Computing Close to Optimal Weighted Shortest Paths in Practice

Nguyet Tran, Michael J. Dinneen, Simone Linz
School of Computer Science, University of Auckland, Auckland, New Zealand
ntra770@aucklanduni.ac.nz, mjd@cs.auckland.ac.nz, s.linz@auckland.ac.nz

Abstract

This paper proposes a new practical method for the weighted region problem (WRP). The objective of WRP is to find a minimum cost path between two vertices among different regions where each region incurs a traversal cost per unit distance. Currently, there is no practical algorithm that solves this problem exactly. Among the approximation methods that solve instances of WRP, there is a limited number of algorithms that compute paths whose lengths are close to optimal, which we call very-close optimum paths. However, they are considered as theoretical methods. On the other hand, algorithms for solving WRP that can be applied to practical data sets (using decomposition ideas or heuristics) are not guaranteed to find a very-close optimum path within an acceptable amount of time. In this paper, we consider an alternative method for solving WRP that exploits Snell's law of physical refraction. We compare the performance of our new algorithm with that of two existing algorithms, using at least 500 test cases for each such comparison. The experimental results show that our algorithm returns a very-close optimum weighted shortest path in reasonable time.

Introduction

Let $W S=(T, E, V)$ be a continuous two-dimensional workspace, where T, E and V are the set of regions, region edges and vertices, respectively. The regions are nonoverlapping polygons, which are defined by vertices and edges (see Figure 3). We consider each region $t_{i} \in T$ as a triangle since any polygon that is not a triangle can be divided into triangles. Traversing each region $t_{i} \in T$ incurs a unit cost (or weight) $w_{i}>0$. Let $w\left(e_{i}\right)$ be the unit weight of a region edge $e_{i}=\left(p_{i}, q_{i}\right) \in E$, where p_{i} and q_{i} are two vertices in V. If e_{i} has two adjacent regions t_{a} and $t_{b}, w\left(e_{i}\right)=\min \left(w_{a}, w_{b}\right)$, where w_{a} and w_{b} are the unit weights of t_{a} and t_{b}, respectively. Otherwise, if e_{i} only belongs to one region t_{a}, which is at the border of the workspace (or two regions, but t_{b} has $w_{b}=+\infty$), $w\left(e_{i}\right)=w_{a}$ and we call e_{i} as a border edge. Let $s=(p, q)$ be a segment between any two endpoints p and q. We define $d(p, q)$ as the Euclidean distance between p and q, and $D(p, q)=w \cdot d(p, q)$ as the weighted length, where w is the

[^0]unit weight of the region or the edge that s is on. Then, for a pair of two vertices $u, v \in V$, the weighted region problem (WRP) asks for the minimum cost (or the weighted shortest) path $P^{*}(u, v)=\left(u=o_{0}, o_{1}, \ldots, o_{k}, o_{k+1}=v\right)$ such that the weighted distance $\sum_{i=0}^{k} D\left(o_{i}, o_{i+1}\right)$ is minimum, where points $o_{i}, i \in\{1, \ldots, k\}$, are crossing points on edges in E or vertices in V of the workspace. For short, we call a path whose weighted length is "close to" the weighted length of $P^{*}(u, v)$ as a very-close optimum path (formally defined later).

WRP is a classical path planning problem, which has a large range of applications in robotics, geographical planning and manufacturing (Mitchell 2017). For example, the energy-consuming levels of a robot (or its moving speeds) can be different depending on the moving regions, which can be smooth flat, desert, rocks, water, forest, grassland, etc. Thus, if the corresponding energy consumption (or the speed) is modeled as its unit cost or weight, finding a weighted shortest path turns into finding an optimal energy path (or a minimum time path) for the robot.

Interestingly, the optimum path of WRP does not necessarily go straight when crossing a region edge, or it may only traverse along a portion of a region edge (see Figure 3). In solving an instance of WRP, the following question arises. Which sequence of region edges and which point on each region edge does the minimum cost path cross? It was established in (Mitchell and Papadimitriou 1991) that a path between two vertices is the minimum cost path if and only if it obeys Snell's law from physics each time it crosses a region edge. That is, $P^{*}(u, v)$ crosses a region edge as a ray of light crosses the boundary of two different isotropic media (see Known Fact 1).

However, even if a sequence of region edges that has to be crossed in order is given, finding the optimum path between two vertices such that the path respects the given sequence and each crossing boundary obeys Snell's law is still hard. The equation of Snell's law at each region edge is known and, so, a classical idea is to use an algebraic system of equations to find the crossing points of the shortest path. However, De Carufel et al. (2014) have shown that, even for a sequence of two region edges, the resulting system of equations of degree six cannot be solved in

Algebraic Computation Model over the Rational Numbers $(A C M \mathbb{Q})$. As a consequence, the exiting algorithms to solve WRP are mostly approximations. To give an overview of the existing approaches, we divide them into three groups: (1) exploiting Snell's law, (2) using heuristic methods, and (3) applying decomposition ideas. We next summarize some algorithms of each group. For a more detailed list of related work, we refer the interested reader to (Mitchell 2017; Bose et al. 2011).

One popular method of Group (1) is the work by (Mitchell and Papadimitriou 1991). Their approach uses ideas based on Snell's refraction law and continuous Dijkstra, and yields a ($1+\epsilon$)-approximation for finding a minimum weight shortest path in time $O\left(n^{8} \log (n N W / w \epsilon)\right)$, where n is the number of region edges, N is the maximum integer coordinate of any vertex, W and w are the maximum and minimum unit weights over all regions in the workspace, respectively. While the survey (Goerzen, Kong, and Mettler 2009) claims that the algorithm by Mitchell and Papadimitriou solves WRP exactly, we clarify here that their method computes an approximation solution. Indeed, their approach computes a path whose cost is at most $(1+\epsilon)$ times the exact minimum cost. However, while $1 / \epsilon$ of the other approximation solutions is polynomial, $1 / \epsilon$ of the algorithm by Mitchell and Papadimitriou is the only known logarithmic solution. Hence, ignoring other factors, the this method can run, in reasonable time, with a very-close optimum result. However, when all factors involved in the time complexity, this method is considered as a theoretical method rather than a practical one (Szczerba, Chen, and John J. Uhran 1998; Jaklin, Tibboel, and Geraerts 2014). Furthermore, the algorithms by (Rowe and Alexander 2000; Rowe and Richbourg 1990) are similar in that they exploit Snell's law, but have been evaluated as unrealistic methods (Szczerba, Chen, and John J. Uhran 1998).

The heuristic approaches of Group (2), are more advantageous for quickly finding a solution than for finding veryclose optimum path. Such methods can be found in (Kindl and Rowe 2012) that uses a heuristic search combined with simulated annealing, and in (Xidias 2019) that uses a genetic algorithm to solve WRP constrained by a list of points that a path needs to cross.

For approaches of Group (3), the main idea is to partition the workspace into cells, or to discretize all region edges into points (named Steiner points). Then, based on all resulting cells (resp. points), a grid (resp. graph) is constructed in a second step before an approximated minimum cost path is computed. A list of algorithms that carefully place Steiner points and analyze asymptotic bounds can be found in the survey of Mitchell (2017). While the use of Steiner points is a common approach for solving WRP in geometry, gridbased methods are widely used in robotics. These methods are practical and some can be combined with other constraints, such as (Jaklin, Tibboel, and Geraerts 2014; Xidias 2019; Zheng et al. 2010; Szczerba, Chen, and John J. Uhran 1998). If, however, a particular application requires the computation of very-close optimum path, the resolution of the cell grids or the density of Steiner points on region edges must be large. Thus, these methods might not always
have practical running times due to searching large grids or graphs.

An interesting point made by Rowe and Kindl (2012) is the following: There is a misperception that the WRP has been "solved" since it has been discussed for a long time, but this is incorrect because current practice heavily uses approximation algorithms. The works of (Gheibi et al. 2018; Mitchell 2017) also claim that there is no known exact solution for WRP. To our knowledge, we still have no practical solution that can compute a very-close optimum path in reasonable time. One might argue that many practical applications just need a fast approximate result. However, we believe, finding a very-close optimum path is still scientifically desirable and important for many real-world applications, such as GIS planning, laying of pipelines or electrical cables.

Our work summary

We now formally define a very-close optimum path. Let δ be an extremely small value. If the Euclidean distance between two points or a point to a line in a geometrical workspace is smaller than δ, two points are considered to be the same or the point is considered on the line, respectively. With $P^{*}(u, v)=\left(u, o_{1}, \ldots, o_{k}, v\right)$ being an exact optimal path between two vertices u and v in WRP, given δ, we define the path $P_{c}^{*}(u, v)=\left(u, r_{1}, \ldots, r_{k}, v\right)$ to be a very-close optimum path with respect to δ if for every $i \in\{1, \ldots, k\}$, $d\left(o_{i}, r_{i}\right)<\delta$, where $d\left(o_{i}, r_{i}\right)$ is the Euclidean distance between o_{i} and r_{i}.

1. We present in this paper a practical algorithm of finding a very-close optimum path $P_{c}^{*}(u, v)$ between any two vertices u and v in a workspace.
2. Since (Mitchell and Papadimitriou 1991) mentioned that WRP is sensitive in practice, in this paper, we choose to prove the feasibility and also benchmark the running time of our algorithm by experiments ${ }^{1}$.
3. Because of no known exact optimal solution for WRP, and because other very-close optimum solutions are not practical, with $\delta=10^{-5}$, we first show that our results are nearly equal to, but being remarkably faster than those of using exact quadratic programming with a sequence of five edges.
4. In a complete workspace, where exact quadratic programming cannot be applied, we show that our weighted paths are always shorter than those of one common solution that is based on decomposition ideas using Steiner points in which each edge in the workspace is divided into 6 to 400 Steiner points.
5. Furthermore, due to using the D-graph (defined later), our algorithm can rapidly find the weighted shortest path between any two vertices in the workspace, without recomputing over the whole workspace. This is preferable for applications that need to explore different paths in many times on the same map.
[^1]
Proposed Algorithm

We first present how to find a very-close optimum cost path with respect to δ between two vertices crossing a given edge sequence. Then, in the main algorithm, we describe how to determine all adequate edge sequences in a full workspace of triangular regions to finally find a very-close optimum cost path between any pair of vertices. With S and S^{\prime} being two sequences or arrays, to this end, we use the notation $S \circ S^{\prime}$ with the meaning of appending S^{\prime} to the end of S.

Weighted shortest path crossing an edge sequence

Let $P(u, v)=\left(u=r_{0}, r_{1}, \ldots, r_{k}, r_{k+1}=v\right)$ be a path between two vertices $u, v \in V$, crossing an edge sequence $S=\left(e_{1}, e_{2}, \ldots, e_{k}\right)$ in order, where r_{i} is on e_{i} with every $i \in\{1, \ldots, k\}$. Let $W=\left(w_{0}, \ldots, w_{k}\right)$ be the weight list of S, where every $w_{i}, i \in\{0, \ldots, k\}$, is the unit weight of the region between e_{i} and e_{i+1}, with $e_{0}=(u, u)$ and $e_{k+1}=(v, v)$. For each $e_{i}=\left(p_{i}, q_{i}\right) \in S$, we name two endpoints p_{i} and q_{i} such that when moving from p_{i} to q_{i} on e_{i}, the edge e_{i-1} is on the right while the edge e_{i+1} is on the left of e_{i} (see Figure 1b). Two vertices u and v can also be on e_{1} and e_{k} at the endpoints, respectively. When an edge sequence S satisfies this requirement, we say that S satisfies the sequence arrangement (the case that S cannot satisfy the sequence arrangement will be processed in the next section). Let $n\left(r_{i}, e_{i}\right)$ be the line perpendicular to e_{i} at the point r_{i}, $i \in\{1, \ldots, k\}$. Let α_{i} and β_{i} be two acute angles at r_{i} created by $n\left(r_{i}, e_{i}\right)$ and the segments $\left(r_{i-1}, r_{i}\right)$ and $\left(r_{i}, r_{i+1}\right)$, respectively (see Figure 1a). We say that the path $P(u, v)$ comes in and out the edge e_{i} at r_{i} with the in-angle α_{i} and the out-angle β_{i}, respectively.

Known Fact 1: Snell's law

For every crossing point r_{i} in $P(u, v), i \in\{1, \ldots, k\}$, if r_{i} is not an endpoint of e_{i}, the path $P(u, v)$ has the minimum weighted crossing S if and only if the in-angle α_{i} and the out-angle β_{i} of $P(u, v)$ at e_{i} satisfy: $w_{i-1} \sin \alpha_{i}=$ $w_{i} \sin \beta_{i}$, where $w_{i} \in W$ is the unit weight of the region between e_{i} and e_{i+1}.

Known Fact 2: Critical point

For every edge $e_{j} \in S, j \in\{1, \ldots, k\}$, if $w_{j}<w_{j-1}$ (resp. $w_{j}>w_{j-1}$), the angle $\alpha_{c}=\sin ^{-1}\left(w_{j} / w_{j-1}\right)$ (resp. $\left.\alpha_{c}=\sin ^{-1}\left(w_{j-1} / w_{j}\right)\right)$ is defined as the critical angle of e_{j}. If the path $P(u, v)$ comes in e_{j} with an in-angle $\alpha_{j}=\alpha_{c}$, obeying Snell's law, the out-angle will be $\beta_{j}=90^{\circ}$ (see Figure 1a). The point r_{j} is called a critical point.

The proofs of the Known Facts 1 and 2 can be found in (Mitchell and Papadimitriou 1991). We next present two new definitions as follows.
Snell path: If the path $P(u, v)$ satisfies: (1) every point r_{i}, $i \in\{1, \ldots, k\}$, is on the interior of e_{i}, which is not one of two endpoints of e_{i}, and (2) Snell's law is obeyed at each r_{i}, we call $P(u, v)$ as a Snell path, named $S P(u, v)$.
Snell ray: On the other hand, let a_{1} be a point on $e_{1} \in S$, applying Snell's law from u crossing e_{1} at a_{1}, we can find the out-ray \mathcal{R}_{1}^{a}. Suppose that \mathcal{R}_{1}^{a} intersects $e_{2} \in S$ at a point a_{2}. Then, we can continue calculating the path $P_{a}=\left(u, a_{1}, a_{2}, \ldots, a_{g}, \mathcal{R}_{g}^{a}\right)$, where $1 \leq g \leq k$ and \mathcal{R}_{g}^{a} is the out-ray of the path at $e_{g} \in S$. We define P_{a} to be a Snell
ray of u, starting at the point a_{1}, through a sequence of g segments from e_{1} to e_{g} of S (see Figure 1b).
Proposition 1. Let $P_{b}=\left(u, b_{1}, \ldots, b_{i}, \mathcal{R}_{i}^{b}\right)$ and $P_{c}=$ $\left(u, c_{1}, \ldots, c_{j}, \mathcal{R}_{j}^{c}\right)$ be two Snell rays from u to $e_{i} \in S$ and $e_{j} \in S$, respectively, crossing the same edge sequence $S=\left(e_{1}, \ldots, e_{k}\right)$, where $b_{1} \neq c_{1}, i \leq k$ and $j \leq k$. Two Snell rays P_{b} and P_{c} cannot intersect each other.

Proof. This is deduced from Lemma 4.2 of (Mitchell and Papadimitriou 1991). From Known Fact 1, two Snell paths $S P\left(u, b_{i}\right)=\left(u, b_{1}, \ldots, b_{i}\right)$ and $S P\left(u, c_{j}\right)=\left(u, c_{1}, \ldots, c_{j}\right)$ are two minimum weighted length paths from u to b_{i} and c_{j} crossing S, respectively. By contradiction, suppose that P_{b} and P_{c} intersect each other at a point o (see Figure 1b). Let $P_{b}^{o}=\left(u, b_{1}, \ldots, o\right)$ and $P_{c}^{o}=\left(u, c_{1}, \ldots, o\right)$ be two subpaths of P_{b} and P_{c} from u to o, respectively. We have $D\left(P_{b}^{o}\right)=D\left(P_{c}^{o}\right)$. This is because, if $D\left(P_{b}^{o}\right)>D\left(P_{c}^{o}\right)$, the path $S P\left(u, b_{i}\right)$ can follow P_{c}^{o} to have a less weighted length than its current one, which is contrary to the fact that $S P\left(u, b_{i}\right)$ has the minimum weighted length between u and b_{i} crossing S. This is also similar for the case $D\left(P_{b}^{o}\right)<$ $D\left(P_{c}^{o}\right)$. Thus, $D\left(P_{b}^{o}\right)=D\left(P_{c}^{o}\right)$. Due to this, now, the Snell path $S P\left(u, b_{i}\right)$ can go to o following the path P_{c}^{o} instead of P_{b}^{o} with the weighted length not being changed. However, in this situation, if we get two points o_{1} and o_{2} that are very close to o, then the path $S P\left(u, b_{i}\right)$ can be locally improved by crossing from o_{1} to o_{2} ignoring o to get a shorter weighted length. This is again contrary to that $S P\left(u, b_{i}\right)$ has the minimum weighted length between u and b_{i}.

Find the Snell path $S P(u, v)$ crossing the k edge sequence S is presented in the function Find-Snell-Path. The main idea of the function is to use an iteration scheme, as follows. Let $P_{m}=\left(u, m_{1}, \ldots, R_{g}^{m}\right)$ be a Snell ray of u starting from the middle point m_{1} of e_{1} crossing S. Based on Proposition 1, if v is on the left (resp. right) of P_{m}, then the Snell ray $S P(u, v)$ must cross only the parts from p_{i} to m_{i} (resp. from m_{i} to q_{i}) of edges $e_{i} \in S$. Thus, we modify the original edges $e_{i}=\left(p_{i}, q_{i}\right) \in S$ to the new ones $e_{i}^{\prime}=\left(p_{i}^{\prime}, q_{i}^{\prime}\right)=\left(p_{i}, m_{i}\right)\left(\right.$ resp. $\left.e_{i}^{\prime}=\left(p_{i}^{\prime}, q_{i}^{\prime}\right)=\left(m_{i}, q_{i}\right)\right)$. This process is repeated until P_{m} crosses v, or all of the new edges e_{i}^{\prime} have $d\left(p_{i}^{\prime}, q_{i}^{\prime}\right)<\delta$. We employ this idea from the function Find-Point in the work of (Mitchell and Papadimitriou 1991). However, when there exists a new edge $e_{i}^{\prime}=\left(p_{i}^{\prime}, q_{i}^{\prime}\right)$ of the original edge $e_{i}=\left(p_{i}, q_{i}\right)$ that has $d\left(p_{i}^{\prime}, q_{i}^{\prime}\right)<\delta$, but $d\left(m_{i}^{\prime}, p_{i}\right)<\delta$ or $d\left(m_{i}^{\prime}, q_{i}\right)<\delta$, where m_{i}^{\prime} is the middle point of e_{i}^{\prime}, we will stop the finding process. This is because, in this situation, the minimum weighted path from u to v crossing S is considered as crossing one of the endpoints of $e_{i} \in S$. Thus, the Snell path $S P(u, v)$ cannot exist. In this case, the function Find-Snell-Path will return the crossing endpoint sides. That is, if the crossing point is p_{i} or q_{i} of e_{i}, the crossing endpoint side is left (L) or right (R), respectively. The reason of this will be presented in the main algorithm section. In the function Find-SnellPath, since the edges in S will be modified, but the original ones are still needed, we use one alternative edge sequence S^{\prime}, initially being S, as follows.

Figure 1: Snell path illustrations.

Find-Snell-Path:

Input: u, v, S, W
Output: If there exists the Snell path $S P(u, v)^{2}$, return $S P(u, v)$. Otherwise, if the path crosses one of the endpoints of edges in S, return the crossing endpoint side L or R.

1. Initial: $S P(u, v)=() ; l=1 ;$ root $=u ; S^{\prime}=S$
2. Let m_{l} be the middle point of $e_{l}^{\prime}=\left(p_{l}^{\prime}, q_{l}^{\prime}\right) \in S^{\prime}$. If $d\left(p_{l}^{\prime}, q_{l}^{\prime}\right)<\delta$, go to Step 4. Otherwise, go to Step 3.
3. Find the Snell ray $P_{m}=\left(\right.$ root $\left., m_{l}, m_{l+1}, \ldots, \mathcal{R}_{g}^{m}\right)$ from root, starting at m_{l}, crossing S^{\prime}, where $g \leq k$, and the last ray \mathcal{R}_{g}^{m} cannot intersect $e_{g+1}^{\prime} \in S^{\prime}$. Consider two cases:
3.1 P_{m} crosses the last segment $e_{k}^{\prime} \in S^{\prime}(g=k)$:

- If v is on the last ray \mathcal{R}_{g}^{m} of $P_{m}: S P(u, v)=$ $S P(u, v) \circ\left(\right.$ root $\left., m_{l}, m_{l+1}, \ldots, m_{k}, v\right)$. Go to Step 5.
- Otherwise, if v is on the left (resp. right) side of \mathcal{R}_{g}^{m}, then for every $e_{i}^{\prime}=\left(p_{i}^{\prime}, q_{i}^{\prime}\right) \in S^{\prime}, i \in\{l, \ldots, k\}$, set $\left(p_{i}^{\prime}, q_{i}^{\prime}\right)=\left(p_{i}^{\prime}, m_{i}\right)\left(\operatorname{resp} .\left(p_{i}^{\prime}, q_{i}^{\prime}\right)=\left(m_{i}, q_{i}^{\prime}\right)\right)$. Go to Step 2.
3.2 P_{m} stops at $e_{g}^{\prime} \in S^{\prime}(g<k)$:
- If P_{m} comes in $e_{g}^{\prime}=\left(p_{g}^{\prime}, q_{g}^{\prime}\right)$ at a critical angle: If \mathcal{R}_{g}^{m} goes to $p_{g}^{\prime}\left(\right.$ resp. $\left.q_{g}^{\prime}\right)$, then for every $e_{i}^{\prime}=\left(p_{i}^{\prime}, q_{i}^{\prime}\right) \in S^{\prime}$, $i \in\{l, \ldots, g\}, \operatorname{set}\left(p_{i}^{\prime}, q_{i}^{\prime}\right)=\left(m_{i}, q_{i}^{\prime}\right)\left(\right.$ resp. $\left(p_{i}^{\prime}, q_{i}^{\prime}\right)=$ $\left(p_{i}^{\prime}, m_{i}\right)$).
- Otherwise, \mathcal{R}_{g}^{m} does not intersect e_{g+1}^{\prime}. If e_{g+1}^{\prime} is on the left (resp. right) side of \mathcal{R}_{g}^{m}, then for every $e_{i}^{\prime}=$ $\left(p_{i}^{\prime}, q_{i}^{\prime}\right) \in S^{\prime}, i \in\{l, \ldots, g\}$, set $\left(p_{i}^{\prime}, q_{i}^{\prime}\right)=\left(p_{i}^{\prime}, m_{i}\right)$ $\left(\operatorname{resp} .\left(p_{i}^{\prime}, q_{i}^{\prime}\right)=\left(m_{i}, q_{i}^{\prime}\right)\right)$.

[^2]- Go to Step 2.

4. Get two endpoints p_{l} and q_{l} of $e_{l} \in S$.
4.1. If $d\left(m_{l}, p_{l}\right)<\delta$, return L. If $d\left(m_{l}, q_{l}\right)<\delta$, return R.
4.2. Otherwise, $S P(u, v)=S P(u, v) \circ(r o o t)$. If $l=k$, $S P(u, v)=S P(u, v) \circ\left(m_{l}, v\right)$; Go to Step 5. If $l<k$, root $=m_{l} ; l=l+1$; Go to Step 2.
5. Return $S P(u, v)$.

Lemma 1. In the worst case, the function Find-Snell-Path needs $O(k \log (L / \delta))$ loops to find $S P(u, v)$ crossing S, where L is the largest Euclidean length of edges in S.

Proof. Let L_{l} be the Euclidean length of $e_{l}, l \in\{1, \ldots, k\}$. In the function Find-Snell-Path, from root, we take the middle point of e_{l}, and finding the Snell ray. These steps are repeated until the length $d\left(p_{l}, q_{l}\right)<\delta$. Thus, we need $\log \left(L_{l} / \delta\right)$ loops. Since l is from 1 to k, the number of loops in the worst case is $O(k \log (L / \delta))$.

Main algorithm

To describe the main idea of our algorithm, we first observe an example as follows. Suppose that the final weighted shortest path $P^{*}(u, v)$ between two vertices u and v contains another vertex $g \in V$ such that $P^{*}(u, v)=P^{*}(u, g) \circ$ $P^{*}(g, v)$. Let $S_{u g}$ and $S_{g v}$ be two edge sequences that $P^{*}(u, g)$ and $P^{*}(g, v)$ cross, respectively. The edge sequence that $P^{*}(u, v)$ crosses is $S=S_{u g} \circ S_{g v}$. Suppose that there exists another edge sequence $S^{\prime}=S_{u g}^{\prime} \circ S_{g v}$, where the last edge sequences $S_{g v}$ of S and S^{\prime} are the same, and the minimum weighted path between u and v crossing S^{\prime} also crosses the vertex g when crossing $S_{u g}^{\prime}$. In this situation, the method of (Mitchell and Papadimitriou 1991) finds the minimum weighted length paths between u and v with both S and S^{\prime} separately, then choosing the one that has smaller weighted length. However, with two such edge sequences S and S^{\prime}, our solution can avoid unnecessarily repeated calculations on the sequence $S_{g v}$. Our main idea is as follows.

We use an undirected graph named D-graph $=\left(V_{D}, E_{D}\right)$, where $V_{D}=V \cup V_{c}$ with V_{c} being the set of critical points (explained later). In the workspace, for each pair of two vertices $u, v \in V$, if there exist Snell paths between u and v, which only cross the interiors of edges, an edge between u and v in E_{D} is created. The weight of this edge in E_{D} is the minimum weighted length among Snell paths crossing all different possible edge sequences between u and v. With such the D-graph, we can finally find the last weighted shortest path between any pair of vertices in V by using any shortest path graph algorithm, such as Dijkstra. Thus, our main algorithm has two steps: (1) build the D-graph and (2) apply a shortest path graph algorithm on the D-graph to find the weighted shortest path between any pair of vertices. Since step (2) is easy, we only present how to find the D-graph in the function Build-D-graph. To support the function, we use a data structure called funnel and a function named FindPath, as follows.

We denote $f=(r, S, W)$, where $S=\left(e_{1}, \ldots, e_{k}\right)$ and $W=\left(w_{0}, \ldots, w_{k-1}\right)$ as a funnel with $r \in V$ being the root and the last edge $e_{k} \in S$ being the bottom of the funnel. The edge sequence S is defined as in the function Find-SnellPath such that S must satisfy the sequence arrangement. Let t_{k} be the triangle that contains e_{k} and e_{k-1} in S of f (see Figure 1c). In case e_{k} is not a border, let t_{k}^{\prime} be the adjacent triangle of t_{k} at e_{k}. Let v be a vertex of t_{k}^{\prime} that is not on e_{k}, and c_{1} and c_{2} be two adjacent edges at v of t_{k}^{\prime}. We need to find the Snell path from r to v crossing S. However, the Snell path from r to v crossing S might go around adjacent edges at r and adjacent edges at v with critical points. Thus, the function Find-Path helps connect the adjacent edges at r and v into S before finding the Snell paths by the function Find-Snell-Path.

For adjacent edges at r and v, there are two considering cases. (1) If there is no border edge among adjacent edges at v (see Figure 1c), we call the edge sequences of adjacent edges at v from c_{2} to c_{1} clockwise and from c_{1} to c_{2} counterclockwise, including both c_{1} and c_{2}, as the left and the right adjacent sequences of v, respectively. (2) Otherwise, if there are two border edges b_{1} and b_{2} among adjacent edges at v (see Figure 1d), let b_{1}^{\prime} and b_{2}^{\prime} be two adjacent edges at v that are in the same triangles with b_{1} and b_{2}, respectively. We call the edge sequence from c_{2} to b_{2}^{\prime}, including both c_{2} and b_{2}^{\prime}, as the left adjacent sequence of v, and the edge sequence from c_{1} to b_{1}^{\prime}, including both c_{1} and b_{1}^{\prime}, as the right adjacent sequence of v. The left and right adjacent sequences of r are determined similarly.

Let L_{r}, R_{r}, L_{v} and R_{v} be the left and right adjacent sequences of r and v, respectively. There are at most four edge sequences $S_{1}=L_{r} \circ S \circ L_{v}, S_{2}=R_{r} \circ S \circ R_{v}$, $S_{3}=L_{r} \circ S \circ R_{v}$ and $S_{4}=R_{r} \circ S \circ L_{v}$ that the path from r to v can cross. We note that, to this end, we only consider the general case that these four edge sequences are different. We can similarly prove the special cases where a part of these edge sequences are equal to each other. Thus, correspondingly, there are four minimum weighted shortest paths $P_{i}^{*}(r, v)$ (P_{i}^{*} for short) from r to v crossing S_{i}, where $i \in\{1, \ldots, 4\}$ (see Figure 1c). For every $i \in\{1, \ldots, 4\}$, if the path P_{i}^{*} does not cross any endpoint of edges in S_{i}, P_{i}^{*}
becomes the Snell path crossing S_{i}.
Proposition 2. For the four paths from P_{1}^{*} to P_{4}^{*}, we have: 1. If P_{1}^{*} (resp. P_{2}^{*}) crosses a q (resp. p) endpoint of an edge in S_{1}, then P_{2}^{*} (resp. P_{1}^{*}), P_{3}^{*} and P_{4}^{*} must also cross q (resp. p) endpoints of edges in S_{2} (resp. S_{1}), S_{3} and S_{4}, respectively.
2. If P_{3}^{*} (resp. P_{4}^{*}) crosses a q (resp. p) endpoint of an edge in $S_{3}\left(\right.$ resp. $\left.S_{4}\right)$, then P_{2}^{*} and $P_{4}^{*}\left(\right.$ resp. P_{1}^{*} and $\left.P_{3}^{*}\right)$ must also cross q (resp. p) endpoints of edges in S_{2} and S_{4} (resp. S_{1} and S_{3}), respectively.

Proof. Suppose that P_{1}^{*} crosses an edge $e_{i}=\left(p_{i}, q_{i}\right)$ at q_{i} (the edge e_{i} must be in S). Let P_{1} be the Snell ray that contains the Snell path from r to q_{i} crossing S_{1} in P_{1}^{*}. By contradiction, suppose that P_{3}^{*} does not cross any q endpoint of edges in S_{3}. In this case, P_{1} and P_{3}^{*} must intersect each other in the regions containing S. However, P_{1}^{*} (containing P_{1}) and P_{3}^{*} cross the edge sequences $S_{1}=L_{r} \circ S \circ L_{v}$ and $S_{3}=L_{r} \circ S \circ R_{v}$, respectively. Therefore, S_{1} and S_{3} have the same $L_{r} \circ S$, and from Proposition 1, P_{1} and P_{3} cannot intersect each other in $L_{r} \circ S$. Thus, P_{3}^{*} must cross a q endpoint of an edge in S_{3}. We can similarly prove that P_{4}^{*} must cross a q endpoint of an edge in S_{4} because S_{1} and S_{4} also have the same $S \circ L_{v}$. The path P_{4}^{*} crossing a q endpoint of an edge in S_{4} entails that P_{2}^{*} must also cross a q endpoint of an edge in S_{2} because S_{2} and S_{4} have the same $R_{r} \circ S$. The proof of the second claim is analogous to the proof of the first claim.

Based on Proposition 2, the function Find-Path below can avoid finding all four P_{1}^{*} to P_{4}^{*} to return the one that does not cross any endpoint and has the minimum weighted length. Additionally, for each edge in $e_{i} \in E$, we use an array A_{c} to store critical points that appear on e_{i} after finding the Snell path (see Step 8 of the function Find-Path). We note that, there can be at most two critical points that only appear on adjacent edges at r and v (see an example of a critical point c_{r} in Figure 1d). The reason why we process critical points as in Step 8 of the function Find-Path, along with why we need to return the crossing endpoint sides if no Snell path exists, will be explained after the function Build-D-graph.

Find-Path:

Input: $\left(r, v, S, W, V_{D}, E_{D}\right)$
Output: If there exist Snell paths from r to v crossing S and adjacent edges at r and v, where they do not cross any endpoint, the output is the one with minimum weighted length. Otherwise, if all four P_{1}^{*} to P_{4}^{*} cross endpoints, the output is the crossing endpoint sides, L or R or both (L and R).

1. Initial: $S P_{\text {min }}=()$
2. Determine $L_{r}, R_{r}, L_{v}, R_{v}$. Set $S_{1}=L_{r} \circ S \circ L_{v}, S_{2}=$ $R_{r} \circ S \circ R_{v}, S_{3}=L_{r} \circ S \circ R_{v}$ and $S_{4}=R_{r} \circ S \circ L_{v}$. Let W_{i} be the weight sequence corresponding to S_{i}, where $i \in\{1, \ldots, 4\}$.
3. Run the function Find-Snell-Path $\left(r, v, S_{1}, W_{1}\right)$ to find P_{1}^{*}. If P_{1}^{*} does not cross any endpoint, which is the Snell path returned by Find-Snell-Path, calculate $D\left(P_{1}^{*}\right)$. Otherwise, if P_{1}^{*} crosses a q endpoint (because Find-SnellPath returns R), return R. If P_{1}^{*} crosses a p endpoint (because Find-Snell-Path returns L), $D\left(P_{1}^{*}\right)=+\infty$.
4. Run the function Find-Snell-Path $\left(r, v, S_{2}, W_{2}\right)$ to find P_{2}^{*}. If P_{2}^{*} does not cross any endpoint, calculate $D\left(P_{2}^{*}\right)$. Otherwise, if P_{2}^{*} crosses a p endpoint, return L. If P_{2}^{*} crosses a q endpoint, $D\left(P_{2}^{*}\right)=+\infty$.
5. Run the function Find-Snell-Path $\left(r, v, S_{3}, W_{3}\right)$ to find P_{3}^{*}. If P_{3}^{*} does not cross any endpoint, calculate $D\left(P_{3}^{*}\right)$. Otherwise, $D\left(P_{3}^{*}\right)=+\infty$. Then, if P_{3}^{*} crosses a q endpoint, go to Step 7. Otherwise, go to Step 6.
6. Run the function Find-Snell-Path $\left(r, v, S_{4}, W_{4}\right)$ to find P_{4}^{*}.
6.1. If P_{4}^{*} does not cross any endpoint, calculate $D\left(P_{4}^{*}\right)$. The result $S P_{\min }$ is determined by $D\left(S P_{\min }\right)=$ $\min \left(D\left(P_{1}^{*}\right), D\left(P_{2}^{*}\right), D\left(P_{3}^{*}\right), D\left(P_{4}^{*}\right)\right)$. Go to Step 8.
6.2. If P_{4}^{*} crosses a p endpoint (in this case, P_{1}^{*} and P_{3}^{*} must also cross p endpoints): If $D\left(P_{2}^{*}\right) \neq+\infty$, $S P_{\text {min }}=P_{2}^{*}$. Go to Step 8. Otherwise, return (L and R) (because P_{2}^{*} crosses a q endpoint while P_{1}^{*}, P_{3}^{*} and P_{4}^{*} cross p endpoints).
6.3. If P_{4}^{*} crosses a q endpoint (in this case, P_{2}^{*} must also cross a q endpoint): If $D\left(P_{1}^{*}\right)=D\left(P_{3}^{*}\right)=+\infty$, return both (L and R) (because P_{1}^{*} and P_{3}^{*} cross p endpoints while P_{2}^{*} and P_{4}^{*} cross q endpoints). Otherwise, the result $S P_{\min }$ is determined by $D\left(S P_{\min }\right)=$ $\min \left(D\left(P_{1}^{*}\right), D\left(P_{3}^{*}\right)\right)$. Go to Step 8.
7. P_{3}^{*} crosses a q endpoint (in this case, P_{2}^{*} and P_{4}^{*} must also cross q endpoints): If $D\left(P_{1}^{*}\right) \neq+\infty, S P_{\text {min }}=P_{1}^{*}$. Go to Step 8. Otherwise, return both (L and R) (because P_{1}^{*} crosses a p endpoint while P_{2}^{*}, P_{3}^{*} and P_{4}^{*} cross q endpoints).
8. Consider (at most) two critical points in $S P_{\min }$: If there exists a critical point c_{r} (resp. c_{v}) on an edge e_{r} (resp. e_{v}) among edges that are adjacent at r (resp. v), insert c_{r} (resp. c_{v}) into V_{D} and into the array A_{c} of e_{r} (resp. e_{v}). Then, create one edge between v and c_{r} (resp. between r and c_{v}) in E_{D} with the weight being $D\left(v, c_{r}\right)$ (resp. $D\left(r, c_{v}\right)$) according to $S P_{\text {min }}$.
9. Return $S P_{\text {min }}$.

Next, with a complete workspace, how to build the whole D-graph with the help of funnels and the function Find-Path is presented in the function Build-D-graph, as follows.

Build-D-graph:

Input: $W S=(T, E, V)$
Output: D-graph $\left(V_{D}, E_{D}\right)$

1. Initial: $V_{D}=V$. Assign a matrix $|V| \times|V|$ to E_{D}. For every $1 \leq i, j \leq|V|, E_{D}[i][j]=0$ if $i=j$ and $E_{D}[i][j]=+\infty$ if $i \neq j$. For every $e_{i} \in E$, let A_{c} be an array that saves all critical points appearing on e_{i}, $A_{c}=[]$. Let Q be a queue that contains funnels, $Q=\{ \}$.
2. For each vertex $u \in V$:
2.1. Let T_{i} be the set of triangles that are adjacent at u. For each triangle $t_{i} \in T_{i}$, let e_{i} be the edge of t_{i} that does not contain u, create a funnel $f=\left(u, S=\left(e_{i}\right), W=\right.$ $\left.\left(w_{i}\right)\right)$, where w_{i} is the unit weight of t_{i}. Push f into Q.

2.2. Loop until Q is empty

2.2.1. Pop one funnel $f=\left(r, S=\left(e_{1}, \ldots, e_{k}\right), W=\right.$ $\left.\left(w_{0}, \ldots, w_{k-1}\right)\right)$ out Q. Let t_{k} be the triangle that contains e_{k} and e_{k-1}. Consider two cases. If e_{k} is a border, go to Step 2.2. Otherwise, let t_{k}^{\prime} be the adjacent triangle of t_{k} at e_{k} with the unit weight w_{k}^{\prime}. Let v
be a vertex of t_{k}^{\prime} that is not on e_{k}. If $E_{D}[v][r] \neq+\infty$, go to Step 2.2.3. Otherwise, go to Step 2.2.2.
2.2.2. Find the Snell path $S P(r, v)$ (if exists) by the function Find-Path $\left(r, v, S, W \circ\left(w_{k}^{\prime}\right), V_{D}, E_{D}\right)$.

- If Find-Path returns $S P(r, v)$ and if $D(S P(r, v))<$ $E_{D}[r][v]$, then $E_{D}[r][v]=D(S P(r, v))$. Go to Step 2.2.3.
- If Find-Path returns L or R, then go to Step 2.2.4. If Find-Path returns both (L and R), go to Step 2.2.
2.2.3. Let c_{1} and c_{2} be two adjacent edges at v in the triangle t_{k}^{\prime}. Create two funnels $f_{1}=\left(r, S_{1}, W_{1}\right)$ and $f_{2}=$ $\left(r, S_{2}, W_{2}\right)$, where $S_{1}=S \circ\left(c_{1}\right), S_{2}=S \circ\left(c_{2}\right)$, $W_{1}=W \circ\left(w_{k}^{\prime}\right)$ and $W_{2}=W \circ\left(w_{k}^{\prime}\right)$. Push two funnels f_{1} and f_{2} into Q . Go to Step 2.2.
2.2.4. Consider two crossing endpoint sides. If the crossing endpoint side is L (resp. R), create only one funnel: $f_{1}=\left(r, S_{1}, W_{1}\right)\left(\right.$ resp. $f_{2}=\left(r, S_{2}, W_{2}\right)$), where $S_{1}=S \circ\left(c_{1}\right)\left(\right.$ resp. $\left.S_{2}=S \circ\left(c_{2}\right)\right)$ with c_{1} (resp. $\left.c_{2}\right)$ being the edge in t_{k}^{\prime} that is adjacent to $e_{k}=\left(p_{k}, q_{k}\right)$ at q_{k} (resp. p_{k}). Push f_{1} (resp. f_{2}) into Q. Go to Step 2.2.

3. For each $e_{i}=\left(p_{i}, q_{i}\right) \in E$:
3.1. Find the Snell path $S P\left(p_{i}, q_{i}\right)$ between p_{i} and q_{i} that crosses only adjacent edges at p_{i} and q_{i} by the function Find-Path $\left(p_{i}, q_{i}, S, W, V_{D}, E_{D}\right)$, where S and W are empty. Then, if $D\left(S P\left(p_{i}, q_{i}\right)\right)<E_{D}\left[p_{i}\right]\left[q_{i}\right]$, $E_{D}\left[p_{i}\right]\left[q_{i}\right]=D\left(S P\left(p_{i}, q_{i}\right)\right)$.
3.2. If the critical array A_{c} of e_{i} is not empty, sort critical points in A_{c} such that $D\left(p_{i}, c_{j}\right)<D\left(p_{i}, c_{j+1}\right), j \in$ $\{1, \ldots,|A c|-1\}$. Then, in E_{D}, create edges between c_{j} and c_{j+1} with the edge weights being $D\left(c_{j}, c_{j+1}\right)$.
In Build-D-graph, at Step 2.1., each vertex $u \in V$ is initiated as roots of funnels that contain only one edge in S, which is the edge opposite to u in triangles adjacent at u. For each funnel $f=(r, S, W)$, we then find the Snell path from the root r to the vertex v, which is opposite to the last edge e_{k} in S, crossing the edge sequence S and adjacent edges at r and v. The funnels in Q, after that, are spread as follows. Let v_{1} and v_{2} be two vertices opposite to c_{1} and c_{2} in two triangles that are adjacent to t_{k}^{\prime} at c_{1} and c_{2}, respectively (see Figure 1c). For short, let $S_{r}^{v}=\left\{S_{i} \mid u \in\{1, \ldots, 4\}\right\}$ be the set of four edge sequences created by S and adjacent edges at r and v, as presented previously. Similarly, let S_{r}^{1} and S_{r}^{2} be the set of four edge sequences created by $\left(S \circ\left(c_{1}\right)\right.$ and adjacent edges at r and v_{1}) and by ($S \circ\left(c_{2}\right)$ and adjacent edges at r and v_{2}), respectively. It is easy to see that, if there exists the Snell path $S P(r, v)$ crossing the edge sequences in S_{r}^{v}, there may exist two Snell paths from r to v_{1} and v_{2} crossing the edge sequences in S_{r}^{1} and S_{r}^{2}, respectively. Thus, at Step 2.2.3., we create two funnels f_{1} and f_{2} with the same root r and the edge sequences being $S \circ\left(c_{1}\right)$ and $S \circ\left(c_{2}\right)$, respectively. However, if there is no Snell path from r to v crossing the edge sequences in S_{r}^{v}, the way we process at Step 2.2.4. is proven to be correct in Proposition 3, which is easily to show.
Proposition 3. With the funnel $f=(r, S, W)$, if there is no Snell path from r to v crossing the edge sequences in S_{r}^{v} :
4. Among four paths from P_{1}^{*} to P_{4}^{*}, if a part of these paths have the same crossing endpoint side at L and the re-

Figure 2: An edge sequence that the sequence arrangement is fail.
maining paths have the same crossing endpoint side at R, there is no Snell path from r to v_{1} or from r to v_{2} crossing the edge sequences in S_{r}^{1} or S_{r}^{2}, respectively.
2. If all four paths from P_{1}^{*} to P_{4}^{*} from r to v have the same crossing endpoint side at L (resp. R), there is no Snell path from r to v_{2} (resp. v_{1}) crossing the edge sequences in S_{r}^{2} (resp. S_{r}^{1}).
Finally, we consider the case that an edge sequence cannot satisfy the sequence arrangement. Let $S P\left(r, r^{\prime}\right)=$ $\left(r, r_{1}, \ldots, r_{k}, c, c^{\prime}, r_{l}^{\prime}, \ldots, r_{1}^{\prime}, r^{\prime}\right)$ be the Snell path between two vertices r and r^{\prime} crossing the edge sequence $S_{r r^{\prime}}=$ $\left(e_{1}, \ldots, e_{k}, e, e_{l}^{\prime}, \ldots, e_{1}^{\prime}\right)$, where $S_{r r^{\prime}}$ cannot satisfy the sequence arrangement (see Figure 2). The Snell path $S P\left(r, r^{\prime}\right)$ has two critical points c and c^{\prime} on the edge $e=\left(v, v^{\prime}\right)$. We prove that this case will not be missed in our algorithm based on Proposition 4.
Proposition 4. The Snell path $S P\left(r, r^{\prime}\right)$ crossing $S_{r r^{\prime}}$ exists if and only if $S P\left(r, v^{\prime}\right)=\left(r_{1}, \ldots, r_{k}, c, v^{\prime}\right)$ is the Snell path from r to v^{\prime} crossing $S=\left(e_{1}, \ldots, e_{k}, e\right)$, and $S P\left(r^{\prime}, v\right)=$ $\left(r_{1}^{\prime}, \ldots, r_{l}^{\prime}, c^{\prime}, v\right)$ is the Snell path from r^{\prime} to v, crossing $S^{\prime}=$ $\left(e_{1}^{\prime}, \ldots, e_{l}^{\prime}, e\right)$.

Proof. This is correct because if each crossing point of $S P\left(r, v^{\prime}\right)$ and $S P\left(r^{\prime}, v\right)$ satisfies Snell's law, then each crossing point of $S P\left(r, r^{\prime}\right)$ also satisfies Snell's law, and vice versa.

Since S and S^{\prime} are two edge sequences that can satisfy the sequence arrangement, two paths $S P\left(r, v^{\prime}\right)$ and $S P\left(r^{\prime}, v\right)$ crossing S and S^{\prime} with two critical point c and c^{\prime}, respectively, will be found by the function Find-Path in our algorithm. At Step 8 of the function Find-Path, we store c and c^{\prime} in the critical array A_{c} of e, and create two new vertices corresponding to c and c^{\prime} in the D -graph. Then, we connect (r and c) and (r^{\prime} and c^{\prime}) together in the D -graph with the connection weights being $D(r, c)$ and $D\left(r^{\prime}, c^{\prime}\right)$ according to $S P\left(r, v^{\prime}\right)$ and $S P\left(r^{\prime}, v\right)$, respectively. After that, in the function Build-D-graph, at Step 3.2., we connect c and c^{\prime} together. By this way, we can assure that, when a shortest path graph algorithm is applied on the D-graph, the path $S P\left(r, r^{\prime}\right)$ will be considered.

Experimental results

We have two experimental scenarios, as follows. First, with a given sequence of edges, we would like to ensure that the function Find-Snell-Path can return a very-close optimum path. As presented in the introduction, the work of (Carufel
et al. 2014) claims that an exact weighted shortest path between two given points crossing an edge sequence cannot be found by using algebraic systems of equations. Hence, we use quadratic programming to find the minimum cost paths to compare against our results. Since the exact quadratic programming is NP-hard, we can only run with a small number of edges. However, this result can help us show in practice that the function Find-Snell-Path really returns very-close optimum paths. For our second scenario, in the workspace of triangles, we compare our method with one popular decomposition method of (Lanthier, Maheshwari, and Sack 2001), named the Steiner-Point method. Although this work is rather old, it seems to be a standard one of the decomposition group. We notice that many newer methods of this group mostly focus on reducing the running time at the expense of the accuracy with respect to the optimum length. However, our target here is the comparison of the path accuracy, and this standard method can assure to supply a high accuracy path when the number of Steiner points on each edge of the workspace is large enough.

We randomly generate all test cases within a plane of 5000×5000 units and the unit weights are in the range $[1,100]$. All the running times presented in this section are obtained using a system of CPU Intel Core i5, 8G RAM and using Microsoft Visual Studio C++.

Scenario 1: Compare against Quadratic Programming

With a sequence of k edges $S=\left(e_{1}, \ldots, e_{k}\right)$, where S satisfies the sequence arrangement, the quadratic programming model of finding the minimum weighted path $P(r, v)=$ $\left(r=r_{0}, r_{1}, \ldots, r_{k}, r_{k+1}=v\right)$ between r and v crossing S, named the $Q P$-model, is as follows:
Variables: A point r_{i} is created on every edge $e_{i} \in S$, $i \in\{1, \ldots, k\}$, thus two real variables x_{i}, y_{i}, which are the x and y coordinates of r_{i}, are created, respectively. For each pair of two points r_{i} and $r_{i+1}, i \in\{1, \ldots, k\}$, a real variable d_{i}, which corresponds to the Euclidean distance between r_{i} and r_{i+1}, is created.
Objective function: Minimize $\sum_{i=0}^{k} w_{i} d_{i}$
Subject to: For every $d_{i}, i \in\{0, \ldots, k\}, d_{i}^{2}=\left(x_{i}-\right.$ $\left.x_{i+1}\right)^{2}+\left(y_{i}-y_{i+1}\right)^{2}$. For every $e_{i}=\left(p_{i}, q_{i}\right) \in S$, $i \in\{1, \ldots, k\}$, set constraints that r_{i} must be on the segment $\left(p_{i}, q_{i}\right)$.

Since the QP-model is non-convex quadratic, which cannot be solved by the basic quadratic programming solvers, we use Couenne ${ }^{3}$, an exact solver for the non-convex mixed integer non-linear programming. As we tested, with $k \geq 6$, running the QP-model is extremely time-consuming. Thus, in this scenario, we choose $k=5$ to show that the results of the function Find-Snell-Path and the QP-model are very close together when the Snell path exists between r and v.

We run our method with $\delta=10^{-5}$. The experiment shows that the average difference between our results and the QPmodel results over 500 test cases is $\mathbf{0 . 0 1}$, where the longest Euclidean distance of edges in S is $\sqrt{2} \cdot 5000$, with the weights being in $[1,100]$. This result confirms our claim. Furthermore, the average running time of our method is $\mathbf{0 . 0 4}$ seconds while that of the QP-model is $\mathbf{2 8 . 4 4}$ seconds.

[^3]Table 1: Summary of our method and the Steiner-Point method over 600 test cases, within six groups of the number of regions from 5 to 30. The Steiner-Point method is run with m from 6 to 400 . The running times are measured in seconds.

Number of regions		5	10	15	20	25	30
Our method's average times		$\mathbf{1 . 3 7}$	$\mathbf{8 . 5 8}$	$\mathbf{2 9 . 6 6}$	$\mathbf{5 9 . 6 9}$	$\mathbf{1 4 5 . 4 0}$	$\mathbf{2 4 6 . 3 7}$
$m=6$	average times	0.03	0.09	0.18	0.31	0.43	0.58
	ΔD	6152.53	50574.69	160133.55	510206.22	931260.48	1763458.92
$m=150$	average times	12.63	36.92	72.15	118.27	167.36	233.93
	ΔD	23.93	154.45	522.21	1713.76	3126.83	6768.65
$m=250$	average times	34.65	101.19	196.84	324.14	463.59	640.30
	ΔD	10.04	53.32	197.66	620.69	1198.45	2478.39
$m=300$	average times	49.63	146.20	278.48	474.27	678.74	out of memory
	ΔD	7.28	36.09	142.55	468.88	841.60	
$m=350$	average times	68.61	198.89	376.43	out of memory	out of memory	out of memory
	ΔD	5.17	27.71	103.40			
$m=400$	average times	89.36	258.16	out of memory	out of memory	out of memory	out of memory
	ΔD	3.62	20.82				

Scenario 2: Compare against the Steiner-Point method

With the Steiner-Point method, for each $e_{i} \in E$, we place m Steiner points evenly along the length of e_{i}, where m is a positive integer. Let $G_{\epsilon}=\left(V_{\epsilon}, E_{\epsilon}\right)$ be a graph, where V_{ϵ} is the set of vertices and E_{ϵ} is the set of edges. The set V_{ϵ} contains all vertices in V and the Steiner points on all edges in E. For each region $t_{i} \in T$, all vertices and Steiner points on edges of t_{i} are connected mutually, creating edges in E_{ϵ}. Let $v, u \in V_{\epsilon}$, the weight of the connection between v and u in E_{ϵ} is $w_{u v} \cdot d(v, u)$, where $w_{u v}$ is the unit weight of the region or the edge that both v and u are on. After building G_{ϵ}, we apply Dijkstra algorithm to find the weighted shortest path between any two vertices in V. Our method is with $\delta=10^{-5}$. After creating the D-graph, we also use Dijkstra algorithm to find the weighted shortest path between any two vertices in V. We use the standard Dijkstra algorithm in the Boost library for both the Steiner-Point method and our method in this experiment. We randomly create 600 test cases of six groups of the workspaces having 5, 10, 15, 20, 25 and 30 triangles (100 test cases for each group). For each test case, we find the weighted shortest paths of all pairs of vertices, by our method and the Steiner-Point method with $6 \leq m \leq 400$. Let D and D^{\prime} be the weighted length sums of all the result paths from our method and the Steiner-Point method per test case, respectively. We denote the average weighted length difference per test case between our method and the Steiner-point method as $\Delta D=D^{\prime}-D$. Table 1 summarizes our comparison.

Among all 600 test cases, there is no test case that the weighted length of our method is greater than that of the Steiner-Point method, even when the number of Steiner points per each edge of the Steiner-Point method grows up to 400. Additionally, the running times are significantly shorter with our method. First, we test with $m=6$ since the work of (Lanthier, Maheshwari, and Sack 2001) recommends this value. However, as in Table 1, the average weighted length of the Steiner-Point method with $m=6$ in each group is too far away from our result. When m is increased, up to 400, with the cases of five and ten regions, obviously, the average weighted lengths of the Steiner-Point method come close to our results. However, with five regions, our running time is only 1.37 seconds while the Steiner-Point method running

Figure 3: One test case with 10 regions, 20 region edges and 11 vertices, showing three very-close optimum paths between vertices (0 and 1), (2 and 3) and (4 and 5).
time is 89.36 seconds, a speed up of around 65 times. Similarly, with ten regions, we are around 30 times faster. For the remaining cases, when the number of regions and m are large, the Steiner-Point method runs out of memory (larger than 1.7 GB). We present one of our test cases with ten regions in Figure 3.

Conclusion

We have presented experiments for WRP with $\delta=10^{-5}$. If we change δ, the closeness of the optimal path lengths in our method to the exact solution depends on δ. As δ decreases, the difference between the lengths of these two paths becomes smaller. The value of δ, accordingly, affects the running time of our method only in a logarithmic function (see Lemma 1). We also note that, to find the weighted shortest path between two points that are not vertices of the workspace, one can easily make these two points vertices by adding new triangles. For the future work, we will improve the running time of building the D-graph by using heuristics and extend it to the three-dimensional workspaces.

References

Bose, P.; Maheshwari, A.; Shu, C.; and Wuhrer, S. 2011. A survey of geodesic paths on 3d surfaces. Computational Geometry 44(9):486-498.
Carufel, J.-L. D.; Grimm, C.; Maheshwari, A.; Owen, M.; and Smid, M. 2014. A note on the unsolvability of the weighted region shortest path problem. Computational Geometry 47(7):724-727.
Gheibi, A.; Maheshwari, A.; Sack, J.-R.; and Scheffer, C. 2018. Path refinement in weighted regions. Algorithmica 80(12):3766-3802.
Goerzen, C.; Kong, Z.; and Mettler, B. 2009. A survey of motion planning algorithms from the perspective of autonomous uav guidance. Journal of Intelligent and Robotic Systems 57(1):65.
Jaklin, N.; Tibboel, M.; and Geraerts, R. 2014. Computing high-quality paths in weighted regions. In Proceedings of the Seventh International Conference on Motion in Games, MIG '14, 77-86. New York, NY, USA: ACM.
Kindl, M. R., and Rowe, N. C. 2012. Evaluating simulated annealing for the weighted-region path-planning problem. In 2012 26th International Conference on Advanced Information Networking and Applications Workshops, 926-931.
Lanthier, M.; Maheshwari, A.; and Sack, J.-R. 2001. Approximating shortest paths on weighted polyhedral surfaces. Algorithmica 30(4):527-562.
Mitchell, J. S. B., and Papadimitriou, C. H. 1991. The weighted region problem: Finding shortest paths through a weighted planar subdivision. J. ACM 38(1):18-73.
Mitchell, J. S. B. 2017. Chapter 31: Shortest paths and network. In Toth, C. D.; O'Rourke, J.; and Goodman, J. E., eds., Handbook of Discrete and Computational Geometry. Chapman and Hall/CRC.
Rowe, N. C., and Alexander, R. S. 2000. Finding optimalpath maps for path planning across weighted regions. The International Journal of Robotics Research 19(2):83-95.
Rowe, N. C., and Richbourg, R. 1990. An efficient snell's law method for optimal-path planning across multiple twodimensional, irregular, homogeneous-cost regions. The International Journal of Robotics Research 9(6):48-66.
Szczerba, R. J.; Chen, D. Z.; and John J. Uhran, J. 1998. Planning shortest paths among 2d and 3d weighted regions using framed-subspaces. The International Journal of Robotics Research 17(5):531-546.
Xidias, E. K. 2019. On designing near-optimum paths on weighted regions for an intelligent vehicle. International Journal of Intelligent Transportation Systems Research 17(2):89-101.
Zheng, X.; Koenig, S.; Kempe, D.; and Jain, S. 2010. Multirobot forest coverage for weighted and unweighted terrain. IEEE Transactions on Robotics 26(6):1018-1031.

[^0]: Copyright © 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

[^1]: ${ }^{1}$ Theoretical running time with asymptotic bounds will be presented in the extended version.

[^2]: ${ }^{2}$ We note that, $S P(u, v)=\left(u, r_{1}, \ldots, r_{k}, v\right)$, which is returned by the function Find-Snell-Path, is a very-close optimum path with respect to δ, but not necessarily an exact Snell path. Let $S P^{*}(u, v)=\left(u, o_{1}, \ldots, o_{k}, v\right)$ be the exact Snell path, the function Find-Snell-Path only guarantees that $d\left(o_{i}, r_{i}\right)<\delta$ for every $i \in\{1, \ldots, k\}$. However, to avoid creating new definitions, to this end, we generally say that the function Find-Snell-Path returns the Snell path $S P(u, v)$ between the u and v crossing S.

[^3]: ${ }^{3}$ https://projects.coin-or.org/Couenne/

