
Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020)

Computing Close to Optimal Weighted Shortest Paths in Practice

Nguyet Tran, Michael J. Dinneen, Simone Linz
School of Computer Science, University of Auckland, Auckland, New Zealand
ntra770@aucklanduni.ac.nz, mjd@cs.auckland.ac.nz, s.linz@auckland.ac.nz

Abstract

This paper proposes a new practical method for the weighted
region problem (WRP). The objective of WRP is to find a
minimum cost path between two vertices among different re-
gions where each region incurs a traversal cost per unit dis-
tance. Currently, there is no practical algorithm that solves
this problem exactly. Among the approximation methods that
solve instances of WRP, there is a limited number of algo-
rithms that compute paths whose lengths are close to optimal,
which we call very-close optimum paths. However, they are
considered as theoretical methods. On the other hand, algo-
rithms for solving WRP that can be applied to practical data
sets (using decomposition ideas or heuristics) are not guar-
anteed to find a very-close optimum path within an accept-
able amount of time. In this paper, we consider an alternative
method for solving WRP that exploits Snell’s law of physi-
cal refraction. We compare the performance of our new al-
gorithm with that of two existing algorithms, using at least
500 test cases for each such comparison. The experimental
results show that our algorithm returns a very-close optimum
weighted shortest path in reasonable time.

Introduction

Let WS = (T,E, V) be a continuous two-dimensional
workspace, where T , E and V are the set of regions, re-
gion edges and vertices, respectively. The regions are non-
overlapping polygons, which are defined by vertices and
edges (see Figure 3). We consider each region ti ∈ T as
a triangle since any polygon that is not a triangle can be
divided into triangles. Traversing each region ti ∈ T in-
curs a unit cost (or weight) wi > 0. Let w(ei) be the
unit weight of a region edge ei = (pi, qi) ∈ E, where
pi and qi are two vertices in V . If ei has two adjacent re-
gions ta and tb, w(ei) = min(wa, wb), where wa and wb

are the unit weights of ta and tb, respectively. Otherwise,
if ei only belongs to one region ta, which is at the border
of the workspace (or two regions, but tb has wb = +∞),
w(ei) = wa and we call ei as a border edge. Let s = (p, q)
be a segment between any two endpoints p and q. We de-
fine d(p, q) as the Euclidean distance between p and q, and
D(p, q) = w · d(p, q) as the weighted length, where w is the

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

unit weight of the region or the edge that s is on. Then, for a
pair of two vertices u, v ∈ V , the weighted region problem
(WRP) asks for the minimum cost (or the weighted short-
est) path P ∗(u, v) = (u = o0, o1, . . . , ok, ok+1 = v) such
that the weighted distance

∑k
i=0 D(oi, oi+1) is minimum,

where points oi, i ∈ {1, . . . , k}, are crossing points on edges
in E or vertices in V of the workspace. For short, we call a
path whose weighted length is “close to” the weighted length
of P ∗(u, v) as a very-close optimum path (formally defined
later).

WRP is a classical path planning problem, which has a
large range of applications in robotics, geographical plan-
ning and manufacturing (Mitchell 2017). For example, the
energy-consuming levels of a robot (or its moving speeds)
can be different depending on the moving regions, which
can be smooth flat, desert, rocks, water, forest, grassland,
etc. Thus, if the corresponding energy consumption (or the
speed) is modeled as its unit cost or weight, finding a
weighted shortest path turns into finding an optimal energy
path (or a minimum time path) for the robot.

Interestingly, the optimum path of WRP does not neces-
sarily go straight when crossing a region edge, or it may only
traverse along a portion of a region edge (see Figure 3). In
solving an instance of WRP, the following question arises.
Which sequence of region edges and which point on each
region edge does the minimum cost path cross? It was es-
tablished in (Mitchell and Papadimitriou 1991) that a path
between two vertices is the minimum cost path if and only
if it obeys Snell’s law from physics each time it crosses a re-
gion edge. That is, P ∗(u, v) crosses a region edge as a ray of
light crosses the boundary of two different isotropic media
(see Known Fact 1).

However, even if a sequence of region edges that has to
be crossed in order is given, finding the optimum path be-
tween two vertices such that the path respects the given se-
quence and each crossing boundary obeys Snell’s law is still
hard. The equation of Snell’s law at each region edge is
known and, so, a classical idea is to use an algebraic sys-
tem of equations to find the crossing points of the short-
est path. However, De Carufel et al. (2014) have shown
that, even for a sequence of two region edges, the result-
ing system of equations of degree six cannot be solved in

291

Algebraic Computation Model over the Rational Numbers
(ACMQ). As a consequence, the exiting algorithms to solve
WRP are mostly approximations. To give an overview of
the existing approaches, we divide them into three groups:
(1) exploiting Snell’s law, (2) using heuristic methods, and
(3) applying decomposition ideas. We next summarize some
algorithms of each group. For a more detailed list of re-
lated work, we refer the interested reader to (Mitchell 2017;
Bose et al. 2011).

One popular method of Group (1) is the work by (Mitchell
and Papadimitriou 1991). Their approach uses ideas based
on Snell’s refraction law and continuous Dijkstra, and yields
a (1+ε)-approximation for finding a minimum weight short-
est path in time O(n8 log(nNW/wε)), where n is the num-
ber of region edges, N is the maximum integer coordi-
nate of any vertex, W and w are the maximum and min-
imum unit weights over all regions in the workspace, re-
spectively. While the survey (Goerzen, Kong, and Mettler
2009) claims that the algorithm by Mitchell and Papadim-
itriou solves WRP exactly, we clarify here that their method
computes an approximation solution. Indeed, their approach
computes a path whose cost is at most (1 + ε) times the
exact minimum cost. However, while 1/ε of the other ap-
proximation solutions is polynomial, 1/ε of the algorithm by
Mitchell and Papadimitriou is the only known logarithmic
solution. Hence, ignoring other factors, the this method can
run, in reasonable time, with a very-close optimum result.
However, when all factors involved in the time complexity,
this method is considered as a theoretical method rather than
a practical one (Szczerba, Chen, and John J. Uhran 1998;
Jaklin, Tibboel, and Geraerts 2014). Furthermore, the algo-
rithms by (Rowe and Alexander 2000; Rowe and Richbourg
1990) are similar in that they exploit Snell’s law, but have
been evaluated as unrealistic methods (Szczerba, Chen, and
John J. Uhran 1998).

The heuristic approaches of Group (2), are more advan-
tageous for quickly finding a solution than for finding very-
close optimum path. Such methods can be found in (Kindl
and Rowe 2012) that uses a heuristic search combined with
simulated annealing, and in (Xidias 2019) that uses a genetic
algorithm to solve WRP constrained by a list of points that
a path needs to cross.

For approaches of Group (3), the main idea is to partition
the workspace into cells, or to discretize all region edges into
points (named Steiner points). Then, based on all resulting
cells (resp. points), a grid (resp. graph) is constructed in a
second step before an approximated minimum cost path is
computed. A list of algorithms that carefully place Steiner
points and analyze asymptotic bounds can be found in the
survey of Mitchell (2017). While the use of Steiner points
is a common approach for solving WRP in geometry, grid-
based methods are widely used in robotics. These meth-
ods are practical and some can be combined with other
constraints, such as (Jaklin, Tibboel, and Geraerts 2014;
Xidias 2019; Zheng et al. 2010; Szczerba, Chen, and John
J. Uhran 1998). If, however, a particular application requires
the computation of very-close optimum path, the resolution
of the cell grids or the density of Steiner points on region
edges must be large. Thus, these methods might not always

have practical running times due to searching large grids or
graphs.

An interesting point made by Rowe and Kindl (2012) is
the following: There is a misperception that the WRP has
been “solved” since it has been discussed for a long time,
but this is incorrect because current practice heavily uses
approximation algorithms. The works of (Gheibi et al. 2018;
Mitchell 2017) also claim that there is no known exact so-
lution for WRP. To our knowledge, we still have no prac-
tical solution that can compute a very-close optimum path
in reasonable time. One might argue that many practical ap-
plications just need a fast approximate result. However, we
believe, finding a very-close optimum path is still scientif-
ically desirable and important for many real-world applica-
tions, such as GIS planning, laying of pipelines or electrical
cables.

Our work summary

We now formally define a very-close optimum path. Let δ be
an extremely small value. If the Euclidean distance between
two points or a point to a line in a geometrical workspace
is smaller than δ, two points are considered to be the same
or the point is considered on the line, respectively. With
P ∗(u, v) = (u, o1, . . . , ok, v) being an exact optimal path
between two vertices u and v in WRP, given δ, we define
the path P ∗

c (u, v) = (u, r1, . . . , rk, v) to be a very-close op-
timum path with respect to δ if for every i ∈ {1, . . . , k},
d(oi, ri) < δ, where d(oi, ri) is the Euclidean distance be-
tween oi and ri.
1. We present in this paper a practical algorithm of finding a

very-close optimum path P ∗
c (u, v) between any two ver-

tices u and v in a workspace.
2. Since (Mitchell and Papadimitriou 1991) mentioned that

WRP is sensitive in practice, in this paper, we choose to
prove the feasibility and also benchmark the running time
of our algorithm by experiments1.

3. Because of no known exact optimal solution for WRP,
and because other very-close optimum solutions are not
practical, with δ = 10−5, we first show that our results
are nearly equal to, but being remarkably faster than those
of using exact quadratic programming with a sequence of
five edges.

4. In a complete workspace, where exact quadratic pro-
gramming cannot be applied, we show that our weighted
paths are always shorter than those of one common so-
lution that is based on decomposition ideas using Steiner
points in which each edge in the workspace is divided
into 6 to 400 Steiner points.

5. Furthermore, due to using the D-graph (defined later),
our algorithm can rapidly find the weighted shortest path
between any two vertices in the workspace, without re-
computing over the whole workspace. This is preferable
for applications that need to explore different paths in
many times on the same map.

1Theoretical running time with asymptotic bounds will be pre-
sented in the extended version.

292

Proposed Algorithm

We first present how to find a very-close optimum cost path
with respect to δ between two vertices crossing a given edge
sequence. Then, in the main algorithm, we describe how to
determine all adequate edge sequences in a full workspace of
triangular regions to finally find a very-close optimum cost
path between any pair of vertices. With S and S′ being two
sequences or arrays, to this end, we use the notation S ◦ S′
with the meaning of appending S′ to the end of S.

Weighted shortest path crossing an edge sequence

Let P (u, v) = (u = r0, r1, . . . , rk, rk+1 = v) be a path
between two vertices u, v ∈ V , crossing an edge sequence
S = (e1, e2, . . . , ek) in order, where ri is on ei with every
i ∈ {1, . . . , k}. Let W = (w0, . . . , wk) be the weight list
of S, where every wi, i ∈ {0, . . . , k}, is the unit weight
of the region between ei and ei+1, with e0 = (u, u) and
ek+1 = (v, v). For each ei = (pi, qi) ∈ S, we name two
endpoints pi and qi such that when moving from pi to qi on
ei, the edge ei−1 is on the right while the edge ei+1 is on the
left of ei (see Figure 1b). Two vertices u and v can also be
on e1 and ek at the endpoints, respectively. When an edge
sequence S satisfies this requirement, we say that S satisfies
the sequence arrangement (the case that S cannot satisfy the
sequence arrangement will be processed in the next section).

Let n(ri, ei) be the line perpendicular to ei at the point ri,
i ∈ {1, . . . , k}. Let αi and βi be two acute angles at ri cre-
ated by n(ri, ei) and the segments (ri−1, ri) and (ri, ri+1),
respectively (see Figure 1a). We say that the path P (u, v)
comes in and out the edge ei at ri with the in-angle αi and
the out-angle βi, respectively.
Known Fact 1: Snell’s law
For every crossing point ri in P (u, v), i ∈ {1, . . . , k}, if
ri is not an endpoint of ei, the path P (u, v) has the min-
imum weighted crossing S if and only if the in-angle αi

and the out-angle βi of P (u, v) at ei satisfy: wi−1 sinαi =
wi sinβi, where wi ∈ W is the unit weight of the region
between ei and ei+1.
Known Fact 2: Critical point
For every edge ej ∈ S, j ∈ {1, . . . , k}, if wj < wj−1

(resp. wj > wj−1), the angle αc = sin−1 (wj/wj−1) (resp.
αc = sin−1 (wj−1/wj)) is defined as the critical angle of ej .
If the path P (u, v) comes in ej with an in-angle αj = αc,
obeying Snell’s law, the out-angle will be βj = 90◦ (see
Figure 1a). The point rj is called a critical point.

The proofs of the Known Facts 1 and 2 can be found
in (Mitchell and Papadimitriou 1991). We next present two
new definitions as follows.
Snell path: If the path P (u, v) satisfies: (1) every point ri,
i ∈ {1, . . . , k}, is on the interior of ei, which is not one of
two endpoints of ei, and (2) Snell’s law is obeyed at each ri,
we call P (u, v) as a Snell path, named SP(u, v).
Snell ray: On the other hand, let a1 be a point on e1 ∈ S,
applying Snell’s law from u crossing e1 at a1, we can
find the out-ray Ra

1 . Suppose that Ra
1 intersects e2 ∈ S

at a point a2. Then, we can continue calculating the path
Pa = (u, a1, a2, . . . , ag,Ra

g), where 1 ≤ g ≤ k and Ra
g is

the out-ray of the path at eg ∈ S. We define Pa to be a Snell

ray of u, starting at the point a1, through a sequence of g
segments from e1 to eg of S (see Figure 1b).

Proposition 1. Let Pb = (u, b1, . . . , bi,Rb
i) and Pc =

(u, c1, . . . , cj ,Rc
j) be two Snell rays from u to ei ∈ S

and ej ∈ S, respectively, crossing the same edge sequence
S = (e1, . . . , ek), where b1 �= c1, i ≤ k and j ≤ k. Two
Snell rays Pb and Pc cannot intersect each other.

Proof. This is deduced from Lemma 4.2 of (Mitchell and
Papadimitriou 1991). From Known Fact 1, two Snell paths
SP(u, bi) = (u, b1, . . . , bi) and SP(u, cj) = (u, c1, . . . , cj)
are two minimum weighted length paths from u to bi and
cj crossing S, respectively. By contradiction, suppose that
Pb and Pc intersect each other at a point o (see Figure 1b).
Let P o

b = (u, b1, . . . , o) and P o
c = (u, c1, . . . , o) be two

subpaths of Pb and Pc from u to o, respectively. We have
D(P o

b) = D(P o
c). This is because, if D(P o

b) > D(P o
c),

the path SP(u, bi) can follow P o
c to have a less weighted

length than its current one, which is contrary to the fact that
SP(u, bi) has the minimum weighted length between u and
bi crossing S. This is also similar for the case D(P o

b) <
D(P o

c). Thus, D(P o
b) = D(P o

c). Due to this, now, the Snell
path SP(u, bi) can go to o following the path P o

c instead
of P o

b with the weighted length not being changed. How-
ever, in this situation, if we get two points o1 and o2 that are
very close to o, then the path SP(u, bi) can be locally im-
proved by crossing from o1 to o2 ignoring o to get a shorter
weighted length. This is again contrary to that SP(u, bi) has
the minimum weighted length between u and bi.

Find the Snell path SP(u, v) crossing the k edge sequence
S is presented in the function Find-Snell-Path. The main
idea of the function is to use an iteration scheme, as fol-
lows. Let Pm = (u,m1, . . . , R

m
g) be a Snell ray of u start-

ing from the middle point m1 of e1 crossing S. Based on
Proposition 1, if v is on the left (resp. right) of Pm, then
the Snell ray SP(u, v) must cross only the parts from pi to
mi (resp. from mi to qi) of edges ei ∈ S. Thus, we mod-
ify the original edges ei = (pi, qi) ∈ S to the new ones
e′i = (p′i, q

′
i) = (pi,mi) (resp. e′i = (p′i, q

′
i) = (mi, qi)).

This process is repeated until Pm crosses v, or all of the
new edges e′i have d(p′i, q

′
i) < δ. We employ this idea from

the function Find-Point in the work of (Mitchell and Pa-
padimitriou 1991). However, when there exists a new edge
e′i = (p′i, q

′
i) of the original edge ei = (pi, qi) that has

d(p′i, q
′
i) < δ, but d(m′

i, pi) < δ or d(m′
i, qi) < δ, where m′

i
is the middle point of e′i, we will stop the finding process.
This is because, in this situation, the minimum weighted
path from u to v crossing S is considered as crossing one
of the endpoints of ei ∈ S. Thus, the Snell path SP(u, v)
cannot exist. In this case, the function Find-Snell-Path will
return the crossing endpoint sides. That is, if the crossing
point is pi or qi of ei, the crossing endpoint side is left (L) or
right (R), respectively. The reason of this will be presented
in the main algorithm section. In the function Find-Snell-
Path, since the edges in S will be modified, but the original
ones are still needed, we use one alternative edge sequence
S′, initially being S, as follows.

293

αi

βi

ri−1

ei

wi

wi−1

ri

n(ri; ei)

n(rj; ej)

αj

βj

wj−1

wj ej rj+1
rj

rj−1

ri+1

(a) Illustration of Snell’s law at ri
and a critical point at rj .

p1

q1 = q2

e1

e2p2 = p3

q3
e3

ek qk

pk

u

v

SP (u, v)

Pa

a1

a2

PcPb

bi
cj

bi = bk cj = ck

ag

o
o2

o1

r1

r2

r3

rg

(b) SP(u, v) and Snell rays from u crossing a k
edge sequence S, where S satisfies the sequence
arrangement and W = (1, 4, 5, . . . , 1, 3).

r

e1

e2

e3

ek

p1
q1

q2

q3

p2
p3

pk qk
tk

t0k c1c2

v1v2

P ∗
1

P ∗
3

P ∗
4

P ∗
2

v

ek 1-

(c) Funnel f = (r, S,W),
where S = (e1, . . . , ek)
with directions of four
paths from P ∗

1 to P ∗
4 .

c1
b02 b01

b2 b1

cr
r

e1

e2

e3

q1

q2

q3

pk qk
tk

t0k
c2

v1v2 v

P ∗
ip1

p2
p3

(d) Funnel f = (r, S,W),
where S = (e1, . . . , ek)
with Snell path P ∗

i and its
critical point cr .

Figure 1: Snell path illustrations.

Find-Snell-Path:
Input: u, v, S,W
Output: If there exists the Snell path SP(u, v)2, return
SP(u, v). Otherwise, if the path crosses one of the endpoints
of edges in S, return the crossing endpoint side L or R.
1. Initial: SP(u, v) = (); l = 1; root = u; S′ = S
2. Let ml be the middle point of e′l = (p′l, q

′
l) ∈ S′. If

d(p′l, q
′
l) < δ, go to Step 4. Otherwise, go to Step 3.

3. Find the Snell ray Pm = (root,ml,ml+1, . . . ,Rm
g) from

root, starting at ml, crossing S′, where g ≤ k, and the
last ray Rm

g cannot intersect e′g+1 ∈ S′. Consider two
cases:

3.1 Pm crosses the last segment e′k ∈ S′ (g = k):
– If v is on the last ray Rm

g of Pm: SP(u, v) =
SP (u, v)◦(root,ml,ml+1, . . . ,mk, v). Go to Step 5.

– Otherwise, if v is on the left (resp. right) side of Rm
g ,

then for every e′i = (p′i, q
′
i) ∈ S′, i ∈ {l, . . . , k}, set

(p′i, q
′
i) = (p′i,mi) (resp. (p′i, q

′
i) = (mi, q

′
i)). Go to

Step 2.
3.2 Pm stops at e′g ∈ S′ (g < k):

– If Pm comes in e′g = (p′g, q
′
g) at a critical angle: If Rm

g

goes to p′g (resp. q′g), then for every e′i = (p′i, q
′
i) ∈ S′,

i ∈ {l, . . . , g}, set (p′i, q
′
i) = (mi, q

′
i) (resp. (p′i, q

′
i) =

(p′i,mi)).
– Otherwise, Rm

g does not intersect e′g+1. If e′g+1 is on
the left (resp. right) side of Rm

g , then for every e′i =
(p′i, q

′
i) ∈ S′, i ∈ {l, . . . , g}, set (p′i, q

′
i) = (p′i,mi)

(resp. (p′i, q
′
i) = (mi, q

′
i)).

2We note that, SP (u, v) = (u, r1, . . . , rk, v), which is re-
turned by the function Find-Snell-Path, is a very-close optimum
path with respect to δ, but not necessarily an exact Snell path. Let
SP ∗(u, v) = (u, o1, . . . , ok, v) be the exact Snell path, the func-
tion Find-Snell-Path only guarantees that d(oi, ri) < δ for every
i ∈ {1, . . . , k}. However, to avoid creating new definitions, to this
end, we generally say that the function Find-Snell-Path returns the
Snell path SP (u, v) between the u and v crossing S.

– Go to Step 2.
4. Get two endpoints pl and ql of el ∈ S.
4.1. If d(ml, pl) < δ, return L. If d(ml, ql) < δ, return R.
4.2. Otherwise, SP(u, v) = SP(u, v) ◦ (root). If l = k,

SP(u, v) = SP(u, v) ◦ (ml, v); Go to Step 5. If l < k,
root = ml; l = l + 1; Go to Step 2.

5. Return SP(u, v).

Lemma 1. In the worst case, the function Find-Snell-Path
needs O (k log (L/δ)) loops to find SP(u, v) crossing S,
where L is the largest Euclidean length of edges in S.

Proof. Let Ll be the Euclidean length of el, l ∈ {1, . . . , k}.
In the function Find-Snell-Path, from root, we take the mid-
dle point of el, and finding the Snell ray. These steps are
repeated until the length d(pl, ql) < δ. Thus, we need
log(Ll/δ) loops. Since l is from 1 to k, the number of loops
in the worst case is O(k log(L/δ)).

Main algorithm

To describe the main idea of our algorithm, we first ob-
serve an example as follows. Suppose that the final weighted
shortest path P ∗(u, v) between two vertices u and v con-
tains another vertex g ∈ V such that P ∗(u, v) = P ∗(u, g) ◦
P ∗(g, v). Let Sug and Sgv be two edge sequences that
P ∗(u, g) and P ∗(g, v) cross, respectively. The edge se-
quence that P ∗(u, v) crosses is S = Sug ◦Sgv . Suppose that
there exists another edge sequence S′ = S′

ug ◦ Sgv , where
the last edge sequences Sgv of S and S′ are the same, and the
minimum weighted path between u and v crossing S′ also
crosses the vertex g when crossing S′

ug . In this situation,
the method of (Mitchell and Papadimitriou 1991) finds the
minimum weighted length paths between u and v with both
S and S′ separately, then choosing the one that has smaller
weighted length. However, with two such edge sequences S
and S′, our solution can avoid unnecessarily repeated calcu-
lations on the sequence Sgv . Our main idea is as follows.

294

We use an undirected graph named D-graph = (VD, ED),
where VD = V ∪ Vc with Vc being the set of critical points
(explained later). In the workspace, for each pair of two ver-
tices u, v ∈ V , if there exist Snell paths between u and v,
which only cross the interiors of edges, an edge between u
and v in ED is created. The weight of this edge in ED is
the minimum weighted length among Snell paths crossing
all different possible edge sequences between u and v. With
such the D-graph, we can finally find the last weighted short-
est path between any pair of vertices in V by using any short-
est path graph algorithm, such as Dijkstra. Thus, our main
algorithm has two steps: (1) build the D-graph and (2) apply
a shortest path graph algorithm on the D-graph to find the
weighted shortest path between any pair of vertices. Since
step (2) is easy, we only present how to find the D-graph in
the function Build-D-graph. To support the function, we use
a data structure called funnel and a function named Find-
Path, as follows.

We denote f = (r, S,W), where S = (e1, . . . , ek) and
W = (w0, . . . , wk−1) as a funnel with r ∈ V being the root
and the last edge ek ∈ S being the bottom of the funnel. The
edge sequence S is defined as in the function Find-Snell-
Path such that S must satisfy the sequence arrangement. Let
tk be the triangle that contains ek and ek−1 in S of f (see
Figure 1c). In case ek is not a border, let t′k be the adjacent
triangle of tk at ek. Let v be a vertex of t′k that is not on
ek, and c1 and c2 be two adjacent edges at v of t′k. We need
to find the Snell path from r to v crossing S. However, the
Snell path from r to v crossing S might go around adjacent
edges at r and adjacent edges at v with critical points. Thus,
the function Find-Path helps connect the adjacent edges at r
and v into S before finding the Snell paths by the function
Find-Snell-Path.

For adjacent edges at r and v, there are two considering
cases. (1) If there is no border edge among adjacent edges
at v (see Figure 1c), we call the edge sequences of adjacent
edges at v from c2 to c1 clockwise and from c1 to c2 coun-
terclockwise, including both c1 and c2, as the left and the
right adjacent sequences of v, respectively. (2) Otherwise, if
there are two border edges b1 and b2 among adjacent edges
at v (see Figure 1d), let b′1 and b′2 be two adjacent edges at v
that are in the same triangles with b1 and b2, respectively. We
call the edge sequence from c2 to b′2, including both c2 and
b′2, as the left adjacent sequence of v, and the edge sequence
from c1 to b′1, including both c1 and b′1, as the right adjacent
sequence of v. The left and right adjacent sequences of r are
determined similarly.

Let Lr, Rr, Lv and Rv be the left and right adjacent se-
quences of r and v, respectively. There are at most four
edge sequences S1 = Lr ◦ S ◦ Lv , S2 = Rr ◦ S ◦ Rv ,
S3 = Lr ◦ S ◦ Rv and S4 = Rr ◦ S ◦ Lv that the path
from r to v can cross. We note that, to this end, we only
consider the general case that these four edge sequences are
different. We can similarly prove the special cases where a
part of these edge sequences are equal to each other. Thus,
correspondingly, there are four minimum weighted shortest
paths P ∗

i (r, v) (P ∗
i for short) from r to v crossing Si, where

i ∈ {1, . . . , 4} (see Figure 1c). For every i ∈ {1, . . . , 4}, if
the path P ∗

i does not cross any endpoint of edges in Si, P ∗
i

becomes the Snell path crossing Si.

Proposition 2. For the four paths from P ∗
1 to P ∗

4 , we have:
1. If P ∗

1 (resp. P ∗
2) crosses a q (resp. p) endpoint of an edge

in S1, then P ∗
2 (resp. P ∗

1), P ∗
3 and P ∗

4 must also cross q
(resp. p) endpoints of edges in S2 (resp. S1), S3 and S4,
respectively.

2. If P ∗
3 (resp. P ∗

4) crosses a q (resp. p) endpoint of an edge
in S3 (resp. S4), then P ∗

2 and P ∗
4 (resp. P ∗

1 and P ∗
3) must

also cross q (resp. p) endpoints of edges in S2 and S4

(resp. S1 and S3), respectively.

Proof. Suppose that P ∗
1 crosses an edge ei = (pi, qi) at qi

(the edge ei must be in S). Let P1 be the Snell ray that con-
tains the Snell path from r to qi crossing S1 in P ∗

1 . By con-
tradiction, suppose that P ∗

3 does not cross any q endpoint
of edges in S3. In this case, P1 and P ∗

3 must intersect each
other in the regions containing S. However, P ∗

1 (containing
P1) and P ∗

3 cross the edge sequences S1 = Lr ◦ S ◦ Lv and
S3 = Lr ◦ S ◦ Rv , respectively. Therefore, S1 and S3 have
the same Lr ◦ S, and from Proposition 1, P1 and P3 cannot
intersect each other in Lr ◦ S. Thus, P ∗

3 must cross a q end-
point of an edge in S3. We can similarly prove that P ∗

4 must
cross a q endpoint of an edge in S4 because S1 and S4 also
have the same S ◦ Lv . The path P ∗

4 crossing a q endpoint of
an edge in S4 entails that P ∗

2 must also cross a q endpoint
of an edge in S2 because S2 and S4 have the same Rr ◦ S.
The proof of the second claim is analogous to the proof of
the first claim.

Based on Proposition 2, the function Find-Path below can
avoid finding all four P ∗

1 to P ∗
4 to return the one that does not

cross any endpoint and has the minimum weighted length.
Additionally, for each edge in ei ∈ E, we use an array Ac to
store critical points that appear on ei after finding the Snell
path (see Step 8 of the function Find-Path). We note that,
there can be at most two critical points that only appear on
adjacent edges at r and v (see an example of a critical point
cr in Figure 1d). The reason why we process critical points
as in Step 8 of the function Find-Path, along with why we
need to return the crossing endpoint sides if no Snell path
exists, will be explained after the function Build-D-graph.
Find-Path:
Input: (r, v, S,W, VD, ED)
Output: If there exist Snell paths from r to v crossing S and
adjacent edges at r and v, where they do not cross any end-
point, the output is the one with minimum weighted length.
Otherwise, if all four P ∗

1 to P ∗
4 cross endpoints, the output

is the crossing endpoint sides, L or R or both (L and R).
1. Initial: SPmin = ()
2. Determine Lr, Rr, Lv , Rv . Set S1 = Lr ◦ S ◦ Lv , S2 =

Rr ◦S ◦Rv , S3 = Lr ◦S ◦Rv and S4 = Rr ◦S ◦Lv . Let
Wi be the weight sequence corresponding to Si, where
i ∈ {1, . . . , 4}.

3. Run the function Find-Snell-Path(r, v, S1,W1) to find
P ∗
1 . If P ∗

1 does not cross any endpoint, which is the Snell
path returned by Find-Snell-Path, calculate D(P ∗

1). Oth-
erwise, if P ∗

1 crosses a q endpoint (because Find-Snell-
Path returns R), return R. If P ∗

1 crosses a p endpoint (be-
cause Find-Snell-Path returns L), D(P ∗

1) = +∞.

295

4. Run the function Find-Snell-Path(r, v, S2,W2) to find
P ∗
2 . If P ∗

2 does not cross any endpoint, calculate D(P ∗
2).

Otherwise, if P ∗
2 crosses a p endpoint, return L. If P ∗

2
crosses a q endpoint, D(P ∗

2) = +∞.
5. Run the function Find-Snell-Path(r, v, S3,W3) to find

P ∗
3 . If P ∗

3 does not cross any endpoint, calculate D(P ∗
3).

Otherwise, D(P ∗
3) = +∞. Then, if P ∗

3 crosses a q end-
point, go to Step 7. Otherwise, go to Step 6.

6. Run the function Find-Snell-Path(r, v, S4,W4) to find
P ∗
4 .

6.1. If P ∗
4 does not cross any endpoint, calculate D(P ∗

4).
The result SPmin is determined by D(SPmin) =
min(D(P ∗

1), D(P ∗
2), D(P ∗

3), D(P ∗
4)). Go to Step 8.

6.2. If P ∗
4 crosses a p endpoint (in this case, P ∗

1 and
P ∗
3 must also cross p endpoints): If D(P ∗

2) �= +∞,
SPmin = P ∗

2 . Go to Step 8. Otherwise, return (L and
R) (because P ∗

2 crosses a q endpoint while P ∗
1 , P ∗

3 and
P ∗
4 cross p endpoints).

6.3. If P ∗
4 crosses a q endpoint (in this case, P ∗

2 must also
cross a q endpoint): If D(P ∗

1) = D(P ∗
3) = +∞,

return both (L and R) (because P ∗
1 and P ∗

3 cross p
endpoints while P ∗

2 and P ∗
4 cross q endpoints). Other-

wise, the result SPmin is determined by D(SPmin) =
min(D(P ∗

1), D(P ∗
3)). Go to Step 8.

7. P ∗
3 crosses a q endpoint (in this case, P ∗

2 and P ∗
4 must

also cross q endpoints): If D(P ∗
1) �= +∞, SPmin = P ∗

1 .
Go to Step 8. Otherwise, return both (L and R) (because
P ∗
1 crosses a p endpoint while P ∗

2 , P ∗
3 and P ∗

4 cross q
endpoints).

8. Consider (at most) two critical points in SPmin: If there
exists a critical point cr (resp. cv) on an edge er (resp.
ev) among edges that are adjacent at r (resp. v), insert cr
(resp. cv) into VD and into the array Ac of er (resp. ev).
Then, create one edge between v and cr (resp. between
r and cv) in ED with the weight being D(v, cr) (resp.
D(r, cv)) according to SPmin.

9. Return SPmin.
Next, with a complete workspace, how to build the whole

D-graph with the help of funnels and the function Find-Path
is presented in the function Build-D-graph, as follows.
Build-D-graph:
Input: WS = (T,E, V)
Output: D-graph (VD, ED)
1. Initial: VD = V . Assign a matrix |V | × |V | to ED. For

every 1 ≤ i, j ≤ |V |, ED[i][j] = 0 if i = j and
ED[i][j] = +∞ if i �= j. For every ei ∈ E, let Ac

be an array that saves all critical points appearing on ei,
Ac = []. Let Q be a queue that contains funnels, Q = { }.

2. For each vertex u ∈ V :
2.1. Let Ti be the set of triangles that are adjacent at u. For

each triangle ti ∈ Ti, let ei be the edge of ti that does
not contain u, create a funnel f = (u, S = (ei),W =
(wi)), where wi is the unit weight of ti. Push f into Q.

2.2. Loop until Q is empty
2.2.1. Pop one funnel f = (r, S = (e1, . . . , ek),W =

(w0, . . . , wk−1)) out Q. Let tk be the triangle that
contains ek and ek−1. Consider two cases. If ek is
a border, go to Step 2.2. Otherwise, let t′k be the adja-
cent triangle of tk at ek with the unit weight w′

k. Let v

be a vertex of t′k that is not on ek. If ED[v][r] �= +∞,
go to Step 2.2.3. Otherwise, go to Step 2.2.2.

2.2.2. Find the Snell path SP(r, v) (if exists) by the function
Find-Path(r, v, S,W ◦ (w′

k), VD, ED).
– If Find-Path returns SP(r, v) and if D(SP (r, v)) <

ED[r][v], then ED[r][v] = D(SP (r, v)). Go to
Step 2.2.3.

– If Find-Path returns L or R, then go to Step 2.2.4. If
Find-Path returns both (L and R), go to Step 2.2.

2.2.3. Let c1 and c2 be two adjacent edges at v in the triangle
t′k. Create two funnels f1 = (r, S1,W1) and f2 =
(r, S2,W2), where S1 = S ◦ (c1), S2 = S ◦ (c2),
W1 = W ◦ (w′

k) and W2 = W ◦ (w′
k). Push two

funnels f1 and f2 into Q. Go to Step 2.2.
2.2.4. Consider two crossing endpoint sides. If the cross-

ing endpoint side is L (resp. R), create only one fun-
nel: f1 = (r, S1,W1) (resp. f2 = (r, S2,W2)), where
S1 = S ◦ (c1) (resp. S2 = S ◦ (c2)) with c1 (resp. c2)
being the edge in t′k that is adjacent to ek = (pk, qk)
at qk (resp. pk). Push f1 (resp. f2) into Q. Go to
Step 2.2.

3. For each ei = (pi, qi) ∈ E:
3.1. Find the Snell path SP(pi, qi) between pi and qi that

crosses only adjacent edges at pi and qi by the func-
tion Find-Path(pi, qi, S,W, VD, ED), where S and W
are empty. Then, if D(SP (pi, qi)) < ED[pi][qi],
ED[pi][qi] = D(SP (pi, qi)).

3.2. If the critical array Ac of ei is not empty, sort critical
points in Ac such that D(pi, cj) < D(pi, cj+1), j ∈
{1, . . . , |Ac| − 1}. Then, in ED, create edges between
cj and cj+1 with the edge weights being D(cj , cj+1).

In Build-D-graph, at Step 2.1., each vertex u ∈ V is ini-
tiated as roots of funnels that contain only one edge in S,
which is the edge opposite to u in triangles adjacent at u. For
each funnel f = (r, S,W), we then find the Snell path from
the root r to the vertex v, which is opposite to the last edge
ek in S, crossing the edge sequence S and adjacent edges at
r and v. The funnels in Q, after that, are spread as follows.
Let v1 and v2 be two vertices opposite to c1 and c2 in two
triangles that are adjacent to t′k at c1 and c2, respectively (see
Figure 1c). For short, let Sv

r = {Si | u ∈ {1, . . . , 4}} be the
set of four edge sequences created by S and adjacent edges
at r and v, as presented previously. Similarly, let S1

r and S2
r

be the set of four edge sequences created by (S◦(c1) and ad-
jacent edges at r and v1) and by (S ◦ (c2) and adjacent edges
at r and v2), respectively. It is easy to see that, if there exists
the Snell path SP(r, v) crossing the edge sequences in Sv

r ,
there may exist two Snell paths from r to v1 and v2 cross-
ing the edge sequences in S1

r and S2
r , respectively. Thus, at

Step 2.2.3., we create two funnels f1 and f2 with the same
root r and the edge sequences being S ◦ (c1) and S ◦ (c2),
respectively. However, if there is no Snell path from r to v
crossing the edge sequences in Sv

r , the way we process at
Step 2.2.4. is proven to be correct in Proposition 3, which is
easily to show.
Proposition 3. With the funnel f = (r, S,W), if there is no
Snell path from r to v crossing the edge sequences in Sv

r :
1. Among four paths from P ∗

1 to P ∗
4 , if a part of these paths

have the same crossing endpoint side at L and the re-

296

r

r0

c c0 v0v

e1

e2

ek e0
l

e0
2

e0
1

r1

r2

rk

r0
1

r0
2

... ...

e

Figure 2: An edge sequence that the sequence arrangement
is fail.

maining paths have the same crossing endpoint side at
R, there is no Snell path from r to v1 or from r to v2
crossing the edge sequences in S1

r or S2
r , respectively.

2. If all four paths from P ∗
1 to P ∗

4 from r to v have the same
crossing endpoint side at L (resp. R), there is no Snell
path from r to v2 (resp. v1) crossing the edge sequences
in S2

r (resp. S1
r).

Finally, we consider the case that an edge sequence can-
not satisfy the sequence arrangement. Let SP(r, r′) =
(r, r1, . . . , rk, c, c

′, r′l, . . . , r
′
1, r

′) be the Snell path between
two vertices r and r′ crossing the edge sequence Srr′ =
(e1, . . . , ek, e, e

′
l, . . . , e

′
1), where Srr′ cannot satisfy the se-

quence arrangement (see Figure 2). The Snell path SP(r, r′)
has two critical points c and c′ on the edge e = (v, v′). We
prove that this case will not be missed in our algorithm based
on Proposition 4.

Proposition 4. The Snell path SP(r, r′) crossing Srr′ exists
if and only if SP(r, v′) = (r1, . . . , rk, c, v

′) is the Snell path
from r to v′ crossing S = (e1, . . . , ek, e), and SP(r′, v) =
(r′1, . . . , r

′
l, c

′, v) is the Snell path from r′ to v, crossing S′ =
(e′1, . . . , e

′
l, e).

Proof. This is correct because if each crossing point of
SP(r, v′) and SP(r′, v) satisfies Snell’s law, then each
crossing point of SP(r, r′) also satisfies Snell’s law, and vice
versa.

Since S and S′ are two edge sequences that can satisfy the
sequence arrangement, two paths SP(r, v′) and SP(r′, v)
crossing S and S′ with two critical point c and c′, respec-
tively, will be found by the function Find-Path in our algo-
rithm. At Step 8 of the function Find-Path, we store c and c′
in the critical array Ac of e, and create two new vertices
corresponding to c and c′ in the D-graph. Then, we con-
nect (r and c) and (r′ and c′) together in the D-graph with
the connection weights being D(r, c) and D(r′, c′) accord-
ing to SP(r, v′) and SP(r′, v), respectively. After that, in
the function Build-D-graph, at Step 3.2., we connect c and
c′ together. By this way, we can assure that, when a short-
est path graph algorithm is applied on the D-graph, the path
SP(r, r′) will be considered.

Experimental results

We have two experimental scenarios, as follows. First, with
a given sequence of edges, we would like to ensure that the
function Find-Snell-Path can return a very-close optimum
path. As presented in the introduction, the work of (Carufel

et al. 2014) claims that an exact weighted shortest path be-
tween two given points crossing an edge sequence cannot be
found by using algebraic systems of equations. Hence, we
use quadratic programming to find the minimum cost paths
to compare against our results. Since the exact quadratic pro-
gramming is NP-hard, we can only run with a small number
of edges. However, this result can help us show in practice
that the function Find-Snell-Path really returns very-close
optimum paths. For our second scenario, in the workspace
of triangles, we compare our method with one popular de-
composition method of (Lanthier, Maheshwari, and Sack
2001), named the Steiner-Point method. Although this work
is rather old, it seems to be a standard one of the decomposi-
tion group. We notice that many newer methods of this group
mostly focus on reducing the running time at the expense of
the accuracy with respect to the optimum length. However,
our target here is the comparison of the path accuracy, and
this standard method can assure to supply a high accuracy
path when the number of Steiner points on each edge of the
workspace is large enough.

We randomly generate all test cases within a plane of
5000 × 5000 units and the unit weights are in the range
[1, 100]. All the running times presented in this section are
obtained using a system of CPU Intel Core i5, 8G RAM and
using Microsoft Visual Studio C++.
Scenario 1: Compare against Quadratic Programming
With a sequence of k edges S = (e1, . . . , ek), where S sat-
isfies the sequence arrangement, the quadratic programming
model of finding the minimum weighted path P (r, v) =
(r = r0, r1, . . . , rk, rk+1 = v) between r and v crossing
S, named the QP-model, is as follows:
Variables: A point ri is created on every edge ei ∈ S,
i ∈ {1, . . . , k}, thus two real variables xi, yi, which are the
x and y coordinates of ri, are created, respectively. For each
pair of two points ri and ri+1, i ∈ {1, . . . , k}, a real variable
di, which corresponds to the Euclidean distance between ri
and ri+1, is created.
Objective function: Minimize

∑k
i=0 widi

Subject to: For every di, i ∈ {0, . . . , k}, d2i = (xi −
xi+1)

2 + (yi − yi+1)
2. For every ei = (pi, qi) ∈ S,

i ∈ {1, . . . , k}, set constraints that ri must be on the seg-
ment (pi, qi).

Since the QP-model is non-convex quadratic, which can-
not be solved by the basic quadratic programming solvers,
we use Couenne3, an exact solver for the non-convex mixed
integer non-linear programming. As we tested, with k ≥ 6,
running the QP-model is extremely time-consuming. Thus,
in this scenario, we choose k = 5 to show that the results
of the function Find-Snell-Path and the QP-model are very
close together when the Snell path exists between r and v.

We run our method with δ = 10−5. The experiment shows
that the average difference between our results and the QP-
model results over 500 test cases is 0.01, where the longest
Euclidean distance of edges in S is

√
2 · 5000, with the

weights being in [1, 100]. This result confirms our claim.
Furthermore, the average running time of our method is 0.04
seconds while that of the QP-model is 28.44 seconds.

3https://projects.coin-or.org/Couenne/

297

Table 1: Summary of our method and the Steiner-Point method over 600 test cases, within six groups of the number of regions
from 5 to 30. The Steiner-Point method is run with m from 6 to 400. The running times are measured in seconds.

Number of regions 5 10 15 20 25 30
Our method’s average times 1.37 8.58 29.66 59.69 145.40 246.37

m = 6
average times 0.03 0.09 0.18 0.31 0.43 0.58

ΔD 6152.53 50574.69 160133.55 510206.22 931260.48 1763458.92

m = 150
average times 12.63 36.92 72.15 118.27 167.36 233.93

ΔD 23.93 154.45 522.21 1713.76 3126.83 6768.65

m = 250
average times 34.65 101.19 196.84 324.14 463.59 640.30

ΔD 10.04 53.32 197.66 620.69 1198.45 2478.39

m = 300
average times 49.63 146.20 278.48 474.27 678.74 out of memory

ΔD 7.28 36.09 142.55 468.88 841.60

m = 350
average times 68.61 198.89 376.43 out of memory out of memory out of memory

ΔD 5.17 27.71 103.40

m = 400
average times 89.36 258.16 out of memory out of memory out of memory out of memory

ΔD 3.62 20.82

Scenario 2: Compare against the Steiner-Point method
With the Steiner-Point method, for each ei ∈ E, we place
m Steiner points evenly along the length of ei, where m is
a positive integer. Let Gε = (Vε, Eε) be a graph, where Vε

is the set of vertices and Eε is the set of edges. The set Vε

contains all vertices in V and the Steiner points on all edges
in E. For each region ti ∈ T , all vertices and Steiner points
on edges of ti are connected mutually, creating edges in Eε.
Let v, u ∈ Vε, the weight of the connection between v and
u in Eε is wuv · d(v, u), where wuv is the unit weight of the
region or the edge that both v and u are on. After building
Gε, we apply Dijkstra algorithm to find the weighted short-
est path between any two vertices in V . Our method is with
δ = 10−5. After creating the D-graph, we also use Dijkstra
algorithm to find the weighted shortest path between any
two vertices in V . We use the standard Dijkstra algorithm
in the Boost library for both the Steiner-Point method and
our method in this experiment. We randomly create 600 test
cases of six groups of the workspaces having 5, 10, 15, 20,
25 and 30 triangles (100 test cases for each group). For each
test case, we find the weighted shortest paths of all pairs of
vertices, by our method and the Steiner-Point method with
6 ≤ m ≤ 400. Let D and D′ be the weighted length sums
of all the result paths from our method and the Steiner-Point
method per test case, respectively. We denote the average
weighted length difference per test case between our method
and the Steiner-point method as ΔD = D′ − D. Table 1
summarizes our comparison.

Among all 600 test cases, there is no test case that the
weighted length of our method is greater than that of the
Steiner-Point method, even when the number of Steiner
points per each edge of the Steiner-Point method grows up to
400. Additionally, the running times are significantly shorter
with our method. First, we test with m = 6 since the work
of (Lanthier, Maheshwari, and Sack 2001) recommends this
value. However, as in Table 1, the average weighted length
of the Steiner-Point method with m = 6 in each group is too
far away from our result. When m is increased, up to 400,
with the cases of five and ten regions, obviously, the average
weighted lengths of the Steiner-Point method come close to
our results. However, with five regions, our running time is
only 1.37 seconds while the Steiner-Point method running

Figure 3: One test case with 10 regions, 20 region edges
and 11 vertices, showing three very-close optimum paths be-
tween vertices (0 and 1), (2 and 3) and (4 and 5).

time is 89.36 seconds, a speed up of around 65 times. Sim-
ilarly, with ten regions, we are around 30 times faster. For
the remaining cases, when the number of regions and m are
large, the Steiner-Point method runs out of memory (larger
than 1.7 GB). We present one of our test cases with ten re-
gions in Figure 3.

Conclusion

We have presented experiments for WRP with δ = 10−5.
If we change δ, the closeness of the optimal path lengths
in our method to the exact solution depends on δ. As δ
decreases, the difference between the lengths of these two
paths becomes smaller. The value of δ, accordingly, affects
the running time of our method only in a logarithmic func-
tion (see Lemma 1). We also note that, to find the weighted
shortest path between two points that are not vertices of the
workspace, one can easily make these two points vertices by
adding new triangles. For the future work, we will improve
the running time of building the D-graph by using heuristics
and extend it to the three-dimensional workspaces.

298

References

Bose, P.; Maheshwari, A.; Shu, C.; and Wuhrer, S. 2011.
A survey of geodesic paths on 3d surfaces. Computational
Geometry 44(9):486–498.
Carufel, J.-L. D.; Grimm, C.; Maheshwari, A.; Owen, M.;
and Smid, M. 2014. A note on the unsolvability of the
weighted region shortest path problem. Computational Ge-
ometry 47(7):724–727.
Gheibi, A.; Maheshwari, A.; Sack, J.-R.; and Scheffer, C.
2018. Path refinement in weighted regions. Algorithmica
80(12):3766–3802.
Goerzen, C.; Kong, Z.; and Mettler, B. 2009. A survey
of motion planning algorithms from the perspective of au-
tonomous uav guidance. Journal of Intelligent and Robotic
Systems 57(1):65.
Jaklin, N.; Tibboel, M.; and Geraerts, R. 2014. Computing
high-quality paths in weighted regions. In Proceedings of
the Seventh International Conference on Motion in Games,
MIG ’14, 77–86. New York, NY, USA: ACM.
Kindl, M. R., and Rowe, N. C. 2012. Evaluating simulated
annealing for the weighted-region path-planning problem.
In 2012 26th International Conference on Advanced Infor-
mation Networking and Applications Workshops, 926–931.
Lanthier, M.; Maheshwari, A.; and Sack, J.-R. 2001. Ap-
proximating shortest paths on weighted polyhedral surfaces.
Algorithmica 30(4):527–562.
Mitchell, J. S. B., and Papadimitriou, C. H. 1991. The
weighted region problem: Finding shortest paths through a
weighted planar subdivision. J. ACM 38(1):18–73.
Mitchell, J. S. B. 2017. Chapter 31: Shortest paths and
network. In Toth, C. D.; O’Rourke, J.; and Goodman, J. E.,
eds., Handbook of Discrete and Computational Geometry.
Chapman and Hall/CRC.
Rowe, N. C., and Alexander, R. S. 2000. Finding optimal-
path maps for path planning across weighted regions. The
International Journal of Robotics Research 19(2):83–95.
Rowe, N. C., and Richbourg, R. 1990. An efficient snell’s
law method for optimal-path planning across multiple two-
dimensional, irregular, homogeneous-cost regions. The In-
ternational Journal of Robotics Research 9(6):48–66.
Szczerba, R. J.; Chen, D. Z.; and John J. Uhran, J. 1998.
Planning shortest paths among 2d and 3d weighted re-
gions using framed-subspaces. The International Journal
of Robotics Research 17(5):531–546.
Xidias, E. K. 2019. On designing near-optimum paths
on weighted regions for an intelligent vehicle. Interna-
tional Journal of Intelligent Transportation Systems Re-
search 17(2):89–101.
Zheng, X.; Koenig, S.; Kempe, D.; and Jain, S. 2010. Multi-
robot forest coverage for weighted and unweighted terrain.
IEEE Transactions on Robotics 26(6):1018–1031.

299

