
Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020)

Certified Unsolvability for SAT Planning with Property Directed Reachability

Salomé Eriksson, Malte Helmert
University of Basel, Switzerland

{salome.eriksson, malte.helmert}@unibas.ch

Abstract

While classical planning systems can usually detect if a task
is unsolvable, only recent research introduced a way to ver-
ify such a claim. These methods have already been applied
to a variety of explicit and symbolic search algorithms, but
so far no planning technique based on SAT has been covered
with them. We fill this gap by showing how property directed
reachability can produce proofs while only minimally alter-
ing the framework by allowing to utilize certificates for un-
solvable SAT queries within the proof. We additionally show
that a variant of the algorithm that does not use SAT calls can
produce proofs that fit into the existing framework without
requiring any changes.

Introduction

Classical planning has recently seen an increased interest
in detecting the unsolvability of planning tasks, as shown
for example by the emergence of the first Unsolvability IPC
(Muise and Lipovetzky 2016), a planning competition aimed
specifically at the problem of proving the absence of solu-
tions for a classical planning task. One challenge in the prac-
tical application of algorithms that prove unsolvability is that
there is no easily available way to verify that they function
correctly. When a planning algorithm claims to have found
a solution, plan validation tools such as VAL (Howey and
Long 2003) and INVAL (Haslum 2017) can independently
verify the correctness of this claim. Claims of unsolvability
traditionally had to be taken at face value, which severely
reduces their trustworthiness.

The propositional satisfiability (SAT) community faced a
similar problem: in the satisfying case, it is straightforward
to verify that a given assignment satisfies a formula, but veri-
fying unsatisfiability is less direct. As a result, certificates of
unsolvability in a standard format were defined, which can
be independently validated to verify that the SAT solver has
indeed correctly established the unsolvability of the given
input formula, and the recurring SAT competitions have for
some time required participating SAT solvers to produce
them in the case of unsolvability.

We recently also proposed such certificates of unsolv-
ability for classical planning (Eriksson, Röger, and Helmert

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2017; 2018; Eriksson 2019a). In Eriksson et al. (2017) we
argue that a practically useful form of certificates of unsolv-
ability should meet three criteria. Firstly, they should be ef-
ficiently generatable, i.e., it should be possible to modify a
given non-certifying planning algorithm to emit certificates
of unsolvability with only moderate extra effort (ideally lin-
ear and certainly polynomial in the runtime of the non-
certifying algorithm). Secondly, they should be efficiently
verifiable: an independent certificate verifier should run in
polynomial time in the size of its input (planning task de-
scription and certificate). Thirdly, they should be general: a
single form of certificates should cover a large range of plan-
ning algorithms so that certificate verifiers can be truly inde-
pendent of planning algorithms and it is possible to build
trust in the implementation of a verifier.

In Eriksson et al. (2018) we describe a form of certificates
based on unsolvability proofs that consist of basic state-
ments about compactly represented sets of states that can be
verified in some tractable fragment of logic or other knowl-
edge compilation framework (Darwiche and Marquis 2002),
along with derivation steps in a proof calculus that can be
mechanically validated by matching them to a set of per-
missible inference rules. They also provide an implementa-
tion of a certificate validator and show that the proof sys-
tem satisfies the above-mentioned efficiency criteria for a
range of explicit and symbolic search techniques, heuristics
based on abstraction and delete relaxation, the clause learn-
ing state-space search algorithm of Steinmetz and Hoffmann
(2016), forward and backward mutexes (Alcázar and Tor-
ralba 2015), and the Trapper algorithm (Lipovetzky, Muise,
and Geffner 2016). An extended version of this proof system
is described in Eriksson (2019a).

A noticeable gap in this list of covered techniques are
SAT-based planning algorithms. We see two reasons why
this gap exists. Firstly, it appears challenging to inte-
grate SAT-based techniques into the existing framework of
polynomial-time certificate verification given that the SAT
problem itself is NP-complete.

Secondly, traditional SAT-based planning systems (e.g.,
Kautz and Selman 1992) iteratively build formulas encod-
ing whether plans with a horizon of n = 0, 1, . . . exist and
can only terminate with a claim of unsolvability when the
horizon reaches some upper bound on the diameter of the
search space. Most existing SAT planners use no bounds or

90

only trivial upper bounds (the total number of states minus
1), which can only be reached for very simple planning tasks
and only in cases where blind explicit-state search would be
vastly more efficient. This has recently changed somewhat
with the introduction of nontrivial upper bounds (e.g., Abdu-
laziz, Gretton, and Norrish 2017), but the number of scenar-
ios in which traditional SAT planning using these techniques
is competitive with other approaches for proving unsolvabil-
ity is still quite limited.

Therefore, our paper focuses on the Property Directed
Reachability (PDR) algorithm family, which uses SAT
queries as a way to infer reachability information while si-
multaneously performing a form of explicit search (Suda
2014). While clearly owing to the heritage of SAT-based
planning algorithms, Property Directed Reachability does
not fit in the mold of traditional SAT planners and does not
share their weakness regarding detecting unsolvability.

We show that for planning tasks in the propositional
STRIPS formalism, we can efficiently generate and verify
proofs for Suda’s PDR algorithm in the proof system de-
scribed in Eriksson (2019a) with no modifications to the
proof system. However, Suda also describes more general
versions of the PDR algorithm for a variant of propositional
STRIPS that allows negative preconditions and goals, which
is not covered by the existing proof system. Here, we show
that the proof system can be extended in a modular way to
cover this extended formalism and the more general PDR
algorithm. In particular, the extended proof system allows
incorporating UNSAT certificates within basic statements in
such a way that they can be transparently handled by an UN-
SAT validator while satisfying the properties of polynomial
overhead for generating the certificate of unsolvability and
polynomial verifiability of the overall certificate.

Background
We consider classical planning tasks given in propositional
STRIPS. A STRIPS planning task Π = 〈V,A, I,G〉 con-
sists of a set of propositional variables V, a set of actions
A, the initial state I ⊆ V and a goal description G ⊆ V. A
state of Π is given as a set of variables s ⊆ V and denotes
that in s, propositional variables v ∈ s are set to true. A state
s is a goal state iff G ⊆ s. An action a ∈ A consists of three
sets pre(a), add(a), del(a) ⊆ V. Action a is applicable in s
if pre(a) ⊆ s, and for applicable actions the successor state
is s[a] = (s \ del(a)) ∪ add(a).

For a sequence of actions π = 〈a1, . . . , an〉, we de-
fine s[π] = ((s[a1]) . . .)[an] if action ai is applicable in
s[〈a1, . . . , ai−1〉] for all 1 ≤ i ≤ n. A task Π is solvable iff
there exists some π such that I[π] is a goal state, in which
case π is called a plan of Π; otherwise it is unsolvable.

The set of all states of Π is denoted by S, and the set of
goal states by SG. For state set S ⊆ S and action setA ⊆ A,
the set S[A] = {s[a] | s ∈ S, a ∈ A, a applicable in s}
denotes the set of all successors of S with respect to A, and
similarly [A]S = {s′ | a ∈ A, a applicable in s′, s′[a] ∈ S}
denotes the set of all predecessors of S with respect to A.

A set of states can be represented by a propositional for-
mula over variables V by mapping each model of the for-
mula to a state containing the variables that are set to true

in the model. More formally we define states(ϕ) = {sI |
I : V �→ {
,⊥}, I |= ϕ} where sI = {v | I(v) =
}.
Propositional formulas can be represented in a multitude of
formalisms R, such as BDDs, Horn formulas or CNF for-
mulas. If we want to specify that a formula is represented
with formalism R, we denote the formula as ϕR.

Unsolvability Proof System
The aim of certifying an algorithm is to provide a line of rea-
soning that explains how the algorithm arrived at its output
and can be verified by an independent verifier. In order to
ensure feasible generation and verification, the certifying al-
gorithm should be able to produce a certificate with no more
than polynomial overhead in its (non-certifying) runtime,
and a certificate should be verifiable in time polynomial in
its size.

In this paper we focus on a proof system based certificate
first introduced in Eriksson, Röger, and Helmert (2018) and
further extended in Eriksson (2019a). This type of certificate
is built upon sets of states represented in possibly multiple
formalisms. These sets are then used to first establish an ini-
tial knowledge base of so-called basic statements which take
the form of subset relationships. Since the proof simply as-
sumes these statements as facts, an independent verifier must
verify whether the subset relations actually hold. In a sec-
ond step the basic statements are combined with the help of
predefined inference rules, which are general rules phrased
in the style of natural deduction, i.e. if a set of premises is
present in the knowledge base, then the conclusion of the
rule can be added to the knowledge base as well. The cor-
rectness of these rules is already established in the definition
of the proof system, thus a verifier must only check that the
rule is applied correctly, but can do so on a purely syntac-
tical level without needing to consider the semantics of the
premises or conclusion.

On a high level, a proof shows unsolvability by iteratively
deducing that certain state sets are dead, meaning that no
plan can go through any state from the set. A central no-
tion for deducing deadness is the idea of an inductive set:
a state set S such that all its successors are contained in S
(i.e. S[A] ⊆ S). If an inductive set contains no goal state,
then S must be dead, because we cannot reach any goal state
from it. This concept can also be applied in a regression set-
ting, and if we already have knowledge about certain state
sets being dead we can extend the argument for sets with
S[A] ⊆ S ∪ S′, where S′ is a dead set. Unsolvability can
then be shown when either the initial state or all goal states
have been deduced to be dead.

For example, a proof for an A∗ search with some heuris-
tic could first deduce that each dead-end is dead and use
this knowledge to state that the progression of the set of ex-
panded states leads only to expanded states or to dead states,
thus the set of expanded states must also be dead. Since the
initial state is contained in this set, it must therefore be dead
and the task must be unsolvable.

Since rule applications are purely syntactical, the only
critical part of ensuring that a proof can be verified in time
polynomial in its size is verifying the basic statements oc-
curring in the proof, and whether this is possible depends on

91

the R-formalisms representing the involved sets. The proof
system restricts the allowed statements to special cases of
subset statements over set variables XR = states(ϕR), set
literals LR ∈ {XR, XR} and action sets A ⊆ A:
• B1:

⋂
LR ⊆ ⋃

L′
R

• B2: (
⋂
XR)[A] ∩⋂

LR ⊆ ⋃
L′
R

• B3: [A](
⋂
XR) ∩⋂

LR ⊆ ⋃
L′
R

• B4: LR ⊆ L′
R′

• B5: A ⊆ A′

Each basic statement requires certain logical operations
of the involved formalisms in order to guarantee efficient
verification. The logical operations relevant for this paper
are the following:

• CO (consistency): given R-formula ϕR, test whether ϕR

is satisfiable.
• SE (sentential entailment): given R-formulasϕR andψR,

test whether ϕR |= ψR.
• ∧BC (bounded conjunction): given R-formulas ϕR and
ψR, construct an R-formula representing ϕR ∧ ψR.

• ∧C (general conjunction): given R-formulas ϕ1
R to ϕnR,

construct an R-formula representing ϕ1
R ∧ · · · ∧ ϕnR.

• CL (conjunction of literals): given a conjunction of liter-
als ϕ, construct an equivalent R-formula ϕR.

• RN≺: Given R-formula ϕR, a variable order ≺ and an
injective variable renaming r following ≺ in the sense that
if v1 ≺ v2 then r(v1) ≺ r(v2), construct an R-formula
ϕ[r]R, i.e. ϕ with each variable v replaced by r(v).

Furthermore, we want to highlight the following inference
rules, which we will utilize when building proofs for PDR:

• ED (empty set dead): With no premises, ∅ is dead.
• SD (subset dead): If S′ is dead and S ⊆ S′, then S is

dead.
• RI (regression inductivity without I): If [A]S ⊆ S ∪ S′,
S′ is dead and {I} ⊆ S, then S is dead.

• CG (conclusion with dead goal): If SG is dead, then the
task is unsolvable.

• UR (union introduction on right-hand side): With no
premises, S ⊆ S ∪ S′.

• SI (subset intersection): If S ⊆ S′ and S ⊆ S′′, then
S ⊆ (S′ ∩ S′′).

• ST (subset transitivity): If S ⊆ S′ and S′ ⊆ S′′, then
S ⊆ S′′.

Property Directed Reachability

Property directed reachability (PDR) was originally pro-
posed by Bradley (2011) and refined by Eén, Mishchenko,
and Brayton (2011) as a way to analyze reachability in sym-
bolic transition systems, and was adopted to planning by
Suda (2014). It iteratively tries to find solutions of length
n = 0, 1, . . . while maintaining a family of sets of states
called layers, which serve as an overapproximation of the

L1
I

L0
s1

(a) after iteration 1

L1

L2

I

L0
s1

(b) after iteration 2

L2

L3

L1
I

L0
s1

(c) after iteration 3

Figure 1: The search space during different phases of PDR
on the forklift example.

states within a certain distance of any goal state. In iteration
n, the algorithm tries to find a path of length n such that I
satisfies layer n, the successor of I satisfies layer n− 1, and
so forth. Failures in finding such a path are used as a way
to refine the layers, thus speeding up future iterations. The
layers are represented as CNF formulas Λi, and we denote
the set of states encoded by Λi as Li.

PDR searches in a space of so-called obligations (s, i),
which represent that state s satisfies Λi. The algorithm first
initializes Λ0 to

∧
g∈G g and all other layers to
. In each

iteration, the search is initialized with obligation (I, n). Ex-
panding, or extending an obligation (s, i) means trying to
find a successor s′ = s[a] for some a ∈ A which satis-
fies Λi−1. When PDR cannot extend an obligation (s, i), it
extracts a reason r: a conjunction of literals satisfied by s
such that no state satisfying r can have a successor satisfy-
ing Λi−1. Since this means that only states not satisfying r
can be within i steps of a goal, the clause ¬r can be added
to all Λj with j ≤ i. This strengthens the layers, avoid-
ing that the same obligation will be recreated in future it-
erations, and potentially also avoiding similar unextendable
obligations. At the end of each iteration n, PDR tries to ad-
ditionally strengthen the layers further by pushing clauses:
for each clause γ occurring in Λi−1 but not in Λi, γ can
be added to Λi if the regression of Li−1 logically entails γ.
PDR terminates if it either reaches an obligation of the form
(s, 0), in which case a plan has been found, or if at the end
of iteration n two subsequent layers are identical, which im-
plies that the task is unsolvable.

As an example, consider a task where we want to lift
a crate with a forklift, but the forklift is broken. We de-
scribe the position of the crate with three variables c-on-g
(ground), c-on-f (forklift), c-on-t (top) and the state
of the forklift with two variables raised and lowered.
Initially, the crate is on the ground and the forklift lowered
(I = {c-on-g,lowered}). Our goal is for the crate to
be on top (G = c-on-t). PDR initializes Λ0 = c-on-t
and terminates iteration 0 immediately since I does not sat-
isfy Λ0. Iteration 1 starts with obligation (I, 1), but fails to
extend it as we can only reach Λ0 if the crate is already on
top or if we unload it there, but for the latter the crate would
need to be on the forklift. Thus (¬c-on-t ∧ ¬c-on-f)
is a possible reason for this failed extension, and its nega-
tion is added to Λ1 and Λ0. Having explored all obligations,
the iteration finishes with a clause pushing phase that results
in no changes. Figure 1a depicts the situation at this point.
Note that L0 always represents SG, since any added clause
is already implied by G with which Λ0 was initialized.

92

In the second iteration we start with (I, 2). Loading the
crate on the forklift from I yields s1 = {c-on-f}, which
satisfies Λ1(= c-on-t∨c-on-f) and thus results in a new
obligation (s1, 1). Extending this obligation fails, however,
since we cannot unload the crate on top unless the forklift is
raised. We can extract the reason (¬c-on-t∧¬raised),
whose negation is added to Λ1 and Λ0. Extending (I, 2) with
a different successor fails as well since no successor satis-
fies (c-on-t ∨ raised) (which is now a clause in Λ1).
Since the forklift can only be raised if it has been all along,
we can again use the reason (¬c-on-t ∧ ¬raised) to
strengthen Λ2. With no obligations left we move to clause
pushing, again resulting in no changes. Figure 1b shows
the changes to the layers: L1 has become smaller due to
the added clause, and we also see that L2 ⊇ L1 since all
clauses in Λ2 are also present in Λ1. In iteration 3, obliga-
tion (I, 3) cannot be extended since no successor satisfies
Λ2 = (c-on-t ∨ raised). At this point Λ2 and Λ3 are
equal, meaning the algorithm terminates claiming the prob-
lem to be unsolvable. Figure 1c depicts this final state.

The original PDR algorithm uses SAT solvers in various
places, such as finding clauses for failed obligation exten-
sions and to check whether a clause can be pushed in a
subsequent layer. Suda (2014) proposed two variants when
adopting the algorithm for planning: one which is also based
on SAT solvers and one which avoids deciding SAT by ex-
ploiting planning-specific properties of the symbolic transi-
tion system.

To conclude this section we highlight several important
theoretical properties of PDR which will be useful when
building certificates:

The way clauses get added to layers ensures that Lj is al-
ways an overapproximation of the regression of Lj−1. Fur-
thermore, if a clause is present in Λi, it must also be present
in all Λj with j < i: when adding a clause due to a failed
obligation extension (s, i), the clause is added to all layers
up to Λi, and when pushing a clause to Λi the clause was al-
ready present in Λi−1. This also means that Li ⊇ Lj holds
for all j < i.

On a more formal level, PDR guarantees the following
when adding a clause γ to Λj :

• [A]Li−1 ⊆ states(γ) holds for some i ≥ j

• SG ⊆ states(γ)

Furthermore, the following invariants always hold:

(i) L0 = SG

(ii) Li ⊇ Li−1

(iii) [A]Li−1 ⊆ Li

(iv) At the end of iteration n, I /∈ Ln.

Certificates for PDR

PDR only claims unsolvability if at the end of an iteration
two subsequent layers Λx and Λx−1 are equal. Intuitively
this shows unsolvability because the algorithm has estab-
lished that we cannot reach more states with x backwards
steps from the goal than with x− 1 steps and that the initial
state is not among the backwards-reachable states.

In what follows, we will denote the “final” state of layers
Λx and Λx−1 when unsolvability is detected (at which point
they are equal) by ΛU, and the corresponding state set by
LU. Since clauses only get added to layers during execution,
LU ⊆ Lx and LU ⊆ Lx−1 holds at any point of the algo-
rithm. We will also use the shorthand γ ∈ Λi to denote that
clause γ occurs in Λi and will define |Λi| as the number of
clauses in Λi.

The proof we aim to build argues in the same fashion as
the intuitive explanation above, i.e. it shows that LU con-
tains all goal states, does not contain the initial state, and
that its regression does not lead to new states, or more for-
mally [A]LU ⊆ LU. However, our proof will contain more
fine-grained statements that better fit the actual reasoning
done in PDR, and then utilize the composability of the proof
system to combine these statements into an argument for un-
solvability.

Our proof is based on statements that we derive from the
properties of PDR outlined at the end of the previous sec-
tion. Firstly, we stated that when a clause γ is added to Λj ,
then [A]Li−1 ⊆ states(γ) for some i ≥ j. This specifi-
cally also holds when a clause is added to Λx. We know
that LU ⊆ Lx−1 ⊆ Li−1 holds: we established the left-
hand side in the beginning of this section, and the right-hand
side follows from i ≥ x and iteratively applying invari-
ant (ii). Furthermore, regression is monotonic in the sense
that if S ⊆ S′ then [A]S ⊆ [A]S′. We can thus state
[A]LU ⊆ states(γi) for all γi ∈ LU. Next, we need the
statement SG ⊆ states(γi) for all γi ∈ ΛU, which is an ex-
plicitly stated property of PDR. Finally, we need {I} ⊆ LU,
which follows directly from invariant (iv).
Lemma 1. PDR deduces that (Pi) [A]LU ⊆ states(γi) and
(Qi) SG ⊆ states(γi) holds for all clauses γi ∈ ΛU, and that
(R1) {I} ⊆ LU holds.

Utilizing the arguments from Lemma 1 as basic state-
ments, a proof in the proof system can now be built by com-
bining the statements of type (Pi) to the form [A]LU ⊆ LU,
the statements of type (Qi) to the form SG ⊆ LU, and com-
bining it with statement (R1):
Theorem 1. If PDR can efficiently represent all statements
from Lemma 1 in some R-formalism that efficiently supports
CL, ∧C, SE, RN≺ and CO, we can build a suitable unsolv-
ability proof.

Proof. The structure of the proof can be seen in Table 1.
It starts by stating with basic statement B3 for each clause
γi ∈ ΛU that the regression ofLU is contained in the state set
represented by γi. With the subset intersection rule (SI) we
can successively combine these statements to conclude that
LU is backwards-inductive (i.e., the regression of LU is con-
tained in LU). The next two steps merely reformulate this
statement with rules “union introduction right” (UR) and
“subset transitivity” (ST) into a form that is later needed as
a premise for deriving that LU is dead.

In the second part, basic statement B1 says that the goal is
included in each state set represented by a clause γi ∈ ΛU,
which we can combine with subset intersection to conclude
that the goal is included in LU.

93

ID statements rule premises
(Pi) [A]LU ⊆ states(γi) B3

(P′
i) [A]LU ⊆ ⋂

j≤i states(γj) SI (Pi) (P′
i−1)

(Px) [A]LU ⊆ LU SI (P|ΛU|) (P′
|ΛU|−1)

(Py) LU ⊆ LU ∪ ∅ UR
(P) [A]LU ⊆ LU ∪ ∅ ST (Px) (Py)

(Qi) SG ⊆ states(γi) B1

(Q′
i) SG ⊆ ⋂

j≤i states(γj) SI (Qi) (Q′
i−1)

(Q) SG ⊆ LU SI (Q|ΛU|) (Q′
|ΛU|−1)

(R1) {I} ⊆ LU B1
(R2) ∅ dead ED
(R3) LU dead RI (P) (R2) (R1)
(R4) SG dead SD (R3) (Q)
(R5) unsolvable CG (R4)

Table 1: General proof structure. Each statement is asso-
ciated with an ID, the rule or basic statement that derived
the statements, and in case of rules the IDs of the required
premises.

Lastly, we state with B1 that the initial state is not in-
cluded in LU. Deriving with rule ED that ∅ is dead, we can
now say that LU is dead, since it can only reach itself or a
dead set (in this case the empty set) with one regression step
and does not contain the initial state. Furthermore, since the
set of all goal states is contained in LU we can deduce that
all goal states must be dead as well, and thus conclude that
the task is unsolvable.

The proof utilizes only the arguments from Lemma 1 as
basic statements and assumes that each clause γi ∈ ΛU is
encoded with the same R-formalism, with LU represented
as an intersection of all state sets encoded by the clauses.
In order to be able to represent these sets, R only needs to
efficiently support CL. According to Theorems 5.5 and 5.6
from Eriksson (2019a), basic statements (Pi) can be verified
if R efficiently supports CL, ∧C, SE and RN≺. For (Qi) we
require SE, and for (R1) CO and ∧C is sufficient.

When looking at the variant of PDR that does not utilize
SAT solvers, Suda (2014) remarks that for STRIPS tasks, the
layers consist of clauses with only positive literals, a special
case of dual-Horn formulas. Since dual-Horn is one of the
maximal tractable classes in Schaefer’s (1978) dichotomy,
it supports all required operations efficiently and is thus a
suitable formalism for the proof in Theorem 1, meaning we
can build proofs for this variant of PDR within the exist-
ing framework. Moreover, we can actually formalize a much
more succinct proof directly stating (Px) and (Q) as basic
statements with a single dual-Horn formula representingLU.

Furthermore, the variant of PDR that utilizes SAT solvers
will also result in purely positive (and therefore dual-Horn)
clauses due to the “reason minimization” technique em-
ployed by PDR and the monotonicity of STRIPS tasks. In-
tuitively speaking, the monotonicity property for STRIPS
tasks states that it is always beneficial to have task variables
set to true: the goal is a set of positive literals, so when s is
a goal state, dominating states (with a superset of true state
variables) are also goal states, and this dominance property
also holds for action preconditions and is preserved by ac-

tion application. The key step in PDR that is responsible for
deriving new clauses is to find a reason (a conjunction of lit-
erals over state variables) that explains why a given subgoal
(as defined by the layers of the algorithm) cannot be reached.
The monotonicity of STRIPS implies that a minimal reason
is always a conjunction of negative literals, and hence the
clause added to the algorithm (which is the negation of the
generated reason) is always purely positive.

Corollary 1. For regular STRIPS tasks, a proof for PDR
both utilizing and not utilizing SAT can be generated and
verified efficiently by representing LU as a dual-Horn for-
mula.

STRIPS with Negation

In order to fully cover the PDR algorithm for classical plan-
ning, we must extend the planning formalism we consider
to propositional STRIPS with negation (PSN) (e.g., Braf-
man and Domshlak 2003), which is the most general plan-
ning formalism considered by Suda (2014). Unlike regu-
lar STRIPS, the goal description and action preconditions
in PSN tasks may contain negative literals. In this formal-
ism, the layers in PDR are no longer guaranteed to consist
of dual-Horn clauses.

Definition 1. A PSN task Π = 〈V,A, I,G〉 consists of
a set of propositional variables V, a set of actions A,
where an action a is defined by four sets of variables
pre+(a), pre−(a), add(a), del(a) ⊆ V, initial state I ⊆ V
denoting the variables that are true initially, and a goal de-
scription G = 〈G+,G−〉, where G+ denotes the variables
that must be true in a goal state and G− the variables that
must be false, i.e. G+ ⊆ sG and G− ∩ sG = ∅ for all
goal states sG ∈ SG. Action a is applicable in a state s iff
pre+(a) ⊆ s and pre−(a) ∩ s = ∅, and applying a in s
results in (s \ del(a)) ∪ add(a).

Before we investigate how we can build proofs for PDR
in this setting, we need to make sure that the proof sys-
tem framework, which was only defined for regular STRIPS
tasks, can also be used for PSN tasks. Fortunately, this is the
case without needing to alter the framework in any way:

Theorem 2. The proof system framework from Eriksson
(2019a) can verify proofs for tasks given in PSN.

Proof. Since the only difference between STRIPS and PSN
is the description of G and A, we check in which places
these parts of the task occur in the proof framework:

The only requirement for G is that the set of all goal
states must be representable with CL. Changing G to in-
clude negative literals does not affect this requirement and
thus requires no change in the framework. Actions need to
be represented when verifying basic statements B2 and B3.
In these statements, the formalism needs to be able to repre-
sent effects and preconditions of an action with CL, which
is still possible with negative preconditions.

Actions also occur in basic statement B5, and both actions
and the set of all goal states additionally occur in rule appli-
cations, but in both of these places they occur only as named
variables and do not need to be interpreted semantically.

94

PDR with SAT employs a SAT solver to determine the
clauses that are added to layers, meaning the SAT solver
must guarantee that the clauses have the properties we utilize
in our proof from Theorem 1. In order to verify the proof we
thus in turn need to be able to verify UNSAT claims, which
are in general coNP-complete.

SAT solvers themselves have a long history of certifying
their output (e.g., van Gelder 2002; 2008; Heule, Hunt, and
Wetzler 2013a; 2013b) and almost all SAT solvers are capa-
ble of producing a certificate for their unsolvability claims.
With this in mind, we tackle the above issue by letting the
SAT solver used in PDR build certificates for its UNSAT
outputs and integrating those certificates into the proof as
a help to verify the claims. Since UNSAT certificates can
be generated in time polynomial in the runtime of the SAT
solver and can be verified in time polynomial in the size of
the certificate, we are able to stay within the desired polyno-
mial bounds as well.

Concretely, we propose to introduce new types of basic
statements into the proof system which are built on state sets
represented as CNF formulas and which require one or sev-
eral SAT certificates as input.

Definition 2. Let ϕCNF and ψCNF be CNF formulas and
A ⊆ A.

We extend the proof system in Eriksson (2019a) with the
following basic statements, which accept additional input in
the form of one or several UNSAT certificates:

C1a states(ϕCNF) ⊆ states(ψCNF)

C1b states(ϕCNF) ⊆ states(ψCNF)

C2a states(ϕCNF)[A] ⊆ states(ψCNF)

C2b states(ϕCNF)[A] ⊆ states(ψCNF)

C3a [A]states(ϕCNF) ⊆ states(ψCNF)

C3b [A]states(ϕCNF) ⊆ states(ψCNF)

Since we want to verify the statements with the help of
the provided UNSAT certificates, we need ensure that they
actually imply the statement. For statements C2 and C3, we
assume that the set of successors or predecessors with re-
spect to A is encoded with help of a transition formula TA.
Several encodings for such transition formulas exist (e.g.,
Rintanen 2012; Huang, Chen, and Zhang 2012) and they
share the general idea that the formula encodes pairs of
states where the successor state is encoded with fresh vari-
ables V′ = {v′ | v ∈ V}. More formally, we assume
a CNF formula TA over V ∪ V′ ∪ Vaux for some (possi-
bly empty) set of auxiliary variables Vaux, such that the set
of models I of TA encode all pairs of states 〈s, s′〉 with
s = {v | v ∈ V, I(v) =
}, s′ = {v | v ∈ V, I(v′) =
}
and s[a] = s′ for some a ∈ A. In what follows, we de-
note with ϕ′ the formula that is obtained by replacing each
occurrence of variable v ∈ V in ϕ with the corresponding
v′ ∈ V′.

Theorem 3. The basic statements in Definition 2 can be ver-
ified if the statement is provided with UNSAT certificates for
the following formulas and can be validated in time polyno-
mial in the size of the UNSAT certificates:

• C1a: ϕCNF ∧ ¬γ for each clause γ ∈ ψCNF

• C1b: ϕCNF ∧ ψCNF

• C2a: ϕCNF ∧ TA ∧ ¬γ′ for each clause γ ∈ ψCNF

• C2b: ϕCNF ∧ TA ∧ ψ′
CNF

• C3a: ϕ′
CNF ∧ TA ∧ ¬γ for each clause γ ∈ ψCNF

• C3b: ϕ′
CNF ∧ TA ∧ ψCNF

Proof. For C1a, we have that ϕCNF ∧ ¬γ being unsatisfi-
able for all γ ∈ ψCNF implies that

∨
γ∈ψCNF

(ϕCNF ∧ ¬γ) ≡
ϕCNF ∧ ¬ψCNF is unsatisfiable, meaning ϕCNF must im-
ply ψCNF. From this we can conclude states(ϕCNF) ⊆
states(ψCNF).

For C1b, ϕCNF ∧ ψCNF being unsatisfiable means that
ϕCNF implies ¬ψCNF. Since states(¬ψCNF) = states(ψCNF),
we thus have that states(ϕ) ⊆ states(ψCNF) holds.

The argumentation of C2 and C3 is very similar except
that we need to encode the progression (for C2) and re-
gression (for C3). A formula ϕ1 ∧ TA ∧ ϕ′

2 represents all
pairs of states 〈s, s′〉 where s satisfies ϕ1, s′ satisfies ϕ2 and
s[a] = s′ for some a ∈ A. This formula being unsatisfiable
therefore means that all successors of any s ∈ states(ϕ1) are
contained in states(ϕ2), or equivalently that all predecessors
of any s′ ∈ states(ϕ2) are contained in states(ϕ1).

In summary, the formulas for which UNSAT certificates
are requested directly imply the statement, and we can verify
each UNSAT certificate in time polynomial in its size with
the help of a SAT verifier.

With the above extension to the proof system, we can
build a proof akin to Table 1 by replacing statements B1
and B3 with C1 and C3, respectively. But in order to verify
the proof we must provide it with the appropriate UNSAT
certificates.

Basic statements C3a in (Pi) require an UNSAT certifi-
cate for Λ′

U ∧ TA ∧¬γi for each γi ∈ ΛU, which we can get
from SAT calls that are performed when PDR adds a clause
to a layer either during a failed obligation extension or dur-
ing clause pushing. When an obligation (s, i) could not be
extended, PDR called SAT on the formula ϕ ∧ TA ∧ Λ′

i−1
with ϕ =

∧
v∈s v ∧ ∧

v∈V\s ¬v encoding state s, and this
call returned UNSAT. PDR then tries to iteratively remove
conjuncts from ϕ (while keeping the negation of at least one
goal literal) such that the resulting formula is still unsatisfi-
able. The last such ϕ′ is negated and added to layers Λj with
j ≤ i. Thus for each γ added as a result of a failed obligation
we have an UNSAT certificate for Λ′

i−1 ∧ TA ∧ ¬γ.1 This
certificate is also valid for Λ′

j−1 ∧ TA ∧ ¬γ. (with j ≤ i),
since Λ′

j−1 contains all clauses in Λ′
i−1. Similarly, during

clause pushing a clause γ can only be pushed to Λj if a SAT
call of the form Λ′

j−1 ∧TA ∧¬γ returned UNSAT, meaning
we can produce a certificate for this formula as well.

1When utilizing a technique called inductive reason minimiza-
tion, the SAT call is altered to Λ′

i−1 ∧ γ′ ∧ TA ∧ ¬γ, i.e., we
assume γ is already added to Λi−1. Since this will happen imme-
diately afterwards and states(Λx−1∧γ) is thus still a subset of LU,
the certificate is still valid for the formula in the basic statement.

95

Altogether we can say that whenever a clause γi is added
to a Λj , an UNSAT certificate for Λ′

j−1 ∧ TA ∧ ¬γi can be
efficiently produced. Since ΛU consists of a superset of the
clauses in Λ′

x−1 (where Λx is the state of ΛU at the time
when γi is added to it), the UNSAT certificate for these SAT
calls can also be used as certificates for Λ′

U ∧ TA ∧ ¬γi for
all γi ∈ ΛU, which are exactly the certificates we need.

For basic statements C1a in (Qi) we need an UNSAT cer-
tificate for ϕG ∧ ¬γi for each γi ∈ ΛU. Since ϕG is a con-
junction of literals and γi is a clause, these types of formulas
consist of only unit clauses, meaning UNSAT can be shown
with a single resolution step. Finally, basic statement C1b
in (R1) requires an UNSAT certificate for ϕI ∧ ΛU. Since
ϕI represents an assignment to all variables v ∈ V, UNSAT
can be shown with unit propagation, which again is easily
translated into a certificate.

In summary, all basic statements from Table 1 can be
replaced with statements for CNF formulas from Defini-
tion 2, and appropriate UNSAT certificates are either pro-
vided through SAT calls performed by PDR or can be con-
structed in time polynomial in ΛU:
Theorem 4. For PDR with SAT on PSN tasks, a proof for
the proof system extended by Definition 2 can be generated
in time polynomial in the runtime of PDR and can be verified
in time polynomial in the size of the proof.

PDR without SAT

When PDR without SAT is applied on a PSN task, it cannot
efficiently perform the checks required for pushing clauses
and thus omits this phase. While this reduces PDR’s abil-
ity to detect unsolvability, PDR without SAT can still detect
unsolvable PSN tasks and as we will see we can produce a
proof for this case as well.

The only point where clauses get added to layers in this
setting is when an obligation extension (s, i) fails. The
clause to add is then determined by first finding several sets
of literals for each action a ∈ A such that each set either
consists of a precondition literal l which is not satisfied in s
or is a clause γ ∈ Λi−1 which would be violated in s[a]. The
final clause is then produced by finding a preferably small
set of literals that includes at least one literal set from each
action, as well as at least one goal literal.

More formally, we can say that (P∗
i) for each γi ∈ ΛU and

each action a ∈ A there is some clause γj in ΛU such that
states(¬γi)[a] ⊆ states(¬γj) holds.2 Furthermore, since
each clause γi ∈ ΛU contains at least one goal literal, we
have that (Q∗

i) states(¬γi)∩SG ⊆ ∅ holds. Finally, since I is
not inLU, there must be some clause γ in ΛU that is not satis-
fied by I, which we can express with (R∗

1) {I} ⊆ states(¬γ).
These statements enable us to build a proof:
Theorem 5. For tasks in PSN, a proof for PDR without SAT
can be efficiently generated based on state sets states(¬γi)
for each γi ∈ ΛU, which can be represented by any R-
formalism efficiently supporting CL. In order to efficiently
verify the proof, R must efficiently support CL, ∧BC, SE,
RN≺ and CO.

2For actions a not applicable in states(¬γi) we can choose any
γj since states(¬γi)[a] is empty.

Proof. The statements from (P∗
i), (Q∗

i) and (R∗
1) actually

exactly match the definition of a 1-disjunctive certificate
(Eriksson, Röger, and Helmert 2017), which is a family of
sets whose union forms a set that is inductive (S[A] ⊆ S),
contains no goal state and contains the initial state. The in-
teresting twist on 1-disjunctive certificates is that they actu-
ally have stronger properties that imply the aforementioned
ones but can be verified without needing to consider the ex-
plicit union of the sets. For F = {states(¬γi) | γi ∈ ΛU},
these stronger properties are exactly the ones we mention in
(P∗
i), (Q∗

i) and (R∗
1), meaning F is a 1-disjunctive certificate.

While 1-disjunctive certificates are a different form of cer-
tificates from the proof-based certificates considered here,
we can integrate them into the proof system with a transla-
tion provided by Theorem 5.10 from Eriksson (2019a).

Regarding representation and required operations, we can
state (P∗

i) with basic statement B2 and (Q∗
i) and (R∗

1) with
B1, where each ¬γi is represented by R with the help of CL.
For verifying statements of type (P∗

i) we need CL, ∧BC,
RN≺ and SE; for statements of type (Q∗

i) we need CL, ∧BC
and CO, and for statements of type (Q∗

i) we need CL, ∧BC
and CO, and for (R∗

1) we need SE.

Reversing the Search Direction

The original PDR algorithm, which was designed for more
general transition systems with potentially several initial
states, performs its search in the reverse direction, where the
obligation space is explored backwards from the goal de-
scription and the layers Λi denote properties that states at
most i steps away from the initial states must satisfy. Suda’s
(2014) adaption mainly focuses on the forward direction,
which has the advantage that the obligations consider sin-
gle states rather than sets of states, but also discusses the
alternate search direction.

Since the transition function used in the SAT version can
be used for both directions, PDR with SAT can reverse the
search direction by only switching the initial state and goal
description and switching the primed and unprimed vari-
ables in the transition function. This in turn requires us to
change our proof from Table 1 in an analogous fashion. We
need to replace SG with {I} in all statements of type Q,
replace {I} with SG in statement R1, and change all occur-
rences of [A]LU with LU[A], i.e., consider the set of succes-
sors of LU rather than the set of all predecessors. Intuitively,
the proof now states that all successors ofLU, the initial state
and no goal state is contained in LU.

For PDR without SAT, reversing the search direction is
not as trivial since we normally would now need to deal with
sets of states in the obligations. For STRIPS tasks however,
Suda (2014) argues that we can transform a task Π to a dif-
ferent STRIPS task Πd that is dual in the sense that if π is
a plan in Π, then reversing π is a plan for Πd (Suda 2013).
The general idea is to describe states by what can be false,
rather than what is true. The initial state in Πd is given by the
variables that are not true in G, and the goal description by
the variables false in I. Intuitively, solutions to Πd describe
backward paths from goal states to a state that is a subset of
the initial state. When running PDR on Πd, the models I of

96

Λi can similarly be understood to denote states where cer-
tain variables can be false, i.e., states where they are false as
well as supersets of those states. Due to the monotonicity of
STRIPS, we can ignore the supersets and interpret variables
that can be false as simply being false. This means that in-
terpreting ΛU for Π yields a Horn formula (since we have
information about variables being false) denoting a set of
states whose successors are also in ΛU, which contains I but
no sG ⊇ G. From this we can build a proof analogously to
the SAT case.

When reversing the search direction, PDR also adds in-
variants to its layers in the form of clauses which are true
for any state reachable by I. The purpose of these invariants
is to guide the backwards search towards the initial state.
When building a proof we need to ensure that this informa-
tion can also be represented by the formalism representing
the layers. For the invariants considered by Suda (2014) this
is the case since they are of the form ¬a ∨ ¬b, which can be
represented by both CNF and Horn formulas.

Experiments

In order to evaluate whether generating and verifying certifi-
cates for PDR is practically feasible, we augmented the im-
plementation of PDR from Suda (2014)3 (which considers
only STRIPS tasks, utilizes no SAT solver and searches for-
ward) to be able to generate certificates when run with stan-
dard settings. We denote this certifying version as PDRC. In
order to verify the generated certificates we augmented the
proof verifier from Eriksson (2019a), denoted as verify, by
additionally supporting dual-Horn formulas as representa-
tion formalism.

The experiments were performed on single cores in a
cluster consisting of Core Intel Xeon Silver 4114 proces-
sors with a clock speed of 2.2 GHz. As a benchmark set
we chose the same collection used in previous work in cer-
tifying unsolvability (Eriksson 2019b), minus the domains
bag-barman and tetris, which PDR does not support due to
negative preconditions. We ran both original PDR and PDRC
with limits of 30 minutes and 2 GiB of memory, and verify
was given 2 hours and 2 GiB of memory to verify generated
certificates. All used code (Eriksson and Helmert 2020a;
2020c) and the produced data (Eriksson and Helmert 2020b)
are publicly available.

Table 2 summarizes for how many problems PDR could
detect unsolvability, PDRC could additionally also construct
a certificate within the same limits, and verify could verify
generated certificates. First comparing PDR and PDRC, we
see that only four tasks were lost due to the overhead in-
curred by creating a certificate. This is not surprising since
the proof mainly consists of writing a description for the
clauses of LU. Figure 2a, which compares the runtime of
PDR and PDRC, reinforces this observation: PDRC never
needs significantly more time than PDR and sometimes even
needs less time, suggesting that the overhead for generating
the certificate is not much higher than random noise.

3https://github.com/quickbeam123/PDRplan
(accessed 19.11.2019)

PDR PDRC verify
3unsat (30) 10 10 10
bag-gripper (25) 0 0 0
bag-transport (29) 1 1 1
bottleneck (25) 20 20 18
cave-diving (25) 5 5 5
chessboard-pebbling (23) 3 3 3
diagnosis (20) 15 15 15
document-transfer (20) 4 4 4
mystery (9) 2 2 2
nomystery (150+24) 132 130 130
pegsol (24) 16 14 14
pegsol-row5 (15) 3 3 3
rovers (150+20) 164 164 164
sliding-tiles (20) 0 0 0
tpp (25+30) 13 13 13
total (704) 388 384 382

Table 2: Coverage results for PDR (original version), PDRC
(certifying version) and verify (certificate verifier).

base certifying verifier
PDR 388 384 382
FD-hM&S 224 197 178
FD-hmax 203 156 140
DFS-CL 394 386 385

Table 3: Coverage comparison between different certifying
planners. The uncertified version is denoted by “base”.

When looking at whether the generated certificates could
be verified within limits, only two tasks in the bottleneck
domain could not be verified due to a timeout. This suggests
that PDR finds rather concise reasons for unsolvability that
are not difficult to verify; and indeed, the generated certifi-
cates are on average less than 0.5 MiB in size. Figure 2b
takes a closer look at how certificate size and verification
time are related, supporting the claim that certificates can be
verified in time polynomial in their size.

Finally, we also compared certified PDR to other certified
planners, namely DFS-CL and updated versions of FD-hmax

and FD-hM&S from Eriksson, Röger, and Helmert (2018).
Looking at the coverage results in Table 3, we see that PDR
performs similarly to DFS-CL, both in terms of absolute
coverage and in how many tasks are lost in the certifying ver-
sion or when trying to verify certificates. While the former
has no straightforward explanation (in many tasks one algo-
rithm succeeds while the other fails), the latter is likely due
to the fact that DFS-CL also finds very concise final reasons
for unsolvability and does not need to document the search
process on a state-by-state level. Figure 2c reinforces this
explanation, showing that DFS-CL in general even produces
smaller certificates than PDR, while FD-hmax and FD-hM&S

require certificates up to five magnitudes larger than PDR.
Figure 2d on the other hand shows that these differences can-
not be directly transferred to verification time: while DFS-
CL in general seems to require less time for verification,
PDR and FD-hM&S are overall more balanced (albeit with
significant differences in both directions depending on the
task), and hmax in general requires more time than PDR.

97

10−2 10−1 100 101 102 103
10−2

10−1

100

101

102

103

failed

PDR runtime (in s)

PD
R

C
ru

nt
im

e
(i

n
s)

x
2x
0.5x

(a) Runtime comparison between PDR and PDRC, showing the
overhead incurred by certificate generation.

100 101 102 103 104
100

101

102

103

104

failed

certificate size (in KiB)

ve
ri

fy
ru

nt
im

e
(i

n
s)

∝ x2

∝ x3

(b) Time needed for verifying a certificate as a function of the
certificate size.

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

failed

witness size PDR (in KiB)

w
itn

es
s

si
ze

ot
he

r(
in

K
iB

)

DFS-CL
FD-hM&S

FD-hmax

(c) Certificate size comparison PDR vs. other planners.

10−3 10−2 10−1 100 101 102 103 104
10−3

10−2

10−1

100

101

102

103

104

failed

verification time PDR (in s)

ve
ri

fic
at

io
n

tim
e

ot
he

r(
in

s)

DFS-CL
FD-hM&S

FD-hmax

(d) Verification time comparison PDR vs. other planners.

Figure 2: Detailed results.

Conclusion

In this paper we presented a way to extend an unsolvabil-
ity proof system for classical planning tasks in such a way
that it can utilize UNSAT certificates as part of a proof. By
studying the Property Directed Reachability algorithm (in its
various variants), we showed that this enables us to also gen-
erate certificates of unsolvability for planning systems which
rely on SAT queries. Furthermore we have also shown that if
PDR is used without a SAT solver, the existing proof system
is already expressive enough to represent concise certificates
of unsolvability in its unmodified form.

Much of the recent work in planning as satisfiability (e.g.,

Rintanen, Heljanko, and Niemelä 2006; Rintanen 2012) fo-
cuses on the question of how to best represent the planning
transition semantics in a SAT formula. One question that
naturally arises is which kinds of transition formulas can
be natively covered by the existing proof system and which
techniques might require extensions. More ambitiously, one
could also consider including the argument why this encod-
ing is correct directly into the proof certificate itself.

In order to be able to produce certificates for more tra-
ditional SAT-based planning systems with modern upper-
bounding techniques (Abdulaziz, Gretton, and Norrish
2017), three ingredients would be needed. Firstly, the com-
putation of meaningful horizon upper bounds would need to

98

be certified. Secondly, the reasoning of the actual SAT plan-
ner would need to be certified in order to establish a lower
bound. Finally, one would need to certify that the combina-
tion of the lower and upper bounds proves the absence of a
solution.

Related to this but more generally, it would be interesting
to investigate how to certify proofs of unsolvability that rely
on problem reformulations, for example based on symme-
try (e.g., Pochter, Zohar, and Rosenschein 2011) or forward-
backward duality (Suda 2013), or to incorporate techniques
like partial-order reduction (Wehrle and Helmert 2012) and
dominance pruning (Torralba and Hoffmann 2015). All of
these techniques require a form of “what-if” reasoning, es-
sentially arguing that candidate solutions of a certain kind
need not be considered because if they exist, then there also
exist other solutions (which are considered). Formalizing ar-
guments of this kind in a uniform, automatically verifiable
way would go a long way towards fully capturing the rich-
ness of current planning approaches for the purposes of cer-
tified correct computations.

Acknowledgments

This work was supported by the Swiss National Science
Foundation (SNSF) as part of the project “Certified Correct-
ness and Guaranteed Performance for Domain-Independent
Planning” (CCGP-Plan).

References

Abdulaziz, M.; Gretton, C.; and Norrish, M. 2017. A
state-space acyclicity property for exponentially tighter plan
length bounds. In Barbulescu, L.; Frank, J.; Mausam; and
Smith, S. F., eds., Proceedings of the Twenty-Seventh Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS 2017), 2–10. AAAI Press.

Alcázar, V., and Torralba, Á. 2015. A reminder about the
importance of computing and exploiting invariants in plan-
ning. In Brafman, R.; Domshlak, C.; Haslum, P.; and Zilber-
stein, S., eds., Proceedings of the Twenty-Fifth International
Conference on Automated Planning and Scheduling (ICAPS
2015), 2–6. AAAI Press.
Bradley, A. R. 2011. SAT-based model checking without
unrolling. In Jhala, R., and Schmidt, D., eds., Proceedings
of the 12th International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI 2011), 70–
87.
Brafman, R. I., and Domshlak, C. 2003. Structure and com-
plexity in planning with unary operators. Journal of Artifi-
cial Intelligence Research 18:315–349.
Darwiche, A., and Marquis, P. 2002. A knowledge com-
pilation map. Journal of Artificial Intelligence Research
17:229–264.
Eén, N.; Mishchenko, A.; and Brayton, R. 2011. Efficient
implementation of property directed reachability. In Bjesse,
P., and Slobodova, A., eds., Proceedings of the 11th Interna-
tional Conference on Formal Methods in Computer-Aided
Design (FMCAD 2011), 125–134.

Eriksson, S., and Helmert, M. 2020a. Code from Eriksson-
Helmert, ICAPS 2020. https://doi.org/10.5281/zenodo.
3691796.
Eriksson, S., and Helmert, M. 2020b. Data set from
Eriksson-Helmert, ICAPS 2020. https://doi.org/10.5281/
zenodo.3691812.
Eriksson, S., and Helmert, M. 2020c. Modified PDRplan
from Eriksson-Helmert, ICAPS 2020. https://doi.org/10.
5281/zenodo.3694110.
Eriksson, S.; Röger, G.; and Helmert, M. 2017. Unsolv-
ability certificates for classical planning. In Barbulescu, L.;
Frank, J.; Mausam; and Smith, S. F., eds., Proceedings of
the Twenty-Seventh International Conference on Automated
Planning and Scheduling (ICAPS 2017), 88–97. AAAI
Press.
Eriksson, S.; Röger, G.; and Helmert, M. 2018. A proof
system for unsolvable planning tasks. In de Weerdt, M.;
Koenig, S.; Röger, G.; and Spaan, M., eds., Proceedings of
the Twenty-Eighth International Conference on Automated
Planning and Scheduling (ICAPS 2018), 65–73. AAAI
Press.
Eriksson, S. 2019a. Certifying Planning Systems: Witnesses
for Unsolvability. Ph.D. Dissertation, University of Basel.
Eriksson, S. 2019b. Unsolvable PDDL benchmarks. https:
//doi.org/10.5281/zenodo.3355446.
Haslum, P. 2017. INVAL: the Independent PDDL plan Val-
idator. https://github.com/patrikhaslum/INVAL. Accessed
September 29, 2017.
Heule, M.; Hunt, W. A.; and Wetzler, N. 2013a. Trimming
while checking clausal proofs. In Jobstmann, B., and Ray,
S., eds., Proceedings of Formal Methods in Computer Aided
Design (FMCAD 2013), 181–188. IEEE.
Heule, M. J. H.; Hunt, W. A.; and Wetzler, N. 2013b. Verify-
ing refutations with extended resolution. In Proceedings of
the Twenty-Fourth International Conference on Automated
Deduction (CADE-24), 345–359. Springer, Berlin, Heidel-
berg.
Howey, R., and Long, D. 2003. VAL’s progress: The auto-
matic validation tool for PDDL2.1 used in the International
Planning Competition. In Edelkamp, S., and Hoffmann, J.,
eds., Proceedings of the ICAPS 2003 Workshop on the Com-
petition: Impact, Organisation, Evaluation, Benchmarks.
Huang, R.; Chen, Y.; and Zhang, W. 2012. SAS+ planning
as satisfiability. Journal of Artificial Intelligence Research
43:293–328.
Kautz, H., and Selman, B. 1992. Planning as satisfiabil-
ity. In Neumann, B., ed., Proceedings of the 10th European
Conference on Artificial Intelligence (ECAI 1992), 359–363.
John Wiley and Sons.
Lipovetzky, N.; Muise, C.; and Geffner, H. 2016. Traps, in-
variants, and dead-ends. In Coles, A.; Coles, A.; Edelkamp,
S.; Magazzeni, D.; and Sanner, S., eds., Proceedings of the
Twenty-Sixth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2016), 211–215. AAAI Press.
Muise, C., and Lipovetzky, N., eds. 2016. Unsolvability
International Planning Competition: Planner Abstracts.

99

Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Exploit-
ing problem symmetries in state-based planners. In Burgard,
W., and Roth, D., eds., Proceedings of the Twenty-Fifth AAAI
Conference on Artificial Intelligence (AAAI 2011), 1004–
1009. AAAI Press.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artificial Intelligence 170(12–13):1031–1080.
Rintanen, J. 2012. Planning as satisfiability: Heuristics. Ar-
tificial Intelligence 193:45–86.
Schaefer, T. J. 1978. The complexity of satisfiability prob-
lems. In Proceedings of the Tenth Annual ACM Symposium
on Theory of Computing (STOC ’78), 216–226. New York:
ACM Press.
Steinmetz, M., and Hoffmann, J. 2016. Towards clause-
learning state space search: Learning to recognize dead-
ends. In Schuurmans, D., and Wellman, M., eds., Proceed-
ings of the Thirtieth AAAI Conference on Artificial Intelli-
gence (AAAI 2016), 760–768. AAAI Press.
Suda, M. 2013. Duality in STRIPS planning.
arXiv:1304.0897v1 [cs.AI].
Suda, M. 2014. Property directed reachability for auto-
mated planning. Journal of Artificial Intelligence Research
50:265–319.
Torralba, Á., and Hoffmann, J. 2015. Simulation-based ad-
missible dominance pruning. In Yang, Q., and Wooldridge,
M., eds., Proceedings of the 24th International Joint Con-
ference on Artificial Intelligence (IJCAI 2015), 1689–1695.
AAAI Press.
van Gelder, A. 2002. Extracting (easily) checkable
proofs from a satisfiability solver that employs both pre-
order and postorder resolution. In Proceedings of the In-
ternational Symposium on Artificial Intelligence and Math-
ematics (ISAIM 2002).
van Gelder, A. 2008. Verifying RUP proofs of propositional
unsatisfiability. In Proceedings of the International Sym-
posium on Artificial Intelligence and Mathematics (ISAIM
2008).
Wehrle, M., and Helmert, M. 2012. About partial order re-
duction in planning and computer aided verification. In Mc-
Cluskey, L.; Williams, B.; Silva, J. R.; and Bonet, B., eds.,
Proceedings of the Twenty-Second International Conference
on Automated Planning and Scheduling (ICAPS 2012), 297–
305. AAAI Press.

100

