center (Valenti, Sebe, and Gev-
ers 2012), and iris contours (Funes Mora and Odobez 2014;
Xiong et al. 2014). However, the detection of eye fea-
tures may require dedicated devices such as infrared lights,
stereo/high-definition cameras, and RBG-D cameras (Fu-
nes Mora and Odobez 2014; Xiong et al. 2014). Mean-
while, model-based methods usually have limited working
distances between the user and the camera. These limitations
show that model-based methods are more suitable for con-
trolled environment, e.g., the laboratory setting, rather than
outdoor settings.

Appearance-based methods
Most of appearance-based methods only require a webcam
to capture images and learn the mapping function from im-

ages to the corresponding gaze (Tan, Kriegman, and Ahuja
2002). The loose requirement attracts much attention for
appearance-based methods. Up to now, many methods such
as Neural networks (Baluja and Pomerleau 1994; Xu,
Machin, and Sheppard 1998), adaptive linear regression (Lu
et al. 2014b), Gaussian process regression (Williams, Blake,
and Cipolla 2006) and dimension reduction (Lu et al. 2017)
have been proposed to learn the mapping function. In or-
der to handle arbitrary head motion, images can be used to
learn more complex mapping functions (Lu et al. 2014a;
2015). However, learning a generic mapping function is
still challenging because of the highly non-liner of mapping
function.

Recently, CNNs-based methods show better accuracy
than conventional appearance methods. Zhang et al. (Zhang
et al. 2015) first proposed a CNNs-based method to estimate
gaze, the method was designed based on LeNet (Lecun et
al. 1998) and estimates gaze from eye images. Yu et al. (Yu,
Liu, and Odobez 2018) proposed a multitask gaze estimation
model with landmark constrain, they estimate gaze from eye
images. Fischer et al. (Fischer, Chang, and Demiris 2018)
extracted feature from two-eye images with VGG-16 (Karen
and Andrew 2014) to estimate gaze, they use an ensemble
scheme to increase robustness of proposed method. Cheng et
al. (Cheng, Lu, and Zhang 2018) proposed a CNNs-based
network which uses two-eye images as inputs and utilizes
the two-eye asymmetry to optimize whole network.

Meanwhile, recent studies prove face images is effective
in CNNs-based methods. Krafka et al. (Krafka et al. 2016)
implemented the CNNs-based gaze tracker in the mobile de-
vices, it estimates gaze from face and eye images. Zhang et
al. (Zhang et al. 2017a) proposed a spatial weights CNN
to estimate gaze from face images. Deng et al. (Zhu and
Deng 2017) proposed a CNNs-based method with geome-
try constraints, it uses face and eye images as inputs and
can estimate gaze in free-head setting. Zhao et al. (Chen
and Shi 2018) proposed a CNNs-based method using di-
lated convolution to estimate gaze from face and eye images.
Xiong et al. (Xiong and Kim 2019) combines the mixed ef-
fects model with CNN and estimates gaze from face images.

Method
In this section, we introduce the architecture of our CA-Net,
which can adaptively acquire suitable fine-grained feature
and estimate the gaze directions in a coarse-to-fine way.

Overview
The core idea of the coarse-to-fine strategy is to estimate a
basic gaze direction from face image and refine it with cor-
responding residual predicted from eye images. We propose
the CA-Net based on the coarse-to-fine strategy.

The CA-Net contains two subnets: Face-Net and Eye-Net.
Face-Net extracts coarse-grained feature from face image
and estimates the basic gaze direction. Eye-Net estimates
gaze residual from two eye images to refine the basic gaze
direction. Next, We first propose an attention component
to adaptively assign weights for two-eye features. A suit-
able eye feature is acquired by adding the weighted two-
eye features together. In addition, since the gaze residual

10624



Figure 2: The architecture of proposed attention component.
It adaptively assigns weights for left and right eyes.

is associated with the basic gaze estimation, we generalize
the coarse-to-fine process as a bi-gram model to bridge the
Face-net and Eye-net, and produces gaze residual coupling
with basic gaze direction. Finally, CA-Net output gaze di-
rection by adding the basic gaze direction and gaze residual
together.

The rests of this section are organized as follows. We first
introduce the process of feature generation, in which we pro-
pose an attention component to adaptively assign weights for
two-eye features. We then introduce the coarse-to-fine strat-
egy, which can be generalized as a bi-gram model. Next, we
detail the architecture of proposed CA-Net and define the
loss function of CA-Net. At last, we present the implemen-
tation details at the end of this section.

Feature generation
A key point of coarse-to-fine strategy is to acquire suitable
feature, especially for estimating gaze residual. Therefore,
we first describe the process of feature generation.

The face feature is used to estimate basic gaze direction.
Therefore, a common CNN is used to extract the coarse-
grained face feature from face images. As for eye feature,
we also respectively use a CNN to extract features from two
eye images. However, after acquiring the left and right eye
features, a key problem is how to obtain suitable eye feature
from two-eye features to accurately estimate gaze residual.

There are at least two factors we need to consider. First, as
for different basic gaze directions, the suitable eye features
can be different. Second, two eye appearances have differ-
ent reliabilities for gaze estimation (Cheng, Lu, and Zhang
2018) because of the in-the-wild setting such as free-head.
Those two factors both influence the acquirement of suit-
able eye feature. In order to tackle above factors, we propose
an attention component which can adaptively assign weights
for two eyes. The suitable eye feature is produced by sum-
ming the weighted left and right eye features.

The attention component is inspired by attention mecha-
nisms, which are widely used in NLP (Vaswani et al. 2017).
The architecture of proposed component is shown in Fig. 2.
In particular, as for left eye image, a score ml is produced by
left eye feature fl and face feature ff . As for right eye image,
a score mr is produced by right eye feature fr and face fea-
ture ff . Then, a softmax layer is used to balance the scores

Figure 3: The coarse-to-fine process is generalized as a bi-
gram model, which bridges gaze residual gr and correspond-
ing basic gaze direction gb.

ml and mr and the weights wl and wr are outputted for left
eye and right eye. The method which produces scores from
feature is various, in the paper, we directly use the method
proposed in (Dzmitry Bahdanau 2015).

The proposed component has following properties:

1. Score ml is related with face feature, which is used to
predict basic gaze directions. It means that basic gaze di-
rections can decide the size of ml. This corresponds with
the first factor we describe above.

2. Score ml is related with left eye feature. On the other
words, ml is related with the left eye appearance. It cor-
responds with the second factor we describe above.

3. Score ml is irrelevant to right eye feature, it is reasonable
that the scores of left eyes are irrelevant to right eyes.

4. wl is generated by comparing ml and mr. Although the
scores of left eyes are irrelevant to right eyes, the final
weight should be generated with considering both the
scores of two eyes.

5. Above properties also suit for mr and wr.

We also formulate the process of our implementation as
follows. we acquire the score of left eyes by

ml = vT tanh(WT
1 ff +WT

2 fl), (1)

and acquire the score of right eyes by

mr = vT tanh(WT
1 ff +WT

2 fr), (2)

where v, W1 and W2 are learned parameters and are imple-
mented by fully connected layers.

Meanwhile, a softmax layer is used to balance the scores
of left and right and outputs the weights.

[wl, wr] = softmax([ml,mr]). (3)

The final eye feature fe can be acquired by

fe = wl ∗ fl + wr ∗ fr. (4)
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Coarse-to-fine gaze estimation
After acquiring the features, it is still unknown how to per-
form gaze estimation in a coarse-to-fine way. A straightfor-
ward solution is that learn a mapping function to estimate
the basic gaze direction from coarse-grained face feature and
then learn another mapping function to estimate the gaze
residual from fine-grained eye feature. However, this solu-
tion has two problems. First, it do not consider the relation
between basic gaze directions and gaze residuals. Second,
for the estimation of gaze residual, although eye images are
finer than face images, it is bad to directly discard the face
feature. Therefore, we generalize the coarse-to-fine process
as a bi-gram model. The architecture of the bi-gram model
is shown in Fig. 3, we omit the process of feature generation
which can be various.

Specifically, as show in Fig. 3, the face feature is pro-
cessed by a gate function to produce state h1. Then, on one
hand, the state h1 is used to estimate the basic gaze direc-
tion. On the other hand, the state h1 is delivered into the
next gate and produces the state h2 with eye feature. The
state h2 is used to estimate gaze residuals. The gate function
can be various. The main task of designed gate is to filter the
previous states and reduce the influence of previous task on
current task. We use GRU (Cho et al. 2014) in this work.

The coarse-to-fine process can be understood as follows.
The basic gaze directions are directly estimated from state
h1, which is produced by face feature. The gaze residuals
are estimated from state h2, which is generated from h1 and
eye feature. This means the process of estimating gaze resid-
uals is related with basic gaze directions. Meanwhile, with
delivering h1, the face feature is also implicitly used to esti-
mate gaze residuals rather than discarding. Moreover, since
the face feature includes much coarse-grained information,
a learned gate is used to adaptively filter the state h1.

The process of learned gate is shown as follow:

zi = σ(Wz · [hi, f ]). (5)

ri = σ(Wr · [hi, f ]). (6)

˜hi+1 = ReLU(Wh · [ri ∗ hi, f ]). (7)

hi+1 = (1− zi) ∗ hi + zi ∗ ˜hi+1, (8)

where f represents the corresponding feature. Wz , Wr

and Wh are learned parameters, which can be implemented
with fully connected layers. The h0 is set as a zero matrix.

CA-Net
By integrating above algorithms, we propose CA-Net which
can adaptively acquire suitable eye features and estimates
3D gaze directions in a coarse-to-fine way. The architecture
of the proposed CA-Net is shown in Fig. 4. It contains two
subnets, which are Face-Net and Eye-Net.

Face-Net uses face images as input to estimate the basic
gaze directions. We first design a CNN to extract face fea-
ture from face images. After acquiring the face feature, we
deliver the face feature into the head component (detail in

Figure 4: The architecture of CA-Net, which estimates gaze
in coarse-to-fine way. The Face-Net estimates basic gaze
directions from face images. The Eye-Net estimates gaze
residuals from eye images.

Fig. 3). The basic gaze direction gb and state h1 are pro-
duced by the head component.

Eye-Net uses two eye images as inputs. Two CNNs are de-
signed to extract left eye feature fl and right eye feature fr.
Then, a attention component is used to fusion fl and fr (de-
tail in Fig. 2). We input the state h1 rather than face feature
into the attention component to guiding the generation of eye
feature. After acquiring eye feature, we send the eye feature
with h1 into a head component to estimate gaze residuals gr.

The final output of our CA-Net is

g = gb + gr (9)

Given the ground truth g∗, the loss function of CA-Net is
defined as

Loss = α ∗ L(gb, g∗) + β ∗ L(g, g∗), (10)

where L is defined as

L(a, b) = arccos

(
a · b

‖a‖‖b‖
)
. (11)

We empirically set α = 1 and β = 2. On the one hand,
this loss function encourages CA-Net to estimate an accu-
rate basic gaze direction. On the other hand, we assign a
larger weight for g than gb to ensure CA-Net can get a more
accurate gaze direction than the basic gaze direction.

Implementation detail
The inputs of CA-Net are 224*224*3 face images, 36*60
gray-scale left and right eye images.

The CNN in Face-Net consists of thirteen convolutional
blocks. Each block contains one convolutional layer, one
ReLU and one Batch Normalization (Ioffe and Szegedy
2015). The sizes and strides of all convolutional kernels are
set as 3*3 and 1. The numbers of convolutional kernel are
(64, 64, 128, 128, 256, 256, 256, 256, 256, 256, 512, 512,
1024). We also insert one max pool layer after the second,
fourth, seventh and tenth convolutional blocks. The sizes of
max-pooling layers are 2*2 and strides are 2*2. A global av-
erage pooling layer (GAP) is used after the thirteenth block
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Figure 5: Performance in MPIIGaze dataset

and output 1024D feature. Final, the 1024D feature is sent
to a fully connected layer (FC) to output 256D face features.

The CNN for the left eye in Eye-Net consists of ten con-
volutional blocks. The numbers of convolutional kernel are
(64, 64 ,128, 128, 128, 256, 256, 256, 512, 1024). The strides
of the second, fifth, eighth convolutional kernels are set as 1.
The sizes of all convolutional kernels are set as 3*3. Same as
Face-Net, a GAP and FC are final used to output the 256D
left eye feature. Meanwhile, for the right eye, the same CNN
is designed and output 256D right eye feature.

We implement CA-Net by using Pytorch. We train the
whole network in 200 epochs with 32 batch size. The Learn-
ing rate is set as 0.001. We initialize the weights of all layers
with MSRA initialization (He et al. 2015).

Experiment

Dataset

The experiments are conducted in two popular gaze esti-
mation datasets: MPIIGaze (Zhang et al. 2017b) and Eye-
Diap (Mora, Monay, and Odobez 2014).

MPIIGaze is the largest dataset for appearance-based
gaze estimation which provides 3D gaze directions. It is
common used in the evaluation of appearance-based meth-
ods (Zhang et al. 2017a; Ranjan, De Mello, and Kautz 2018;
Liu et al. 2018; Cheng, Lu, and Zhang 2018; Xiong and Kim
2019). MPIIGaze dataset contains 213,659 images which are
captured from 15 subjects. Note that, MPIIGaze provides a
standard evaluation protocol, which selects 3000 images for
each subject to compose the evaluation set. We conduct ex-
periments in the evaluation set rather than the full set.

EyeDiap dataset contains a set of video clips of 16 partic-
ipants. The videos are collected under two visual target ses-
sions, which are screen target and 3D floating ball. We use
the videos collected under screen target sessions and sample
one image per fifteen frames to construct the evaluation set.
Note that, since two subjects lack the videos in the screen
target session, we obtain the images of 14 subjects finally.

Figure 6: Performance in EyeDiap dataset

Data preprocessing
We follow the process proposed in (Zhang et al. 2017b)
to normalize the two datasets. Specifically, the goal of
appearance-based gaze estimation is to estimate gaze direc-
tions from eye appearances. However, since head pose has
six freedoms, eye appearances are various in the real world.
This complicates the gaze estimation task. Therefore, we
eliminate the translation in head pose by rotating the vir-
tual camera and the roll in head pose by wrapping images.
In addition, we crop eye images from normalized face im-
ages with provided landmarks by the dataset. Note that the
landmark can be also automatically detected by various face
detection algorithms (Brandon, Ludwiczuk, and Mahadev
2016). The eye images are histogram-equalized and con-
verted into gray scale to eliminate the influence of illumina-
tion. Note that, the images provided by MPIIGaze has been
normalized, we only apply the normalization into EyeDiap.

Comparison with appearance based methods
We first conduct an experiment to compare the performance
of the proposed method with other appearance-based meth-
ods. The experiment is conducted in both MPIIGaze and
EyeDiap. Note that, for the two datasets, we both apply the
leave-one-person-out strategy to obtain robust results.

We choose four methods as compared methods, which are
iTracker (Krafka et al. 2016), Spatial weights CNN (Zhang
et al. 2017a), Dilated-Net (Chen and Shi 2018) and RT-
Gene (Fischer, Chang, and Demiris 2018). Since the accu-
racy of RT-Gene can be improved by four models ensemble,
we also show the result of the model ensemble and call it
as RT-Gene (4 ensemble) to distinguish from RT-Gene. Note
that, currently, the best reported performance in MPIIGaze
is achieved by RT-Gene (4 ensemble).

Fig. 5 shows the result in MPIIGaze dataset. The perfor-
mances of Spatial weights CNN, Dilated-Net and RT-Gene
are all around 4.8◦. The RT-Gene (4 ensemble) can improve
the performance by a large margin using ensemble scheme,
which is 4.3◦. Our CA-Net achieves the state-of-the-art per-
formance as 4.1◦ in the MPIIGaze dataset. The CA-Net has
0.7◦ improvement compared with RT-Gene and also has
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Table 1: Comparison between appearance-based methods.
Methods MPIIGaze EyeDiap
iTracker 6.2◦ 9.9◦

Spatial Weights CNN 4.9◦ 6.6◦
RT-Gene 4.8◦ 6.4◦

Dilated-Net 4.8◦ 5.9◦
RT-Gene(4 ensemble) 4.3◦ 5.9◦

Faze (Park et al. 2019) 5.2◦ −
MeNet (Xiong and Kim 2019) 4.9◦ −

Our method 4.1◦ 5.3◦

0.2◦ improvement compared with RT-Gene (4 ensemble).
Note that, our CA-Net achieves the state-of-the-art perfor-
mance without ensemble scheme. The accuracy also can be
further improved using ensemble.

we re-implement the Dilated-Net according to the origi-
nal paper and use the author provided source codes for the
rest methods. Fig. 6 shows all the results. iTracker has the
worst performance because of the shallow network. Spatial
weights CNN and RT-Gene have 6.6◦ and 6.4◦ performance
in EyeDiap. However, Dilated-Net significantly outperforms
Spatial weights CNN and RT-Gene. It shows the a perfor-
mance as RT-Gene (4 ensemble) which is 5.9◦. Our CA-Net
achieves the best performance as 5.3◦ in EyeDiap and has
0.6◦ improvement compared with Dilated-Net.

The good performance in two datasets demonstrates the
advantage of the proposed CA-Net. In addition, since some
recent appearance-based methods do not provide source
code and the methods also are difficult to re-implement , we
carefully show the reported accuracy in Table 1 for refer-
ence. In order to get a fair comparison, we only show the
accuracy in MPIIGaze because the MPIIGaze dataset pro-
vides a standard evaluation set.

Ablation study
In order to demonstrate the effectiveness of each component
in the CA-Net, we perform ablation study in MPIIGaze.

Ablation study about components. We first perform ab-
lation study to demonstrate the effect of the attention compo-
nent and gate component.Specifically, we evaluate two extra
methods which are Gate ablation and Attention ablation.

Gate ablation ablates the learned gate from CA-Net, it di-
rectly concatenates face feature with eye feature to estimate
gaze residuals. Note that, we do not modify the attention
component, where the face feature is also inputted into the
attention component to guide the generation of eye feature.

Attention ablation ablates the attention component from
CA-Net, it assigns fixed weights as 0.5 for both left eye and
right eye to generate the fine-grained eye feature.

The result is shown in the second row of Table 2. The per-
formance of Gate ablation shows 0.32◦ decrease compared
with CA-Net. Meanwhile, the performances of Attention ab-
lation have 0.46◦ decrease than CA-Net. It demonstrates the
advantages of attention component and learned gate.

Ablation study about network. The proposed CA-Net
shows the best performance in two datasets. However, it is
still uncertain whether the coarse-to-fine strategy can im-

Table 2: Ablation study.
Methods Performance

Gate ablation 4.46◦
Attention ablation 4.50◦

Face-Net 4.58◦
Eye-Net 5.01◦
Joint-Net 5.00◦

Face-Net (CA) 4.65◦
CA-Net 4.14◦

prove the performance. In order to prove the advantages of
coarse-to-fine, we perform ablation study on the network.

We respectively evaluate each subnet in CA-Net. Totally
three methods are evaluated. Face-Net. We directly use the
Face-Net to estimate gaze. Eye-Net. We directly use the Eye-
Net to estimate gaze from two eye images. Note that, the at-
tention component is not used in this method. We generate
eye feature by directly concatenating the left eye feature and
right eye feature. Joint-Net.We use the same architecture as
CA-Net to extract face feature, left eye feature and right eye
feature. The gaze directions are estimated by the joint fea-
ture which is generated by concatenating the three features.
We also provide the performance of basic gaze directions in
CA-Net and call it as Face-Net (CA).

The result is shown in Table 2. Face-Net shows the
best performance between compared methods, which is
4.58◦. Face-Net (CA) achieves 4.65◦ performance which has
0.7◦ decrease compared with Face-Net. However, with the
coarse-to-fine strategy, CA-Net achieves 0.51◦ improvement
than Face-Net (CA) and significantly outperforms other
methods with 4.14◦ performance. This demonstrates the ad-
vantages of the proposed coarse-to-fine strategy.

Moreover, although the backbone of Joint-Net is the same
as CA-Net, CA-Net achieves 0.86◦ improvement than Joint-
Net. It is benefited from the proposed coarse-to-fine strategy.

Additional analysis
In order to show the advantages of the algorithms proposed
in CA-Net, We perform some additional analysis in MPI-
IGaze and summarize the results into Table 3. The perfor-
mance of each method is shown in the column of ”Refine”.
In addition, we also show the performance of basic gaze di-
rections in Table 3 and list the results in the column of ”Ba-
sic”. We call it as basic performance in the rest parts.

Coarse-to-fine v.s. Fine-to-coarse. The core of our pa-
per is the coarse-to-fine strategy. In order to further validate
the correctness of the coarse-to-fine strategy, we evaluate
the performance of Fine-to-coarse . As for Fine-to-coarse,
it means to estimate a basic gaze direction from eye images
and refine it with residual predicted from face image.

As shown in Table 3, it is obvious that our CA-
Net, i.e. coarse-to-fine strategy, achieves better performance
than Fine-to-coarse. With only changing the strategy, Fine-
to-coarse has 0.49◦ decrease compared with CA-Net. It
demonstrates the advantages of our coarse-to-fine strategy.
In addition, an interesting observation is that the perfor-
mance of Fine-to-coarse is similar with the performance of
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Table 3: Additional analysis about different algorithms.
Methods Basic Refined

Fine-to-coarse 5.14◦ 5.00◦
One gram 4.42◦ 4.43◦

Face attention 4.47◦ 4.30◦
Eye attention 4.43◦ 4.34◦

CA-Net 4.65◦ 4.14◦

Eye-Net (show in Table 2) while our CA-Net can improve
the performance by a large margin compared with Face-Net
(show in Table 2). It proves the correctness of the proposed
coarse-to-fine strategy.

bi-gram v.s. One gram. In order to estimate the gaze di-
rection in a coarse-to-fine way, one key idea is that gaze
residuals are associated with basic gaze directions. Based on
the idea, we generalize the coarse-to-fine way as a bi-gram
model. However, it is uncertain whether the bi-gram model
is useful. In this part, we provide a comparison between bi-
gram model and one gram model to show the advantages of
bi-gram model. In particular, we simply use a zero matrix
to replace the delivered face feature, where the gaze resid-
uals are only estimated from eye feature. Note that, we do
not modify the attention component. The fine-grained eye
feature is also generated with the guiding of face feature.

As shown in Table 3, One gram shows a better basic per-
formance than CA-Net. However, without the information
about basic gaze directions, the fine-grained eye feature can
not further refine the basic gaze direction. Final, the One
gram has 0.29◦ decrease than CA-Net. The result demon-
strates the usefulness of bi-gram model.

Attention component v.s. other weight generations In
order to acquire suitable fine-grained feature to estimate
gaze residuals, we propose an attention component to adap-
tively assign weights for left and right eyes. Specifically, the
attention component learns the eye weights from face feature
and corresponding eye feature. In order to show the advan-
tages of the proposed attention component, in this part, we
conduct comparison by replacing the weight component.

There are two weight generations chosen for comparing.
Face attention generates the weights of two eyes from face
feature. Eye attention generates the weights of two eyes from
corresponding eye features. The results are shown in Table 3.
A suitable baseline is Attention ablation (show in Table 2),
which achieve 4.5◦ performance. As shown in Table 3, Face
attention and Eye attention show the better performance
compared with Abalte Attention. It demonstrates that the
face feature and corresponding eye feature both are useful
for the coarse-to-fine gaze estimation. Meanwhile, they both
show worse performance than CA-Net. This demonstrates
the advantages of the proposed attention component.

Visual results. We also show some visual results in Fig. 7.
It is obvious that our method can perform well in different
cases. In addition, as shown in the sixth and seventh sub-
figures in Fig. 7, our CA-Net can also produce accurate gaze
directions when the gaze direction deviates from the face di-
rection. This demonstrates that our method not only focuses
on face images but also is sensitive to the eye region.

Figure 7: Some visual results of estimated 3D gaze.

Conclusion
In this paper, we propose a coarse-to-fine strategy to esti-
mate gaze directions. The process of the coarse-to-fine strat-
egy is to estimate a basic gaze direction from face image
and refine it with residual predicted from eye images. A
key point of the coarse-to-fine strategy is the estimation of
gaze residuals. In order to accurately estimate gaze residu-
als, we propose an attention component to adaptively assign
weights for eye images and to obtain suitable eye feature. In
addition, we also generalize the coarse-to-fine process as a
bi-gram model to bridge the basic gaze directions and gaze
residuals. Based on above algorithms, we propose CA-Net,
which can adaptively acquire suitable fine-grained feature
and estimates 3D gaze directions in a coarse-to-fine way.
Experiments show the CA-Net achieves state-of-the-art per-
formance in MPIIGaze and EyeDiap.
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