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Abstract

A number of formal models have been proposed to address
temporal and resource allocation problems under uncertainty.
Such models are typically shipped with an embedded no-
tion of dynamic controllability, enclosing the ability to al-
ways make the right decisions, during execution, according to
the observed uncontrollable events that always happen. In the
business process management community, resource alloca-
tion was recently studied to deal with uncontrollable choices,
whereas in the security community it was studied to face the
uncontrollable availability of resources. The latter is a kind
of dynamic controllability known as resiliency where uncon-
trollable events might also not happen. To the best of our
knowledge, approaches handling resiliency on top of dynamic
controllability still remain unexplored. To bridge this gap, we
propose Generalized Constraint Networks with Uncertainty
(GCNUs), a model that we devised to address resource con-
trollability more widely, boosting expressiveness while con-
sidering several sources of uncertainty simultaneously. We
define dynamic controllability and (J,K)-resiliency of GC-
NUs. We reason on the structure of these problems, carry out
a complexity analysis and provide algorithms to solve them.

Introduction and Application Domain

In the business process management community (BPM) a
workflow is a mathematical abstraction for the modeling,
validation and execution of a business process. A workflow
consists of a collection of tasks to be executed with respect
to some partial order to achieve one or more business goals.
Workflows typically deal with temporal and resource con-
straints, sometimes in isolation, sometimes simultaneously.
Moreover, workflows might also deal with uncontrollable
parts related to temporal durations, resource commitments,
task executions, availability of resources, notifications of
conditions, choices of the workflow path to take or, even
worse, any combination of them.

When all components in a workflow are under control we
deal with a satisfiability problem calling for a fixed solu-
tion satisfying all constraints. Instead, when some compo-
nent is out of control we deal with a dynamic controllabil-
ity problem, where the synthesis of a fixed solution is not
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enough. Indeed, dynamic controllability implies the exis-
tence of a strategy to operate (possibly differently) on the
part under our control depending on the behavior of some
uncontrollable events that we can only observe while exe-
cuting. This means that, depending on the observed uncon-
trollable events, we might decide to schedule the same tasks
at different times or commit different resources to them.

For example, when a patient enters the emergency room,
the severity of his condition is not known a priori but it is
established by a physician while the workflow is being exe-
cuted. Since the result of this condition discriminates what
medical procedures have (not) to be executed, and which re-
sources need to be committed, our strategy must guarantee
to complete the workflow by executing all relevant tasks and
satisfying all relevant constraints regardless of the result of
(any combination) of uncontrollable events. During execu-
tion, we can never backtrack while committing resources.
This means that we must avoid situations in which, if a pa-
tient is urgent, no physician is available because we chose to
assign the “wrong” physician to some previous task.

A possible way to check dynamic controllability of a
workflow is to reduce it to a corresponding (temporal)
constraint network for which controllability checking algo-
rithms already exist (Combi and Posenato 2009; Combi et al.
2014; Zavatteri et al. 2017; Eder, Franceschetti, and Köpke
2018; Posenato, Zerbato, and Combi 2018).

In (Zavatteri et al. 2017), an approach to address con-
trollability of workflows with resources and uncontrollable
choices is provided. The approach maps workflow paths to
constraint networks (Dechter 2003), relies on directional
consistency (Dechter and Pearl 1987) to guarantee no back-
tracking when assigning users to tasks, and reasons on the
intersection of common workflow paths to achieve a dy-
namic user assignment. After that, constraint networks un-
der conditional uncertainty (Zavatteri and Viganò 2018)
were provided to handle uncontrollable choices natively.

Dynamic controllability has also appeared in the secu-
rity community under the name of resiliency. Roughly, re-
siliency abstracts dynamic controllability allowing that un-
controllable events might also not happen. This is differ-
ent from the dynamic controllability we discussed so far, in
which uncontrollable events are always going to happen.
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Historically, the workflow resiliency problem is the prob-
lem of finding an assignment of users to tasks satisfying all
constraints while coping with the absence of users during
execution (Wang and Li 2010). Resiliency divides in static,
decremental and dynamic. In static resiliency, up to K users
might be absent before executing the workflow and never be-
come available for that execution. In decremental resiliency,
up to K users might be absent before or during execution
and, again, they never become available for that execution
(i.e., once they are gone, they are gone forever). In dynamic
resiliency, up to K (possibly different) users might be absent
before executing any task and they may in general turn ab-
sent and available continuously, before or during execution.

Several approaches consider static resiliency only (e.g.,
(dos Santos et al. 2017; Lowalekar, Tiwari, and Karlapalem
2009; Paci et al. 2008)), one of them also considers decre-
mental resiliency (Paci et al. 2008), whereas, to the best of
our knowledge, the only exact approach to all kinds of re-
siliency is provided in (Zavatteri and Viganò 2019b) that
reduces the problem to reachability of game automata. See
also (dos Santos and Ranise 2017) for a recent survey.

Recently, (Fong 2019) introduced one-shot resiliency as
the first attempt to impose an upper bound on the number of
times that users might turn absent (specifically one). How-
ever, one-shot resiliency is actually (one-shot) decremental
resiliency as once users turn absent, they remain so.

To the best of our knowledge, further investigations on
applying and bounding resiliency on top of dynamic con-
trollability have not been extensively carried out yet.

Contributions and Organization

We first provide background on constraint networks. Then,

1. We define Generalized Constraint Networks with Uncer-
tainty (GCNUs) as a core model. GCNUs extend clas-
sic constraint networks by adding variables with uncon-
trollable assignments, variables with uncontrollable pick-
ing, precedence constraints and abstracting the set of con-
straints as a boolean formula in which classic relational
constraints and precedence constraints become atoms.

2. We define dynamic controllability, (J,K)-decremental
and (J,K)-dynamic resiliency of GCNUs (the latter two
on top of the former). We formalize these problems as
two-player games between Controller and Nature and we
discuss their structure. Roughly, J is the maximum num-
ber of times that values in the domains of variables might
be absent, whereas K is the maximum number of values
that can be absent simultaneously.

3. We prove that dynamic controllability, (J,K)-
decremental and (J,K)-dynamic resiliency of GCNUs
are PSPACE-complete. We give algorithms to solve
them.

Finally, we compare with related work, draw conclusions
and discuss future work.

Note that, for lack of space and because of its triviality,
we excluded static resiliency. Indeed, in static resiliency re-
sources turn absent maximum once, before the execution
starts. As a result, we just need to check if there exists a

subset of resources that once removed makes the remaining
network uncontrollable.

Background

Definition 1. A Constraint Network (CN) is a tuple
〈X,V,D,C〉, where X = {x1, . . . , xn} is a finite set of
variables, V = {v1, . . . , vm} is a finite set of discrete
values, D ⊆ X × V is the domain relation (we write
D(x) = {v | (x, v) ∈ D} to shorten the domain of x ∈ X),
whereas C is a finite set of relational constraints RSi

each
defined over a scope of variables Si ⊆ X such that if
X = {xi1 , . . . , xij}, then RSi

⊆ D(xi1)× . . .×D(xij ). A
CN is consistent if every variable x ∈ X can be assigned a
value v ∈ D(x) such that all constraints in C are satisfied.
Deciding consistency of CNs is NP-complete.

Generalized CNs with Uncertainty

We provide a new formalism to deal with a few sources of
uncertainty simultaneously and we model the arising deci-
sion problems as two-player games between Controller and
Nature. We evolve the concept of variable assignment into
that of variable execution. Executing a variable x ∈ X
means to (i) pick it (i.e., choosing it from X) and (ii) assign
it a value in D(x) (in this order).

Definition 2. A Generalized Constraint Network with Un-
certainty (GCNU) is a tuple 〈X,V,D, P, F 〉, where:

• X = XC ∪ XN is a finite set of variables partitioned
in variables with controllable assignment (i.e., those as-
signed by Controller) and variables with uncontrollable
assignment (i.e., those assigned by Nature), respectively.
• V and D are the same of those given in Definition 1.
• P ⊆ X × X defines the uncontrollable picking relation.

We write Y = {y | (x, y) ∈ P} to represent the set of
variables with uncontrollable picking. For each y ∈ Y ,
A(y) = {x | (x, y) ∈ P} represents the set of variables
activating y. We say that y is active if all variables in A(y)
have been executed and y has not been executed yet. If y
is active, Nature will sooner or later pick it. The graph
having set of nodes X and set of edges P must be a DAG.

• F is a boolean formula over relational and precedence
constraints that play the roles of atomic components
along with � and ⊥ representing true and false as usual.
Relational constraints are the same of those discussed in
Definition 1. Precedence constraints have the form x < y
imposing that x is executed before y.

When XN = ∅ and P = ∅, the GCNU is actually a general-
ized constraint network (GCN) specifying no uncertainty (in
that case we drop XN and P from the specification).

We write x = v and x 
= v as shorts for R{x} = {(v)} and
R′

{x} = D(x)\R{x}. Despite in this paper we only use rela-
tional and precedence constraints, there is no prohibition on
the usage of global constraints as further atoms to represent
compactly relational ones (e.g., all diff(xi1 , . . . , xin) fil-
ers D(xi1) × . . . ×D(xin) by keeping all tuples not speci-
fying the same value more than once).
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t1{a, b, c}

t2{a, b}

t4 {b, c}

t3 {a, b}

=

=


=


=

Figure 1: An example of GCNU encoding an access con-
trolled workflow under uncertainty.

Let N = 〈X,V,D, P, F 〉 be a GCNU. If F only contains
precedence constraints and binary relational constraints,
then we can easily represent N as a graph as follows. The
set of nodes coincides with X . Domains are shown as labels
near nodes. Nodes appearing as heads of double edges rep-
resent variables with uncontrollable picking, whereas dou-
ble circled nodes represent variables with uncontrollable as-
signment (nodes having both characteristics model variables
with both uncontrollable picking and assignment). The set of
edges is partitioned in directed double edges, directed single
edges and undirected single edges. A double edge x ⇒ y
models (x, y) ∈ P , whereas single edges model F as fol-
lows. Let F ′ ≡ C1 ∧ . . . ∧ Cm be the m clauses obtained
by computing the CNF of F . We assign a color to each
clause (with the exception that each unit clause is assigned
black). For each Ci, we represent all literals in Ci as colored
edges. If a literal is negative, we first turn it positive as fol-
lows: ¬(x < y) becomes y < x, whereas ¬R{x,y} becomes
R′

{x,y} = (D(x)×D(y)) \R{x,y}. A directed edge x→ y

in the graph models a precedence constraint x < y. An undi-
rected edge between x and y models a relational constraint
R{x,y}. We must always satisfy all black constraints (i.e., all
unit clauses) and at least one constraint for each other color
(i.e, one literal per clause).

Figure 1 depicts a GCNU encoding a workflow with four
tasks t1, t2, t3, t4, three users a, b, c, two precedence con-
straints, three constraints imposing that the users executing
t1 and t2, t3 and t4, t1 and t4 must be different (separa-
tion of duties), whereas those executing t2 and t3 must be
the same (binding of duties). Moreover, t2 and t4 are sub-
ject to uncontrollable user assignments, whereas t3 and t4
are subject to uncontrollable pickings with t3 active as soon
as t1 is executed and t4 active as soon as both t1 and t3
have been executed. The precedence constraint and rela-
tional constraint in orange as well as those in blue are such
that we just need to satisfy only one constraint per color. The
formal specification of Figure 1 is N = 〈X,V,D, P, F 〉,
where X = {t1, t2, t3, t4}, V = {a, b, c}, D(t1) =
{a, b, c}, D(t2) = D(t3) = {a, b}, D(t4) = {b, c},
P = {(t1, t3), (t1, t4), (t3, t4)} and F ≡ (t1 < t2) ∧ (t1 
=
t2) ∧ (t1 
= t4 ∨ t3 
= t4) ∧ (t3 < t2 ∨ t2 = t3).

Controllability and (J,K)-Resiliency

We define dynamic controllability and (J,K)-resiliency of
GCNUs as two-player games. Let m:A→ B be a mapping.
We write D(m) ⊆ A to refer to the domain on which m

is actually specified. If D(m) = A, then m is total. Partial
otherwise. We write |D(m)| to refer to the cardinality of m.

Let N = 〈X,V,D, P, F 〉 be a GCNU. An assignment is
a mapping α:X → V enforcing that for each x ∈ D(α),
α(x) ∈ D(x). An assignment satisfies an R{xi1

,...,xin} in
F iff {xi1 , . . . , xin} ⊆ D(α) and (α(xi1), . . . , α(xin)) ∈
R{xi1 ,...,xin} (in symbols, α |= R{xi1 ,...,xin}). An ordering
ω is a bijection between X and the set {n | n ∈ N, n <
|X|}, where for each x ∈ X , ω(x) represents the index i of
x in the ordering. Given a pair (α, ω), the satisfaction of F
(in symbols, (α, ω) |= F ) is defined as follows.
• (α, ω) |= � (always) and (α, ω) 
|= ⊥ (never)
• (α, ω) |= R{xi1 ,...,xin} iff α |= R{xi1 ,...,xin}
• (α, ω) |= x < y iff ω(x) < ω(y)

• (α, ω) |= (F ) iff ((α, ω) |= F )

• (α, ω) |= ¬F iff (α, ω) 
|= F

• (α, ω) |= F1�F2 iff (α, ω) |= F1�(α, ω) |= F2, where
� ∈ {∧,∨,⇒, . . .} is any binary boolean connective.

Dynamic Controllability

We model dynamic controllability of GCNUs as a two-
player game between Controller and Nature. The game pro-
ceeds in rounds until all variables have been executed. Each
round consists of three sequential phases handling overall
the picking (in the first two) and the assignment (in the last
one) of a single still unexecuted variable x ∈ X . Both Con-
troller and Nature can pick and assign variables according to
which sets these variables belong to resulting in 4 cases:
1. Controller picks, Controller assigns (x 
∈ Y and x ∈ XC)
2. Controller picks, Nature assigns (x 
∈ Y and x ∈ XN )
3. Nature picks, Controller assigns (x ∈ Y and x ∈ XC)
4. Nature picks, Nature assigns (x ∈ Y and x ∈ XN )
Nature has priority over Controller when both players want
to pick a variable.
Game 1 (dynamic controllability). Let N =
〈X,V,D, P, F 〉 be a GCNU. Let α be a partial map-
ping from X to V and ω be a partial mapping from
X to {n | n ∈ N, n < |X|}. At the beginning,
D(α) = D(ω) = ∅, whereas at the end of the game
α is an assignment (not necessarily total) and ω an order-
ing. Let U = X \D(ω) be an alias for the set of unexecuted
variables. Each round is as follows.

Phase 1 always happens. Nature makes exactly one of these
two moves, choosing which one when both are available.
npick is available iff there exists x ∈ Y ∩U with A(x)∩
U = ∅. Nature picks x and sets D(ω) = D(ω) ∪ {x}
and ω(x) = |D(ω)|−1. With this move Nature disables
Phase 2 preventing Controller from picking a variable.

pass is available iff U \ Y 
= ∅. With this move Nature
enables Phase 2 allowing Controller to pick a variable.

Phase 2 happens iff Nature passed in Phase 1.
cpick is always available. Controller picks x ∈ U \ Y

and sets D(ω) = D(ω)∪{x} and ω(x) = |D(ω)| − 1.
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Phase 3 happens iff D(x) 
= ∅, where x is the picked
variable (no matter by which player). The following two
moves are mutually exclusive.
cassign is available iff x ∈ XC . Controller chooses v ∈
D(x) and sets D(α) = D(α) ∪ {x} and α(x) = v.

nassign is available iff x ∈ XN . Nature chooses v ∈
D(x) and sets D(α) = D(α) ∪ {x} and α(x) = v.

When the game is over, Controller wins if α is total and
(α, ω) |= F (note that α is an assignment and ω an order-
ing). Nature wins otherwise. Thus, the game is determined.

Definition 3. A GCNU is dynamically controllable if Con-
troller has a winning strategy for Game 1. Uncontrollable if
it is Nature that has a winning strategy for that game.

In other words, at any round of the Game, either Na-
ture picks a variable with uncontrollable picking or Con-
troller picks a variable with controllable picking. The for-
mer is mandatory when Controller cannot pick any variable,
whereas the latter only happens when Nature passed. Note
that since P is acyclic, when all variables with controllable
picking have been executed, at least a variable in Y exists
and is active (otherwise, the game would already be over).
After a variable has been picked (no matter by which player)
Controller assigns it a value if the variable has controllable
assignment, Nature otherwise. Regardless of the case, if the
domain of the variable is empty, α is not extended and will
not be total at the end of the game implying (α, ω) 
|= F .

Figure 1 is dynamically controllable. A possible winning
strategy for N2 is the following.

Controller picks t1 and assigns c to it. Then,

1. If Nature passes, Controller picks t2 and Nature assigns it
a value in its domain. After that, Nature picks t3 and Con-
troller assigns to it the same value assigned to t2. Finally,
Nature picks t4 and assigns to it a value in its domain.

2. If Nature picks t3, then Controller assigns b to t3. Then,

(a) If Nature passes, Controller picks t2 and Nature assigns
it a value in its domain. After that, Controller waits for
the game to finish with Nature picking t4 and assigning
it a value in its domain.

(b) If Nature picks t4, then she also assigns it a value in
its domain. After that, Controller picks t2 and Nature
assigns it a value in its domain.

In all cases, it holds that α is total and (α, ω) |= F .

(J,K)-Resiliency

Resiliency adds another layer of uncertainty on top of
GCNUs: Nature might strike by removing values from V .
In what follows we formally define two kinds of (J,K)-
resiliency on top of Game 1, where J and K represent the
bounds of these problems (i.e., Nature’s restrictions). Specif-
ically, J is the maximum number of times that Nature can
strike, whereas K is the maximum number of values that
Nature can remove. Before proceeding, let us get back to
the application domain discussed in the introduction to give
some context. Most of times, business processes might re-
quire to be resilient only with respect to a specific subset of

resources and not all of them. For example, when the em-
ployed resources are both users and machineries, we might
need resiliency of personnel only, or machineries only or
both. In what follows, we allow for any combination of these
scenarios by partitioning V in two disjoint subset VI and VE

modeling respectively the set of values we include and ex-
clude from the analysis, respectively. Of course, one, none
or both of these subsets may be empty.
Game 2 ((J,K)-decremental resiliency). Let N , α, ω as in
Game 1 (this time V = VI ∪ VE). Let J,K ∈ N such that
J ≤ min{K, |X|} and K ≤ |VI |. Each round is as follows.

Phase 0 always happens. Nature makes exactly one of these
two moves, choosing which one when both are available.
strike is available iff J > 0. Nature chooses R ⊆ VI

such that 0 < |R| ≤ K. Nature computes V ′
I = VI \R,

V = V ′
I ∪VE , J = min{J−1,K−|R|}, K = K−|R|

and for each x ∈ X , D(x) = D(x) ∩ V .
pass is always available. Nature does nothing.

Phase 1, 2, 3 and winning conditions are the same of
Game 1.

Definition 4. A GCNU is (J,K)-decrementally resilient if
Controller has a winning strategy for Game 2. Breakable if
it is Nature that has a winning strategy for that game.

In other words, Nature might strike at the beginning of
maximum J different rounds by removing from VI up to K
values overall. To understand the (implicit) upper bound of
J consider these two cases:
1. min{K, |X|} = K. The slowest way in which Nature

can remove all K values is to remove at most one value
per round. Nature can do that since K ≤ |X|. As a re-
sult, at each round where she strikes, J and K should be
decremented by 1 (one strike has been used, one value
has been removed). But this implicitly bounds Nature to
strike maximum K times. Thus, J is upper bounded by
K.

2. min{K, |X|} = |X|. This case is similar but with respect
to the number of rounds (that equals the number of vari-
ables). The slowest way in which Nature can remove all
K values is to remove 1 value in each of the first |X| − 1
rounds and K − |X| − 1 values in the last round. Once
again Nature can do so because |X| ≤ K. As a result,
J is decremented by 1 at any round, whereas K is decre-
mented by 1 in the first |X|−1 rounds and by K−|X|−1
in the last (with respect to the original K). But this im-
plicitly bounds Nature to strike exactly |X| times. Thus,
J is upper bounded by |X|.

Therefore, J is overall upper bounded by min{K, |X|}.
Instead, when Nature strikes by removing more than 1

value per round, we might need to decrement J by more than
1 in order to restore its upper bound condition. Suppose that
Nature removes K ′ ≤ K values from VI . The round can end
up in two possible situations: either J−1 ≤ K−K ′ (and this
is still fine), or J − 1 > K −K ′ (and this needs restoring).
The first case happens when K ′ ≤ K − J + 1, whereas the
second one when K ′ > K−J+1. We provide the following
unconditional update to handle both cases: first, we compute

317



J = min{J − 1,K −K ′} and then K = K −K ′. That is,
the new J and K from that point of the game on. This way,
if K ′ ≤ K − J + 1, then J = min{J − 1,K − K ′} =
J − 1 ≤ K − K ′, whereas if K ′ > K − J + 1, then
J = min{J − 1,K −K ′} = K −K ′ ≤ K −K ′. In both
cases, the new J is upper bounded by the new K (which is
always the previous K minus K ′). Note that, at the begin-
ning of the game, J ≤ min{K, |X|}. As a result, after the
first strike, J − 1 < |X| holds. That’s why, it is safe for the
unconditional update to focus on J and K only.

Game 3 ((J,K)-dynamic resiliency). Let N , α, ω and K
as those given in Game 2. Let J ∈ N such that J ≤ |X| and
let R be a temporary set variable. Each round is as follows.

Phase 0 always happens. Nature sets R = ∅ and then
makes exactly one of these two moves, choosing which one
when both are available.
strike is available iff J > 0 and K > 0. Nature chooses
K ′ ∈ {1,K}, sets R to a possible K ′-subset of VI and
computes J = J − 1.

pass is always available. Nature does nothing.
Phase 1, 2, 3 and winning conditions are the same of

Game 1 with the difference that in Phase 3 Controller and
Nature choose values from D(x) \R instead of D(x).

Definition 5. A GCNU is (J,K)-dynamically resilient if
Controller has a winning strategy for Game 3. Breakable
if it is Nature that has a winning strategy for that game.

In other words, Nature might strike at the beginning of
maximum J different rounds, each time by removing from
VI up to K (possibly different) values. If Nature strikes at
some round, such values are “fictitiously” removed for that
round only and will be available again in the next. Therefore,
J is upper bounded by the number of rounds only.

Decremental resiliency makes sense for J > 0 (note that
if K = 0, then J ≤ min{K, |X|} = 0), whereas dynamic
resiliency for both J > 0 and K > 0 (as J is not related to
K), otherwise Nature can never strike and therefore Game 2
and 3 boil down to Game 1 (dynamic controllability). When
J = min{K, |X|} (decremental) and J = |X| (dynamic)
no strategy of Nature is excluded. These are the worst cases
in which Nature has “full power”. In such cases, we just talk
about K-decremental and K-dynamic resiliency.

Regardless of the type of resiliency, a reader might fairly
wonder what happens if in a round Nature first strikes by
removing a subset of values and then in Phase 3 she also has
to assign the picked variable. In that case, Nature assigns to
that variable a value among those remained (if any).

Further Results on Resiliency

We conclude this section by discussing implication results
among these problems and showing a few characteristics of
interest of Nature’s strategies.

Lemma 1. Let N = 〈X,V,D, P, F 〉 be a GCNU. Then,

1. K-dynamic⇒ K-decremental
2. (J,K)-dynamic ⇒ (J ′,K ′)-dynamic, for each J ′ ≤ J

and each K ′ ≤ K.

t1

{a}
t2

{a, b}
(a) (1, 1)-dynamic �⇒
(1, 1)-decremental.

t1

{a, b, c}
t2

{a, b, c}
= a

=

(b) No 2-winning strategy to break
2-decremental resiliency

Figure 2: Counterexamples to some implications. A self loop
on x labeled by “= v” models the constraint x = v.

3. (J,K)-decremental ⇒ (J ′,K ′)-decremental, for each
J ′ ≤ J and each K ′ ≤ K implying J ′ ≤ min{K ′, |X|}.

Proof. A formal proof is omitted for lack of space. However,
the reason is that implicated games are particular instances
of implicant ones. In Case 1, Nature has full power in both
games. Thus, if Nature loses the game for K-dynamic, then
she also loses that for K-decremental (which is a weaker
one). In Cases 2 and 3 the reason is because when Nature
loses the implicant games with full power, then she will also
lose the same games with less power (i.e., when she is re-
stricted to strike less or remove fewer values or both).

Note that, in general, when 1 ≤ J < |X|, then (J,K)-
dynamic 
⇒ (J,K)-decremental. The reason is that to
simulate (J,K)-decremental with (J,K)-dynamic, Nature
should be able to strike in all rounds to guarantee that the
once some values are gone, they are gone forever. But this is
not possible since there exist |X| − J ≥ 1 rounds in which
she cannot strike. Figure 2a provides a counterexample in
which we assume VI = V and J = K = 1.

The GCN is (1, 1)-dynamically resilient but not (1, 1)-
decrementally resilient. Note that for decremental resiliency
we have that J = min{K, |X|} = 1. Indeed, Controller’s
strategy for Game 3 is the following (note that since this
network is not a GCNU, Nature moves only in Phase 0, if
she decides so):

1. If Nature strikes in Phase 0 of Round 1 we have two
cases:

(a) If Nature removes a, then Controller picks t2 and as-
signs b to it. Then, in Round 2 Controller picks t1 and
assigns a to it.

(b) If Nature removes b, then Controller picks t1 and as-
signs a to it. Then, Controller picks t2 and assigns ei-
ther a or b to is (it does not matter).

2. If Nature passes in Phase 0 of Round 1, Controller picks
t1 and assigns a to it. Then,

(a) If Nature strikes in Round 2 by removing either a or
b, then Controller picks t2 and assigns to it the only
remained value.

(b) If Nature passes in Round 2, then Controller picks t2
and assigns to it any value he likes.

Instead, Nature’s strategy for Game 2 is: At the beginning
of Round 1, strike by removing a. Note that Controller loses
because α is not total at the end.
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Figure 1 is not resilient for any possible kind of resiliency.
Nature strategy for all kinds of resiliency is: Strike in Round
1 by removing c. This strategy forces Controller to assign
either a or b to t1 in Round 1 (as D(t1) \ {c} = {a, b}).
After that, regardless of the Round, when Controller picks
t2, Nature can always assign to t2 the same value assigned
to t1 violating the relational constraint between them.
Definition 6. Nature plays according to a K-strategy if she
removes exactly K values whenever she strikes.
Lemma 2. Let N be a GCN and let J and K as in Game 3.
If Nature has a winning strategy for (J,K)-dynamic re-
siliency played on N , then Nature has a K-winning strategy.

Proof. A detailed formal proof would involve a Prover, a
Verifier, two parallel runs of the same game and a strategy
stealing technique. But in a few sentences, the intuition is the
following. Every time Nature’s winning strategy suggests to
strike at some round by removing a subset of values R, then
Nature strikes at that very same round by removing instead
R ∪ R′, where |R ∪ R′| = K and R′ ⊆ VI \ R. That is,
Nature possibly adds extra values to R (preserving the orig-
inal ones) in order to remove a K-subset of VI . Note that if
R is already a K-subset, Nature just replicates the move (as
R′ = ∅). Note also that Nature can always extend R since
K is never decremented in Game 3 and all removed values
in a round will be available again in the next. Therefore, ex-
tending R to a K-subset R′ cannot do any harm.

Unfortunately, K-winning strategies do not exist for K-
decremental resiliency played on GCNs. Figure 2b pro-
vides a counterexample for K = 2 (recall that J =
min{K, |X|} = 2). If Nature plays according to a 2-
strategy, then she loses (note that Nature strikes maximum
once as the update on J after the first strike is J = min{J−
1,K − 2} = 0). Indeed, If Nature strikes in Round 1 by
removing either {a, b} or {a, c} or {b, c}, then Controller
picks t1 and assigns to it either c or b or a, respectively (the
remained value). After that, Controller picks t2 and assigns
to it the same value of t1. Instead, if Nature passes in Round
1, then Controller picks t1 and assigns a to it. After that, in
Round 2, regardless of what Nature does, Controller picks
t2 and assigns to it any remained value.

Yet, the GCN is not 2-decrementally resilient at all. Na-
ture’s winning strategy is: Strike in Round 1 by removing
a. Strike in Round 2 by removing the value that Controller
assigned to t1 in Round 1.
K-winning strategies do not exist for K-decremental re-

siliency played on GCNUs either as GCNUs contain GCNs.

Complexity of Controllability and Resiliency

We now investigate the complexity of dynamic controllabil-
ity and resiliency of GNCUs.
Theorem 1. Deciding dynamic controllability of GCNUs is
PSPACE-complete.

Proof. Hardness: Let Φ ≡ Q1x1, . . . ,Qnxnϕ be a QBF
where Qi ∈ {∃, ∀}, 1 ≤ i ≤ n and ϕ ≡ C1 ∧ . . . ∧ Cm is
a 3-CNF specifying m clauses over x1, . . . , xn. We provide
two polynomial time reductions to show that any source of

x1

{0, 1}

z

{0}

x2

{0, 1}
x3

{0, 1}
x4

{0, 1}
x5

{0, 1}

p2

{0}
p4

{0}

= 1

= 0= 0 = 1 = 0

= 1

= 0 = 1 = 0 = 1

Figure 3: Reducing Φ ≡ ∃x1∀x2∃x3∀x4∃x5(x1 ∨ ¬x2 ∨
¬x4) ∧ (x2 ∨ x3 ∨ ¬x5) to a GCNU with uncontrollable
variable pickings only.

x1

{0, 1}
x2

{0, 1}
x3

{0, 1}
x4

{0, 1}
x5

{0, 1}

= 1 = 0= 0 = 1 = 0
= 1

= 0 = 1 = 0 = 1

Figure 4: Reducing the same Φ of Figure 3 to a GCNU with
uncontrollable variable assignments only.

uncertainty of GCNUs, even considered in isolation, makes
the problem PSPACE-hard.

Reduction 1. We reduce Φ to a GCNU N =
〈X,V,D, P, F 〉 with variables with uncontrollable picking
as the only source of uncertainty. V = {0, 1}. XN = ∅. XC

contains a variable z such that D(z) = {0}. For each “∃xi”
in Φ, we add a variable xi to XC such that D(xi) = {0, 1}.
For each “∀xj” in Φ, we add a pair of variables xj and pj to
XC such that D(xj) = {0, 1}, D(pj) = {0} , (z, pj) ∈ P
and we add to F two conjuncts (pj < xj ⇒ xj = 0) and
(xj < pj ⇒ xj = 1) in order to simulate an uncontrol-
lable value assignment to xj depending on if Nature picks
pj before or after xj is executed: in the first case, xj = 0,
whereas in the second case xj = 1. Let x1 be the first vari-
able appearing in the quantified part of Φ. We add to F a
conjunct (z < x1) as well as n − 1 conjuncts of the form
(xi < xi+1) in order to mirror the order in which variables
appear in the quantified part of Φ. Finally, we add m con-
juncts (x1 = b1 ∨x2 = b2 ∨x3 = b3) to encode each clause
(λ1 ∨ λ2 ∨ λ3) in ϕ, where xi = 0 if λi = ¬xi and xi = 1
if λi = xi (i = 1, 2, 3). Now, Φ is satisfiable iff N is dy-
namically controllable: the assignment of truth values to the
quantified variables in Φ coincides with that of “0, 1” to the
corresponding variables in N (the assignments to z and all
pj do not matter).

Reduction 2. We reduce Φ to a GCNU N =
〈X,V,D, P, F 〉 with variables with uncontrollable assign-
ment as the only source of uncertainty. We simplify the pre-
vious reduction. V = {0, 1}. For each “∃xi” in Φ, xi ∈ XC .
For each “∀xi” in Φ, xi ∈ XN . For each x ∈ X , D(xi) =
{0, 1}. P = ∅. F is the same given in Reduction 1 deprived
of all conjuncts involving z and pj variables. Once again Φ is
satisfiable iff N is dynamically controllable: the assignment
of truth values to the quantified variables in Φ coincides with
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that of “0, 1” to the corresponding variables in N .
Membership: Algorithm 1 is a PSPACE algorithm to de-

cide dynamic controllability of any GCNU.

Figure 3,4 show examples of Reduction 1,2, respectively.
We omit their formal specifications for lack of space.

Theorem 2. Deciding (J,K)-decremental and (J,K)-
dynamic resiliency of GCNUs are PSPACE-complete.

Proof. Hardness: Inherited from Theorem 1. Member-
ship: Algorithms 2 and 3 are PSPACE algorithms.

Related Work

Dynamic user assignment was investigated for access-
controlled workflows in (Zavatteri et al. 2017). After that,
constraint networks under conditional uncertainty (CNCUs)
were provided as a more formal model handling uncon-
trollable choices and precedence constraints natively (Za-
vatteri and Viganò 2018). Deciding dynamic controllability
of CNCUs is PSPACE-complete (Zavatteri, Rizzi, and Villa
2019). Those works do not investigate resiliency and the
only source of uncertainty is represented as uncontrollable
boolean propositions labeling variables and constraints. The
class of supported constraints in those works is less ex-
pressive than the one in ours. There, we have labeled rela-
tional constraints and precedence constraints, whereas here
relational and precedence constraints become atoms of a
boolean formula. Our framework can transparently be ex-
tended to handle global constraints as further atoms.

The workflow satisfiability problem (WSP) is the prob-
lem of finding an assignment of users to tasks satisfying all
authorization constraints. The workflow resiliency problem
is a dynamic WSP coping with the absence of users as the
unique source of uncertainty (Wang and Li 2010). In static
resiliency, users might be absent before starting. In decre-
mental resiliency, users might also turn absent during ex-
ecution. In dynamic resiliency, users might come and go.
One-shot resiliency is the first attempt to impose restric-
tions on Nature by bounding the number of strikes to at
most one (Fong 2019). Despite several works investigated
workflow satisfiability and resiliency (dos Santos et al. 2017;
Lowalekar, Tiwari, and Karlapalem 2009; Paci et al. 2008;
Crampton et al. 2017; Mace, Morisset, and van Moorsel
2014; 2016) to the best of our knowledge only one faced the
strategy synthesis problem in an exact way for all kinds of
resiliency (Zavatteri and Viganò 2019b). A recent survey on
workflow satisfiability and resiliency is given in (dos Santos
and Ranise 2017). None of these works studied resiliency
on top of other sources of uncertainty. Also, beside one-shot
resiliency, to the best of our knowledge, no other work faced
the problem of limiting Nature’s power in the sense of num-
ber of strikes nor explored the arising structure. We defined
(J,K)-resiliency to meet this end and we also showed non-
trivial results regarding the upper bound of J and its rela-
tion with K in decremental resiliency. One-shot resiliency
is equivalent to (1,K)-decremental resiliency.

GCNUs are a discrete event system model. The exact tim-
ing at which variables are executed is not important (we just

Algorithm 1: GcnuDC(N) is an AND/OR search tree
whose depth size is bounded by O(|X|). Note that ef-
ficient algorithms to generate all K-subsets of a given
set in PSPACE are discussed in (Ruskey and Williams
2009) for (s, t)-combinations.

Input: A GCNU N = 〈X,V,D, P, F 〉
Output: Yes, if N is dynamically controllable. No

otherwise.
GcnuDC (N)

Let α, ω be an empty assignment and ordering.
return Phase1 2(X,V,D, P, F, α, ω)

Phase1 2 (U, V,D, P, F, α, ω)
if U = ∅ then

return (α, ω) |= F

return npick(U, V,D, P, F, α, ω) ∧
cpick(U, V,D, P, F, α, ω)

npick (U, V,D, P, F, α, ω)
for y ∈ Y ∩ U do

if A(y) ∩ U = ∅ then
ω′ ← ω ∪ {ω′(y)← |D(ω)|}
U ′ ← U \ {y}
if ¬Phase3(U ′, V,D, P, F, α, ω′, y) then

return No

return Yes
cpick (U, V,D, P, F, α, ω)

for x ∈ U \ Y do
ω′ ← ω ∪ {ω′(x)← |D(ω)|}
U ′ ← U \ {x}
if Phase3(U ′, V,D, P, F, α, ω′, x) then

return Yes
return No

Phase3 (U, V,D, P, F, α, ω, x)
if x ∈ XC then

return cassign(U, V,D, P, F, α, ω, x)

return nassign(U, V,D, P, F, α, ω, x)

cassign (U, V,D, P, F, α, ω, x)
for v ∈ D(x) do

α′ ← α ∪ {α′(x)← v}
if Phase1 2(U, V,D, P, F, α′, ω) then

return Yes
return No

nassign (U, V,D, P, F, α, ω, x)
if D(x) = ∅ then

return No
for v ∈ D(x) do

α′ ← α ∪ {α′(x)← v}
if ¬Phase1 2(U, V,D, P, F, α′, ω) then

return No
return Yes

focus on the ordering). The number of resources is fixed. If
a GCNU is controllable/resilient then there exists a strategy
to execute it guaranteeing that when all variables have been
executed all constraints are satisfied. Thus, resources never
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Algorithm 2: GcnuDecR(N). Phase1 2, upick, cpick,
Phase3, uassign and cassign are extended to carry
J,K as extra parameters with uassign and cassign
internally calling Phase0 instead of Phase1 2. Only
strike modifies J and K.

Input: A GCNU N = 〈X,V = VI ∪ VE , D, P, F 〉, two
positive integers J,K s.t.
0 ≤ J ≤ min{K, |X|} and 0 ≤ K ≤ |VI |.

Output: Yes, if N is (J,K)-decrementally resilient. No
otherwise.

GcnuDecR (N)
Let α, ω be an empty assignment and ordering.
return Phase0(U, V,D, P, F, α, ω, J,K)

Phase0 (U, V,D, P, F, α, ω, J,K)
return Phase1 2(U, V,D, P, F, α, ω, J,K) ∧
strike(U, V,D, P, F, α, ω, J,K)
�Phase1 2 = pass

strike (U, V,D, P, F, α, ω, J,K)
if J > 0 then

for K ′ ∈ {1,K} do
foreach K ′-subset R of VI do

V ′
I ← VI \R

D′ ← {(x, v) | (x, v) ∈ D, v 
∈ R}
if ¬Phase1 2(U, V ′

I ∪ VE , D
′, P, F ,

α, ω,min(J − 1,K −K ′),K −K ′)
then return No;

return Yes. . .

Algorithm 3: GcnuDynR(N). Phase1 2, upick, cpick,
Phase3, uassign and cassign are extended to carry
J,K and R as extra parameters. uassign and cassign
internally call Phase0 instead of Phase1 2, this time
looking for values in D(x) \ R. Only strike modifies
J .

Input: A GCNU N = 〈X,V = VI ∪ VE , D, P, F 〉, two
positive integers J,K such that 0 ≤ J ≤ |X|
and 0 ≤ K ≤ |VI |.

Output: Yes, if N is (J,K)-dynamically resilient. No
otherwise.

GcnuDynR (N)
Let α, ω be an empty assignment and ordering.
return Phase0(U, V,D, P, F, α, ω, J,K)

Phase0 (U, V,D, P, F, α, ω, J,K)
return Phase1 2(U, V,D, P, F, α, ω, J,K, ∅) ∧
strike(U, V,D, P, F, α, ω, J,K)
�Phase1 2 = pass

strike (U, V,D, P, F, α, ω, J,K)
if J > 0 ∧K > 0 then

for K ′ ∈ {1,K} do
foreach K ′-subset R of VI do

if ¬Phase1 2(U, V,D, P, F, α, ω,
J − 1,K,R) then return No;

return Yes. . .

run out completely. As a result, there are no discrepancies
between the model and the execution environment like in
approaches considering robustness envelopes (Cashmore et
al. 2019). GCNUs are not a stochastic framework and in con-
trast to POMDP (Kaelbling, Littman, and Cassandra 1998)
we do not have beliefs/rewards here. So it never happens that
we need to replan due to mismatching beliefs.

Several extensions of simple temporal networks (STNs)
(Dechter, Meiri, and Pearl 1991) have been put forth to
handle uncontrollable durations and uncontrollable choices,
either in isolation (Morris, Muscettola, and Vidal 2001;
Tsamardinos, Vidal, and Pollack 2003; Levine and Williams
2014; Yu, Fang, and Williams 2014; Hunsberger, Posenato,
and Combi 2015) or simultaneously (Hunsberger, Posen-
ato, and Combi 2012; Cimatti et al. 2016; Zavatteri 2017;
Zavatteri and Viganò 2019a). Attempts to handle resources
on top of temporal networks are given in (Combi et al. 2017;
2019). Variables with uncontrollable picking might resem-
ble contingent time points in STNUs (Morris, Muscettola,
and Vidal 2001). However, they strongly differ from them
as variables with uncontrollable picking may have many ac-
tivation variables whereas contingent time points have ex-
actly one. In (Cairo et al. 2017) it was proved that tempo-
ral networks with optional variable executions can be turned
into a temporal networks with no optional variable execu-
tion. GCNUs follow that philosophy guaranteeing to work
with a lighter formalism. GCNUs might model optional vari-
able executions by means of an horizon variable h such that
all variables executed before h are considered really exe-
cuted, whereas those executed after h are not. Note that
we might impose conditional constraints in F of the form
(x < h ⇒ . . .). In this paper we focus on a qualitative time
model in which we only have a concept of before and after
and for several reasons discussed above, GCNUs differ from
approaches like (Laborie and Rogerie 2008). And again, no
temporal network model addresses resiliency.

Conclusions and Future Work

We introduced generalized constraint networks with un-
certainty (GCNUs) and defined dynamic controllability,
(J,K)-decremental and (J,K)-dynamic resiliency. The lat-
ter two on top of the former. In dynamic controllability
uncontrollable events always happen, whereas in (J,K)-
resiliency they might not. We formalized the semantics for
dynamic controllability and (J,K)-resiliency as two-player
games. We analyzed the structure of these games. We proved
that the decision versions of these problems are all PSPACE-
complete. We provided algorithms to answer them.

As future work we plan to investigate strategy synthesis
algorithms for these problems by relying on results such as
that in Lemma 6 to achieve state space reduction techniques.
We also plan to deepen complexity analysis of GCNUs for
other combinations of controllability and resiliency.
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