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Abstract

Adaptive Informative Path Planning (AIPP) problems model
an agent tasked with obtaining information subject to resource
constraints in unknown, partially observable environments. Ex-
isting work on AIPP has focused on representing observations
about the world as a result of agent movement. We formulate
the more general setting where the agent may choose between
different sensors at the cost of some energy, in addition to
traversing the environment to gather information. We call this
problem AIPPMS (MS for Multimodal Sensing). AIPPMS
requires reasoning jointly about the effects of sensing and
movement in terms of both energy expended and information
gained. We frame AIPPMS as a Partially Observable Markov
Decision Process (POMDP) and solve it with online planning.
Our approach is based on the Partially Observable Monte Carlo
Planning framework with modifications to ensure constraint
feasibility and a heuristic rollout policy tailored for AIPPMS.
We evaluate our method on two domains: a simulated search-
and-rescue scenario and a challenging extension to the classic
RockSample problem. We find that our approach outperforms
a classic AIPP algorithm that is modified for AIPPMS, as well
as online planning using a random rollout policy.

1 Introduction
For various robotic applications such as search-and-rescue,
terrain exploration, and environmental monitoring, an au-
tonomous agent must gather information in uncertain envi-
ronments with partial observability. The agent is equipped
with multiple sensing modalities with which it receives noisy
observations of the world. It also has limited energy, which
is expended both by using the sensors and by movement. We
call this the problem of Adaptive Informative Path Planning
with Multimodal Sensing (AIPPMS). In such settings, there is
a trade-off between exploring the environment and exploiting
the current belief about the environment to visit informative
locations. Our objective is to obtain an adaptive strategy that
guides the agent from the start to the goal location while bal-
ancing this exploration-exploitation tradeoff and respecting
the energy budget constraint.

AIPPMS can model a variety of real-world problems. For
instance, in a search-and-rescue mission, one or more robots
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Figure 1: The AIPPMS problem requires an agent to plan
paths over a graph of locations in an environment, while
maximizing the information gathered by visiting locations
subject to an energy constraint (the edge thickness represents
the energy cost of traversal). The states of locations (binary
in this example) are observed through noisy sensor readings.
The agent is equipped with two kinds of sensors with different
fidelity and range parameters. The shade of the node indicates
the current belief of the agent about its state.

must traverse unstructured terrain, detect the presence of sur-
vivors with noisy sensors and then decide which locations
to visit in order to save as many survivors as possible within
their onboard battery life (Singh, Krause, and Kaiser 2009).
Other domains include monitoring sensitive ecosystems (Das
et al. 2015) and deploying remote devices to cover an un-
known landscape (Binney and Sukhatme 2012).

The informative path planning (IPP) problem is NP hard
in the non-adaptive setting (Meliou et al. 2007), where the
agent plans and executes a path without accounting for noisy
observations. The adaptive setting adds another dimension
of difficulty by requiring not just a plan but a policy that
reacts to the observations the agent receives. We generalize
the problem even further by explicitly introducing multiple
sensing modalities and considering the effect of both sensing
and moving on the energy budget.

Prior work has focused on non-adaptive IPP with vari-
ous approximation algorithms (Singh et al. 2007). The adap-
tive setting has been studied with utility function assump-
tions such as submodularity and locality (Singh, Krause, and
Kaiser 2009), hypothesis identification in metric spaces (Lim,
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Hsu, and Lee 2016), and a data distribution over possible
environments (Choudhury et al. 2017). To the best of our
knowledge, our multimodal sensing formulation has not been
considered in previous work on adaptive IPP. Unlike our
problem, in previous formulations the only decision is the
location to visit next, observations are received on visiting
locations, and only movement depletes energy.

Our key idea is to reason jointly about multimodal sens-
ing and movement by formulating the problem as a Partially
Observable Markov Decision Process (POMDP) and using
an online solver to accommodate the state and observation
spaces, which are exponentially large (in the number of lo-
cations). We use constrained search in the online solver to
ensure that the policy always satisfies the goal and energy con-
straints. For a tailored rollout policy to guide the online sim-
ulations, we use an adaptive extension to a near-optimal algo-
rithm for the fully observable variant of our problem (Zhang
and Vorobeychik 2016). Through this online POMDP frame-
work, we obtain an adaptive IPP algorithm that judiciously
balances exploration with multimodal sensing and exploita-
tion with movement. Our approach consistently outperforms
a nonmyopic adaptive IPP algorithm (Singh, Krause, and
Kaiser 2009) and our ablation study shows that the tailored
rollout policy is key to this improvement.

2 Background
This section provides relevant background on the Informa-
tive Path Planning problem, Partially Observable Markov
Decision Processes (POMDPs), and online POMDP solvers.

2.1 Informative Path Planning
In informative path planning (IPP) we must choose the best
subset of locations to visit (thereby gathering information)
subject to constraints on the path, such as energy expended.
The IPP problem is relevant to various mobile robotics ap-
plications such as mapping with terrestrial and aerial vehi-
cles (Heng et al. 2015; Charrow et al. 2015) and adaptive
sampling for underwater environments (Binney, Krause, and
Sukhatme 2010).

The IPP problem is NP-hard, as is path planning in gen-
eral (Canny 1987). IPP can be framed as an orienteering
problem (Golden, Levy, and Vohra 1987), which is a gener-
alization of the known NP-hard Traveling Salesman Prob-
lem with an additional constraint on how far the agent can
travel. A number of efficient heuristics and approximation
techniques have been explored. Gaussian Processes were
used to model the environment and the mutual information
between locations (Singh et al. 2009), and minimum-cost
tours have been computed on efficiently chosen subsets of
nodes (Hollinger and Sukhatme 2013).

The adaptive IPP (AIPP) problem is even more chal-
lenging because we seek a reactive policy that chooses
the next location to visit based on the observations so
far. Initial work on AIPP used information theoretic ar-
guments with myopic heuristics (Stachniss, Grisetti, and
Burgard 2005). A non-myopic approach for AIPP (Singh,
Krause, and Kaiser 2009) provides performance guarantees
when the utility function is monotone submodular and loca-

tions far apart are weakly independent. When the environ-
ment task is to narrow down a hypothesis set of possible
worlds, an efficient method has been developed with Group
Steiner trees (Lim, Hsu, and Lee 2016). Finally, when a
prior over informative locations is available, imitation of
an oracle achieves good performance while also provid-
ing useful theoretical guarantees (Choudhury et al. 2017;
2018).

2.2 POMDPs
POMDPs provide a principled mathematical framework for
sequential decision-making under uncertainty (Kochender-
fer 2015). A POMDP is typically represented by the tuple
pS,A,O, T, Z,R, γq, where S is the state space, A is the
action space, and O is the observation space. The transition
function T maps states and actions to a distribution over
next states, i.e., T ps, a, s1q “ P ps1 | s, aq. When an agent
executes an action in a state, it receives a noisy observa-
tion of the state modeled by the observation function Z, i.e.
Zps, a, oq “ P po | s, aq.

The reward function R : S ˆ A Ñ R specifies the ex-
pected one-step reward received by the agent Rps, aq upon
taking action a in state s. The discount factor γ P r0, 1q is
provided for infinite-horizon problems to ensure that the to-
tal expected reward over a trajectory Erř8

t“0 γ
tRpst, atqs is

bounded when the rewards are bounded. In a POMDP, states
are not directly observable. We typically work with the belief
space B, which is a space of probability distributions over S .
The history of actions and observations can be entirely cap-
tured in the current belief state. A POMDP policy π : B Ñ A
maps the belief state to an action to take.

The objective of solving a POMDP is to obtain an op-
timal policy, i.e. one that maximizes the expected cumu-
lative reward. Exact solution methods for both finite hori-
zon (Smallwood and Sondik 1973) and discounted infinite
horizon (Sondik 1978) cases are well-established but in-
tractable in general (Papadimitriou and Tsitsiklis 1987). Con-
sequently, recent efforts have focused on developing approxi-
mate solutions (Hauskrecht 2000).

2.3 Online POMDP Planning
Online approaches to POMDPs choose actions at runtime
by reasoning over a limited future horizon of belief states
reachable from the current belief state. A survey of online
methods (Ross et al. 2008) outlines popular approaches, such
as branch-and-bound and forward search.

Two recent state-of-the-art methods for online planning
are POMCP (Silver and Veness 2010) and DESPOT (Ye et
al. 2017). The first of these is based on Monte Carlo Tree
Search with Upper Confidence Bounds for exploratory ac-
tions, while the second uses a sparse approximation of the be-
lief tree rooted at the current belief state. We use the POMCP
framework for AIPPMS because it is simpler. Our modifica-
tions can also be used with variations of POMCP, such as
POMCPOW (Sunberg and Kochenderfer 2018) for continu-
ous action spaces. A very recent online approach attempts to
address the exploration-exploitation trade-off in informative
planning by Pareto-optimal Monte Carlo Tree Search (Chen
and Liu 2019) but does not allow for multimodal sensing.
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3 Problem Definition
The problem that we consider is Adaptive Informative Path
Planning with Multimodal Sensing (AIPPMS). We will use
notation consistent with previous established work on Adap-
tive IPP (Singh, Krause, and Kaiser 2009) and its relation to
POMDPs (Choudhury et al. 2017).

We have a location graph G “ pV, Eq, where the set of
nodes V corresponds to all discrete locations the agent can
visit and sense. An edge e “ pu, vq P E has weight Cpu, vq
equal to the cost of traveling between locations u and v. The
robot starts at vs and needs to reach a given goal node vg.
Each node v has some true state represented by a random
variable Xv. The set of all possible states of a node is X
and the random vector XV “ pX1, . . . ,Xnq defines the unob-
served true state of the environment. For instance, in the dis-
aster rescue scenario, XV represents the density of survivors
at the various pickup locations. The dependencies between
location states is modeled by joint distribution P pXVq.

The agent has a suite of sensors S, with each sensor σ
having some usage cost Cpσq. Let y P Y be an observation
received by the robot. Let H : V ˆ X |V| ˆ S Ñ Y be the
observation function. When the robot is at node v in a en-
vironment of state XV and uses sensor σ, the measurement
y received by the robot is y “ H pv,XV , σq. The sensor ob-
servation model P pY “ y | V “ v,S “ σ,XVq is stochastic
but the form is known. The sensors typically have varying
combinations of performance (fidelity; range) and energy
consumption (details in Section 5).

A valid action at the current node vt is to either go to a
different node vt`1 or to use some sensor σ. The movement
between locations (and corresponding energy expended) is
fully deterministic. The cost of an action at taken at current
location vt is therefore either some travel cost to a different
node or the energy cost of sensing at that node, i.e.,

Cpvt, atq “
"
Cpvt, vt`1q if at “ vt`1, vt`1 ‰ vt
Cpσq if at “ σ, vt`1 “ vt

. (1)

Let F : 2V ˆ X |V| Ñ Rě0 be a utility function mapping
a subset of nodes which have been visited and a world state
to some utility which represents the information in the envi-
ronment. For a collection of visited nodes ξ and a world map
encoded in XV , F pξ,XVq assigns a utility. Note that F is a
set function. After a node has been visited, visiting it again
adds no further utility, but sensing at a visited node may be
used as an information gathering action to refine the belief
of the true state at other nodes, based on the observation
function updates. Given a node v P V , a set of nodes V Ď V
and world XV , the discrete derivative of the utility function
F is ΔF pv | V,XVq “ F pV Y tvu,XVq ´ F pV,XVq.

The objective of the general Adaptive IPP problem is to
maximize the expected utility of visited nodes, starting at vs
and ending at vg, subject to some cost budget B. Note that
the utility function F which is relevant to the objective, is
entirely distinct from the cost function C which is relevant
to the constraint. The location selection is done by a policy
π which, at each timestep t, maps the observations received
tyiut´1

i“1 and locations visited tviut´1
i“1 to the node to visit vt.

In our AIPPMS problem, the policy is subject to the same

Figure 2: The AIPPMS formulation allows the agent to rea-
son about modulating or completely turning off sensing to
conserve energy when it has sufficient information. The up-
per panel shows how the agent (in a traditional AIPP setting)
continues to sense despite sufficient information. The lower
panel shows the agent directly moving to the next location
without potentially expensive sensing.

energy constraint, but it can choose to perform a sensing
action at timestep t instead of going to another location,
while expending some energy cost for sensing. In resource-
constrained problems where only a few locations can be
visited, sensing can be an important means of determining
which locations are likely to have greater utility. Note that
sensing itself has no intrinsic utility in terms of F .

4 Approach
Our problem inherits all the complexities of Adaptive IPP but
adds the additional complexity of deciding between sensors
with varying energy costs and observation models. Because of
its inherently probabilistic nature, this problem can be framed
quite naturally as a POMDP. Despite this applicability, most
relevant approaches to AIPP (Singh, Krause, and Kaiser 2009;
Lim, Hsu, and Lee 2016; Choudhury et al. 2017) do not ex-
plicitly solve AIPP as a POMDP. While each approach states
their own reasons for this, an implicit reason is the gener-
ality of POMDPs, which does not allow the exploiting of
AIPP-specific assumptions. Previous approaches, for exam-
ple, separately address the utility of an action, which affects
the objective, and the feasibility of an action, which affects
the energy constraint.

In the more general AIPPMS, however, decomposability
is greatly reduced. The agent must choose between sensing
and moving at each timestep, and multiple sensing modali-
ties have different trade-offs between energy and expected
information gain. A particularly evocative example is shown
in Figure 2, where turning off sensing limits energy usage.
We choose to explicitly formulate and solve AIPPMS as a
POMDP in order to jointly reason about the effect of move-
ment and multimodal sensing actions. We describe this for-

59



mulation in Section 4.1 and then describe in Section 4.2 how
we use a online POMDP solver tailored to AIPPMS.

4.1 POMDP Formulation
We now formalize AIPPMS as a POMDP using the nota-
tion of Section 3. The AIPPMS is a discrete-time, finite-
horizon, constrained POMDP. The state at time t is defined
as st “ pvt, ξt,Δet,XVq where vt is the agent’s current node
location, ξt is the set of nodes that have been visited already,
Δet “ B ´ řt´1

i“1 Cpsi, aiq is the remainder of the cost bud-
get. These three components are all fully observable. The
world state XV is defined by the specific problem but is not
observable. The belief is over the most likely state of the
world. In the most general sense, the belief space B Ă X |V|,
but restrictive assumptions on the joint distribution can be
made for tractability; the modeling of the joint distribution
between locations is agnostic to the POMDP solver.

The full action space is the union of all locations and sen-
sors, A “ V Y S, but the set of valid actions for a state
depends on the neighbours of the current node in the location
graph, Apstq “ Nbrspvtq Y S. The observation space is
obtained from the AIPPMS specification, O “ Y . An exam-
ple observation is just the states of some subset of locations,
ot “ tV̂,XV̂u where V̂ Ď V . For sensing actions, the obser-
vations are noisy and depend on the domain-specific sensor
observation model. For movement actions, the observation is
deterministic and is just the true state of the visited location.

The transition function T is fully deterministic. If at is
a movement action to a neighboring node, the new state is
st`1 “ pvt`1, ξt`1,Δet`1,XVq where vt`1 “ at, ξt`1 “
ξt Y vt`1 and Δet`1 “ Δet ´ C pst, at`1q. If at is a sens-
ing action, the only difference between st and st`1 is for
Δet`1 “ Δet ´C pst, at`1q. The belief state over the world
is updated with the observation from the sensor as follows:

bt`1 “ τ pbt, ot, σq
ùñ bt`1

`X 1
V

˘ 9 P
`
ot | X 1

V , σ, bt
˘
P

`X 1
V | σ, bt

˘
9 Z

`X 1
V , σ, ot

˘ ÿ
XV

T
`
σ,XV ,X 1

V
˘
P pXV | btq

ùñ bt`1

`X 1
V

˘ 9 Z
`X 1

V , σ, ot
˘
bt

`X 1
V

˘
(2)

which is standard recursive Bayesian estimation of the state
of the world. Since the world state is assumed to be fixed,
this update can be done more efficiently than in the general
case where the state changes. However, the efficiency of this
update depends on how the joint distribution over the node
states P pXVq is maintained; in general, MAP inference with
belief networks is NP-hard (Shimony 1994).

The reward function for the POMDP is defined in terms
of the AIPPMS utility function F as follows:

Rpst, at, st`1q “
"
0 if at “ σ

ΔF pvt`1 | ξt,XVq if at “ vt`1
(3)

Therefore, an agent receives reward when it visits a node and
observes its true underlying state. This reward is different
from the action’s cost, which is obtained from (1). The prob-
lem terminates when the agent has too little energy left to

take another action, i.e. Δet ă mina Cpst, aq. If the agent is
not at the goal vg when this happens, it receives a reward of
´8. If it is at the goal, the cumulative reward is the utility of
all the visited nodes. The deterministic nature of the energy
cost function allows us to define a state-dependent feasible
set of actions that do not violate the energy constraint. We
will discuss subsequently how we incorporate this feasible
action set in our specific online planning framework.

4.2 Online Planning for AIPPMS
We have described in Section 2.2 the computational chal-
lenges involved in solving POMDPs, and the motivation for
online planning in large domains with substructure in the
reachability of states. For AIPPMS, the connectivity of the
graph G makes only certain states reachable from other states
(the possible values of vt`1, ξt`1, and Δet`1 given their
values at t are restricted by the graph). Furthermore, both
state and observation spaces are exponential in the number
of nodes, making an online planning approach preferable.

We use Partially Observable Monte Carlo Planning or
POMCP (Silver and Veness 2010) as the underlying online
solver. We tailor POMCP to solve AIPPMS problems with
two specifications, that we now describe. First, we prune all
constraint-violating actions during the lookahead search from
the current state. Second, we develop a rollout policy that is
quite suitable for a relevant class of utility functions.

Action Pruning The constraint for AIPPMS is to reach the
goal vertex vg within the cost budget B. Due to the determin-
istic behavior of the constraint cost, we can exactly specify a
feasibility condition on any state of the POMDP. For the lo-
cation graph G, let the shortest path between any two vertices
u and v on the graph be denoted as CGpu, vq. Then, a state
st “ pvt, ξt,Δet,XVq is feasible if Δet ą CGpu, vq, i.e. the
agent has sufficient energy in that state to go to the goal.

Denote the set of all feasible states as S̄. Then, for any
feasible state s P S̄, the set of feasible actions comprises
those that can only lead to another feasible state, i.e.

Āpsq “ ta P A | T ps, a, s1q ą 0 ñ s1 P S̄u (4)

and can be computed efficiently for any state by caching
and looking up the all-pairs shortest paths matrix for G us-
ing Floyd-Warshall’s algorithm (Floyd 1962). An illustration
with a particular scenario is shown in Figure 3. The action
pruning enables more exhaustive searches for the same plan-
ning time.

GCB Rollout Policy For POMCP, the rollout policy is
used in the second stage of simulations to estimate the value
of a leaf node in the search tree. In principle, the rollout policy
could be an uninformed one that chooses actions at random,
but in practice, the choice of rollout can greatly impact the
performance of POMCP on large problems.

We use a rollout policy based on the Generalized Cost-
Benefit or GCB Algorithm (Zhang and Vorobeychik 2016),
which is designed for the fully observable IPP problem (when
all utilities of visiting locations are known). The performance
guarantees of GCB only hold for problems where the utility
function is submodular, i.e. obeys the property of diminishing
returns (Nemhauser, Wolsey, and Fisher 1978). This is not an
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Figure 3: Constrained action selection in our modified
POMCP. (a) An example scenario with arrows represent-
ing the direction of the shortest cost path. (b) Action pruning
resulting from the energy budget – dotted line actions are
never taken, while rollouts continue down bold paths.

issue for us because submodular functions are quite preva-
lent in real-world settings (Krause and Golovin 2014) and
particularly in informative path planning (Meliou et al. 2007;
Binney, Krause, and Sukhatme 2010). The key idea of GCB
is to greedily choose the next action or option that maximizes
the ratio of marginal utility or benefit to cost expended. For
our partially observable stochastic optimization case, we use
an adaptive greedy strategy that computes expected marginal
utility (Golovin and Krause 2011).

The adaptive greedy rollout policy is outlined in the AC-
TION procedure in Algorithm 1. As before, we only consider
the set of feasible actions for the state. For movement actions
(a P V), the expected marginal utility is computed based on
the belief state bpXVq which is equivalently encoded in the
history h. Sensing actions (a P S) have no utility with respect
to the AIPPMS objective F , but we incentivize them in the
rollout with an information-theoretic reward,

IGpa|bq “
ÿ
o

P po | b, aq
”
max

s
τpb, o, aqpsq ´ max

s
bpsq

ı

«
# samplesÿ

i

”
max

s
τpb, oi, aqpsq ´ max

s
bpsq

ı

(5)

Sensing actions are thus selected to maximize in expectation
the mode of the belief state. This technique combines an

Algorithm 1 POMCP with GCB Rollout for AIPP-MS

1: procedure SIMULATE(s, u, depth)
2: if γdepth ă ε
3: return 0
4: if h R T
5: for all a P Āpsq
6: T phaq Ð pNinitphaq, Vinitphaq,∅q
7: return ROLLOUTps, h, depthq Ź This uses

ACTION internally

8: a Ð argmax
b PĀpsq

V phbq ` c
b

log Nphq
Nphbq

9: ps1, o, rq „ Gsimps, aq
10: R Ð r ` γ ¨ SIMULATE ps1, hao, depth ` 1q
11: Bphq Ð Bphq Y tsu
12: Nphq Ð Nphq ` 1
13: Nphaq Ð Nphaq ` 1

14: V phaq Ð V phaq ` R´V phaq
Nphaq

15: return R

16: procedure ACTION(πrollout,s,h) Ź GCB Rollout
17: for all a P Āpsq
18: if a P V Ź a is for movement
19: Upaq Ð EbpXVq rΔF pa | ξ,XVqs {Cps, aq
20: else Ź a is for sensing
21: Upaq Ð IG pa | bpXVqq {Cpaq
22: return a „ SoftMaxpUq

expected information gain approach (Stachniss, Grisetti, and
Burgard 2005) with the insight that distribution mode can
be used as a lightweight approximation of negative informa-
tion entropy (Dressel and Kochenderfer 2017), as collapsed
distributions necessarily have more concentration of density.
Finally, having computed the expected cost-benefit ratio for
each of the feasible actions from the state, we sample actions
from a softmax distribution over these values.

5 Experiments
We run all simulations in the Julia programming language
for its fast numerical computations (Bezanson et al. 2017).
We used the POMDPs.jl framework for specifying our
POMDP formulation and for the base implementation of
POMCP (Egorov et al. 2017).

5.1 Baselines
Since we are introducing AIPPMS in this work, there is no
existing baseline we could compare against directly. We there-
fore extend the NAIVE or Nonmyopic Adaptive InformatiVE
path planning algorithm (Singh, Krause, and Kaiser 2009),
which is an elegant and theoretically motivated approach for
AIPP, to our AIPPMS problem. The NAIVE algorithm con-
sists broadly of iterative Bayesian updating (the same as for
the modified POMCP) and replanning using a nonadaptive
method called pSPIEL-Orienteering or PSPIELOR. We omit
an elaboration of NAIVE here and refer readers to its paper.
NAIVE is the acronym of the algorithm and is not meant to
indicate that the baseline is actually naive.
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Figure 4: An illustration of the utility in the search-and-rescue
problem scenario used for our experiments. Each node in the
graph has a state corresponding to one of high, medium or
low accessibility to survivors. The utility of visiting a node is
the additional area covered by the circle, given what has been
visited already. The utility function in this setting is therefore
a monotone submodular set function.

In Algorithm 1 of the reference work for NAIVE, at each
iteration, the non-adaptive PSPIELOR method plans a path
Pt on the graph G from the current location to the goal within
the remaining budget. There is no sensing because the AIPP
problem has no notion of multimodal sensors. Since AIPPMS
has the same state space as AIPP, we can compute Pt using
PSPIELOR at each iteration in modified NAIVE as well. We
compute the expected utility of Pt as follows

UpPtq “
ÿ
vPPt

EbtpXVqrΔF pv | ξt,XVqs (6)

which is an efficient approximation of the true expected utility
of the path given the current belief state btpXVq and set of
visited nodes ξt. In addition, we compute the best expected
information gain among the feasible sensing actions,

US̊ pbtq “ max
σPĀpstq

IG pσ | btpXVqq (7)

where σt̊ is the corresponding sensor. Finally, we choose the
next action to take by comparing two scaled utilities,

at “
"Ptr2s if λ ¨ UpPtq ą p1 ´ λq ¨ US̊ pbtq
σt̊ otherwise

(8)

where λ P r0, 1s is a tuning parameter that prioritizes explo-
ration through sensing when close to 1 and exploitation by
moving when close to 0. For an ablation study of the benefit
of the GCB rollout, we will also compare against POMCP
using a random policy to choose actions during rollout.

5.2 Domain 1: Search-and-Rescue
Our first experimental domain is based on the search-and-
rescue scenario that was presented with the original NAIVE
algorithm. In the aftermath of a disaster, survivors are scat-
tered uniformly across some terrain. The agent is an aerial
vehicle with limited energy that can visit a number of loca-
tions and rescue however many people are stranded there

Table 1: Both POMCP variants significantly outperform
NAIVE on three different utility distributions in the envi-
ronment. The GCB Rollout is consistently better than ran-
dom, though the relative gap is not very large. Rewards were
averaged over 30 different trials for each setting.

Hi, Med, Lo NAIVE POMCP POMCP
Distribution Random GCB

r1{6, 1{6, 2{3s 295.7 480.0 555.3
r1{3, 1{3, 1{3s 628.3 993.0 1020.0
r2{3, 1{6, 1{6s 1104.7 1341.3 1509.0

(depending on the accessibility of a particular location to the
survivors).

The environment is represented as a unit grid, on which
a location graph is generated by sampling points as nodes
and joining two nodes with an edge if their mutual distance
is less than some threshold ρ. The cost of traversing an edge
is the scaled Euclidean distance between the two endpoint
nodes. Each node or location is independently assigned a true
state that dictates the utility of visiting it. The independence
assumption is not one made by our POMCP-based approach,
but allows a fairer comparison with modified NAIVE, which
assumes locality (implied by independence).

For our search-and-rescue setting, there are three types
of true states corresponding to low, medium, and high ac-
cessibility of the locations to survivors, represented by the
area covered by the location (see Figure 4). The marginal
utility of a location in a particular state, given the locations
visited already, is calculated by discretizing the grid and
computing the union of tiles covered by the location in that
state. The key difference in our environment compared to
that for NAIVE is the existence of multiple sensor models,
which offer noisy observations of the true states at various
locations. The sensors are modeled by a maximum fidelity
parameter A, fidelity decay rate r, and energy cost C. Each
usage of sensor σ incurs cost Cpσq and yields a correct ob-
servation of the underlying state of a node with probability
P poi “ si | si, σq “ Aσ ¨rdσ where d is the distance between
the agent and the node. Other incorrect observations have
uniform likelihood given an incorrect sensor reading. Thus,
P poi ‰ si | siq “ p1 ´ Aσ ¨ rdσq{2.

Results We compared our modified POMCP (with GCB
Rollout) to POMCP with Random Rollout and modified
NAIVE on problems randomly generated according to the
search-and-rescue scenario described above. For each prob-
lem, the location graph G had 30 nodes and the radius thresh-
old ρ for edges was sampled from Up0.25, 0.4q. We ensured
via rejection sampling that each generated graph had exactly
one connected component. We randomly sampled a node
from G and set it to be both the start vs and goal vg. There-
fore, the agent has to return to its starting point after gathering
information. For each problem, we set the budget to approx-
imately two-thirds of the Traveling Salesman cost on the
graph from the start node, thereby ensuring that not all nodes
could be visited and incentivizing at least some sensing.

We considered three different sets of problems, based on
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the distribution of accessibility types (high, medium, low)
that node states are independently sampled from. For each
setting, we generated 30 different problems and ran all ap-
proaches on them. Table 1 depicts the average utility or
reward obtained by the approaches. All algorithms are guar-
anteed to be feasible by construction, so we only focus on
the utility gathered. The magnitude of the average utility is a
function of the grid discretization; the relative performance
is truly of interest.

Over the problem sets, our modified POMCP with GCB
Rollout consistently accrues the most utility, significantly out-
performing modified NAIVE and also POMCP with Random
Rollout, albeit to a lesser extent (the relative performance
gap between GCB and Random Rollout increases on a more
challenging problem in Section 5.3). As expected, with an
increase in the proportion of the higher utility states, the
absolute utility accrued by all approaches increases. More no-
tably, the relative performance gap is highest for the first set,
where high utility states are least prevalent. This suggests that
the modified POMCP balances sensing and movement more
effectively than modified NAIVE when identifying which
states are of likely higher or lower utility. The average it-
eration of NAIVE requires 1 s of computation and that of
POMCP requires 6 s. Both are reasonable for our purposes,
and increasing the computation time for NAIVE through the
relevant parameters did not improve performance.

Fundamental differences between a POMCP approach and
NAIVE explain the performance gap on AIPPMS, over and
above implementation quality. Each candidate path computed
by modified NAIVE ignores sensing actions. Subsequently,
NAIVE computes the expected information gain of possi-
ble sensing actions from the current belief state and then
compares that with the candidate path to decide whether to
move or sense. However, the lookahead search in POMCP
can simulate the effects of movement followed by sensing,
and sensing followed by movement. Therefore, it can iden-
tify some good future sequences of potentially interleaved
sensing and movement actions, and then decide which is the
next best action to take.

5.3 Domain 2: Information Search RockSample
To further motivate the AIPPMS formulation and evaluate our
approach, we also adapt the Information Search RockSample
domain or ISRS (He, Brunskill, and Roy 2011). It is a vari-
ant of the classical RockSample problem for POMDPs that
is both far more challenging and more suitable for compar-
ing informative path planning algorithms. Briefly, the ISRS
problem models a rover exploring an unknown terrain, repre-
sented as an n ˆ n grid. Scattered over the grid are k rocks,
with at most one rock per grid cell. Only some of the rocks
are ‘good’, i.e. have scientific value and yield a positive re-
ward. Once a rock is visited it becomes ‘bad’ and provides
no further reward when sampled. The positions of the rover
and rocks are known apriori, but only visiting a rock reveals
its state. See Figure 5 for an illustration.

There is also a set of b beacons (one per cell, no overlap
with rock locations) in the grid. The rover must visit the
beacons in order to take sensing actions and get observations
about the state of the nearby rocks, where the fidelity of

Figure 5: An illustration of the Information Search RockSam-
ple problem, our second evaluation domain. The agent uses
beacons to sense the states of rocks, and gathers utility by
visiting good rocks.

the observation reduces with increasing distance between
the beacon and the corresponding rock. As before, there are
multiple sensor modalities with complementary trade-offs
of usage energy and fidelity parameters. Moving between
adjacent cells also expends energy cost. The rover must return
to the origin cell without exceeding its energy budget.

Results For ISRS, we focus on the interplay between three
problem parameters: the number of rocks k, the number of
beacons b, and the relative proportion of good rocks, through
the independent Bernoulli probability p of a rock being good.
Accordingly, we vary these three parameters for our experi-
ments while keeping the others fixed. We set the size of the
grid to 10 ˆ 10, the energy budget to be 100 units, where the
energy cost of each movement is 1 unit and that of using the
two sensors are 0.5 and 2 units respectively, and the reward
for sampling a good rock to be 10 units.

Table 2 compares the average reward for POMCP with
the random rollout strategy to that for POMCP with our GCB
rollout strategy, over a range of tk, b, pu settings, averaged
over 30 trials for each setting. NAIVE accrued little to no
reward for most settings and trials, so we omitted it in the
interest of space. This behavior of modified NAIVE is not too
surprising. For the ISRS domain with its beacons, explicitly
reasoning about the trade-off between movement and multi-
modal sensing is particularly important for good performance.
Therefore, the ISRS domain provides strong empirical justi-
fication for extending the AIPP formulation to incorporate
multimodal sensing, in addition to our earlier justification
from first principles.

We highlight three key observations from the readings
in Table 2. First and foremost, GCB consistently outperforms
Random across all settings, far more so than it did for the
search-and-rescue domain. This finding further underscores
how ISRS is significantly more challenging than search-and-
rescue. Second, the relative performance gap of GCB to
Random increases both with more good rocks (higher k)
and with a higher proportion of good rocks (higher p), e.g.
compare the relative performance for t10, 10, 0.5u to both
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Table 2: On the Information Search Rock Sample domain, the GCB rollout significantly outperforms the random rollout over all
settings by making better use of beacons and visiting more good rocks. We averaged the rewards from 50 different trials for each
setting. The standard error of the mean is less than 10% of the mean in each case.

Rocks Beacons p “ 0.5 p “ 0.75 p “ 1.0

k b Random GCB Random GCB Random GCB

10 10 21.6 29.4 25.2 38.2 30.0 49.0
10 25 23.4 27.8 26.8 41.0 24.2 47.4
25 10 45.0 63.6 54.2 87.8 63.6 121.8
25 25 41.8 77.0 52.6 105.0 69.4 120.8

t10, 10, 0.75u and to t25, 25, 0.5u. Third, for the same k
(rocks) but with increasing b (beacons), the performance of
GCB relative to itself either stays the same or increases, e.g.,
compare GCB for t25, 10, 0.75u to t25, 25, 0.75u, while for
Random it does not increase appreciably for any setting. This
supports the intuitive hypothesis that GCB is making better
use of environmental information to improve its estimate of
the goodness of a rock.

6 Conclusion
We extended the Adaptive Informative Path Planning prob-
lem to a setting with Multimodal Sensing (AIPPMS). In
contrast to previous AIPP approaches that eschew a POMDP
formulation as being too general and intractable, we em-
braced POMDPs as the appropriate structure to jointly reason
about movement and sensing for the more general AIPPMS
problem. Due to the large state and observation space and
implicit reachability structure of AIPPMS, we used the on-
line planning framework of Partially Observable Monte Carlo
Planning, with modifications to the action selection and an
adaptive greedy rollout policy based on Generalized Cost-
Benefit. Our resulting approach consistently outperforms the
modified NAIVE algorithm over multiple domains, and our
rollout policy is a key contributor to this performance.

Future research could address many of our limitations.
We take an empirical approach in this paper in contrast to
most work on AIPP that conducts theoretical analyses (albeit
under modeling assumptions). A more rigorous approach
to analyzing AIPPMS, under appropriate assumptions on
the utility and sensor models, would be of interest and may
precipitate the development of high-performance tailored
algorithms. As we motivated earlier, we used the POMCP
framework for its simplicity and ease of extension, but an
extensive study of other state-of-the-art solvers, both offline
and online, would be instructive. In our AIPPMS formula-
tion, the inter-dependency between movement and sensing
actions is weak; the costs and utilities of the actions of each
type are unaffected by actions of the other type. Perhaps the
POMDP approach would have even more substantial gains
in performance if the coupling between action types was
stronger (this would require different utility and cost models).
Finally, given the greater applicability of AIPPMS over AIPP
to real-world robotics problems with energy costs for sensing,
implementing the modified POMCP for such an application
would be appropriate.
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