
Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020)

Solving the Test Laboratory Scheduling Problem with Variable Task Grouping

Philipp Danzinger, Tobias Geibinger, Florian Mischek, Nysret Musliu
Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and Scheduling

DBAI, TU Wien, Karlsplatz 13, 1040 Vienna, Austria
{pdanzing, tgeibing, fmischek, musliu}@dbai.tuwien.ac.at

Abstract

The Test Laboratory Scheduling Problem (TLSP) is an exten-
sion of the Resource-Constrained Project Scheduling Problem
(RCPSP). Besides several additional constraints, it includes
a grouping phase where the jobs to be scheduled have to be
assembled from smaller tasks and derive their properties from
this grouping. Previous solution approaches for TLSP have
focused primarily on the scheduling subproblem (TLSP-S), for
which it is assumed that a suitable grouping is already given as
part of the input. In this paper, we provide for the first time a
solution approach that encompasses the full problem including
grouping. We propose both a Constraint Programming model
for TLSP and a Very Large Neighborhood Search algorithm
based on that model. Furthermore, we apply our algorithms
to real-world instances as well as randomly generated ones
and compare our results to the best existing solutions. Exper-
imental results show that our solution methods consistently
outperform those for TLSP-S when both are initialised with a
good grouping and in many cases even when this grouping is
provided only to the latter.

Introduction

Project scheduling problems appear in many different settings
where activities have to performed using limited resources.
This includes, but is not limited to, factories and other man-
ufacturing processes as well as project management appli-
cations. Solving these problems manually usually requires
expert knowledge, large amounts of time and is prone to
potentially expensive errors and suboptimal solutions.

The Test Laboratory Scheduling Problem (TLSP) is one
such problem that arises in an industrial test laboratory, where
a large number of tests have to be performed by qualified
employees, using specialised equipment. At the same time,
several constraints such as release dates, deadlines and prece-
dences between tests have to be considered. TLSP is an ex-
tension of RCPSP. It introduces several new constraints com-
pared to RCPSP, including general availability constraints on
resources, which limit which resources can be assigned to
individual activities.

Most importantly, the jobs to be scheduled in TLSP are not
indivisible atoms in the schedule, but actually composed of

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

smaller components, called tasks. The properties of each job
(such as duration, time windows and resource requirements)
are completely determined by the tasks it contains. Solvers
need to both find such a grouping of tasks into jobs and assign
time slots and resources to each job.

Existing solution approaches to TLSP only deal with
a subproblem focusing on the scheduling part, which as-
sumes that a feasible grouping of tasks into jobs is al-
ready provided (TLSP-S). This grouping is then taken as-
is and not modified during the search process: In (Mis-
chek and Musliu 2019), TLSP-S is solved using metaheuris-
tics, whereas in (Geibinger, Mischek, and Musliu 2019b;
2019a), a CP model and a Very Large Neighborhood Search
(VLNS) are proposed. These solution approaches are limited
to scenarios where such an initial grouping is known or can
be easily generated. For the more general case, grouping has
to be considered as part of the solution process. In order to
deal with this issue, we developed an innovative constraint
programming (CP) model for TLSP that is able to handle
a dynamic number of jobs. An optimization we included in
this model is also applicable for the CP model for TLSP-S
described in (Geibinger, Mischek, and Musliu 2019a) and we
show that it further improves the performance of that model.
The main contributions of this paper are:

• We provide for the first time a CP model for the full TLSP.

• We extend the VLNS used in (Geibinger, Mischek, and
Musliu 2019a) making it suitable as a solver for TLSP.

• We show that our approaches achieve very good results and
outperform previous methods even compared to TLSP-S
solvers that start out from a good initial grouping.

Our solution approaches are currently employed success-
fully for scheduling in an industrial test laboratory.

This paper is structured as follows: The next section con-
tains a review of related literature, followed by a section
containing a formal description of TLSP. In the main part of
the paper, we describe our CP model and our VLNS algo-
rithm in detail. We provide experimental results and a short
discussion in the section after that. Finally, the last section
contains our conclusions and an outline of future work.

357

Literature Overview

Project scheduling problems have been investigated ex-
tensively in the literature. The most studied variants of
these problems include the Resource-Constrained Project
Scheduling Problem (RCPSP) (Brucker et al. 1999; Hart-
mann and Briskorn 2010; Mika, Waligóra, and Węglarz 2015)
and its Multi-Mode version (MRCPSP) (Elmaghraby 1977;
Węglarz et al. 2011; Hartmann and Briskorn 2010; Szeredi
and Schutt 2016). Of particular relevance for TLSP(-S) is the
Multi-Skill RCPSP (MSPSP) (Bellenguez and Néron 2005;
Young, Feydy, and Schutt 2017), which features similar re-
source availability constraints.

TLSP-S was investigated by (Mischek and Musliu 2019),
(Geibinger, Mischek, and Musliu 2019b) and (Geibinger,
Mischek, and Musliu 2019a). It arises in a real-life situation
and included several extensions compared to other project
scheduling problems. TLSP generalizes TLSP-S, in which
a feasible grouping of tasks into jobs is already provided.
Solving of both task grouping and TLSP-S simultaneously
increases drastically the size and the search space. Our solu-
tion techniques for TLSP proposed in this paper are based
on some initial ideas from (Geibinger, Mischek, and Musliu
2019a), but they include significant extensions regarding the
constraint programming model and the large neighborhood
search algorithm.

Aspects similar to the grouping mechanism in TLSP ap-
pear in other works in the form of batching (e.g. (Schwindt
and Trautmann 2000; Potts and Kovalyov 2000)) or schedule-
dependent setup times (e.g. (Mika, Waligóra, and Węglarz
2006; 2008)), although they are typically handled implicitly,
i.e. the batches arise from the finished schedule, instead of
the other way round.

Problem Description

This section formally describes TLSP which was introduced
in (Mischek and Musliu 2018). We mostly follow their nota-
tion, albeit with some slight changes.

Input Parameters

Each instance encompasses a laboratory environment, con-
taining the number of time slots available as well as the avail-
able resources, a list of projects containing tasks to schedule
and their requirements, and finally optionally information
about an existing schedule.

Environment The planning horizon consists of discrete
time slots t ∈ T = {1, . . . , |T |}. The laboratory environment
provides different kinds of resources used to perform tasks:

• Employees e ∈ E = {1, . . . , |E|} who are able to perform
some tasks.

• Workbenches b ∈ B = {1, . . . , |B|} which tasks may be
performed on.

• Equipment groups Gg = {1, . . . , |Gg|} where g is the
group’s index. Each group represents similar individual
devices e ∈ Gg . The set of all equipment groups is G∗.

Finally, tasks must be performed in one of several modes
m ∈ M = {1, . . . , |M |}. The assigned mode determines the

number of required employees, given by em, as well a speed
factor vm by which the duration of the task is multiplied.

Projects and Tasks The tasks to be performed are parti-
tioned into projects p ∈ P = {1, . . . , |P |}. Individual tasks
for a project p are denoted by a ∈ Ap. We also use pa to
refer to the project that task a belongs to. The set of all tasks
is denoted by A∗ =

⋃
p∈P Ap. Each task a has the following

properties:
• It has a release date αa and a due date ω̄a as well as a

deadline ωa. Violating the deadline is forbidden, while
violating the due date only results in a penalty.

• Each task has a set of available modes Ma ⊆ M .
• The real-valued duration of the task is denoted by da and

measured in time slots. When tasks are scheduled, this
duration must be multiplied by the speed factor vm of the
mode the task is performed in. The duration for task a
performed in mode m then becomes dam := da · vm.

• Tasks may need to be performed on a workbench, which is
indicated by ba ∈ {0, 1}. If a workbench is required, the
assigned workbench must be part of the available work-
benches Ba ⊆ B.

• Similarly, employees assigned to a task must be chosen
from its set of qualified employees denoted by Ea ⊆ E.
The number of required employees solely depends on the
assigned mode. Additionally, the set EPr

a ⊆ Ea is the set
of preferred employees.

• From each equipment group g ∈ G∗, a task requires rag
devices, which must be taken from the set of available
devices Gag ⊆ Gg .

• Each task may also have predecessor tasks Pa ⊆ Apa
,

which must be completed before a starts. Predecessors
must belong to the same project.
Each project’s tasks are further partitioned into families,

where fa denotes the family of task a and Ff ⊆ A∗ are
the tasks contained in family f . In addition to the syntax
from (Mischek and Musliu 2018), we also use F ∗ to refer to
the set of all families. Jobs must be formed from tasks of the
same family only.

Each family f further has a setup time sf . The setup time
gets added to the duration of each job containing tasks from
family f alongside the tasks’ durations themselves. When
a setup time is added to a job, it gets scaled with the speed
factor of the job’s assigned mode, just like task durations.
Hence, sfm = sf ·vm denotes the setup time for jobs formed
from tasks from family f and performed in mode m.

Finally, sometimes it is required that different tasks are
performed by exactly the same employees. This is ensured
by specifying linked tasks. The linked tasks of project p are
described by the equivalence relation Lp ⊆ Ap ×Ap, where
two tasks a and b, both from project p, are linked if and only
if (a, b) ∈ Lp.

Existing Schedule All instances specify a base schedule,
containing fixed assignments that may not be changed.1

1In some scenarios, the base schedule may also contain other
assignments that are not fixed, but we do not cover this aspect in

358

Compared to the original definition, we omit the fixed
time slot, mode and resource assignments given in the base
schedule of the instance. This makes it possible to specify
the subsequent CP model more succinctly without sacrificing
much flexibility, since the possible assignments can also be
restricted by narrowing down task properties such as release
time, and available resources in a preprocessing step.

Thus the base schedule is given by the set J0 of base jobs,
where each job j ∈ J0 contains a set of fixed tasks ȦF

j that
must appear together in a single job in the solution. Since
only tasks of the same family can be combined into a job,
also all tasks in ȦF

j must belong to a single family.
A subset of the base jobs J0 are the started jobs J0S ⊆ J0.

Any job in the solution containing at least one task of a started
job must start at time slot 1 and has no setup time added to
its duration. The reason for this is that it is assumed those
tasks are already being worked on.

Jobs and Grouping

Before any time slots or resources are assigned, tasks must
first be grouped into larger units called jobs. Among other
things, this helps reuse test setups (as modelled by the setup
time) and reduces the rounding error when converting dura-
tions to full time slots. In addition, it reduces the operational
and mental overhead for employees as well as the schedule’s
complexity for human planners.

Each job may only contain tasks from the same task family,
and by extension from the same project. Jobs have similar
properties to tasks, which are computed from the tasks that
make up the job. Within a job, tasks are executed sequentially,
but without a defined order. For this reason, a job’s assign-
ment must fulfill all of its tasks’ requirements for its full
duration. For example, a job’s start time must be greater or
equal to all its tasks’ release times, and its end time smaller or
equal to all its tasks’ deadlines. A job must only be assigned
modes and resources available to all of its tasks and must be
assigned exactly enough resources to cover its most demand-
ing task. Likewise, the set of preferred employees is equal to
the intersection of all its tasks’ preferred employees. Finally,
tasks between which a precedence relation exists must either
be part of the same job or their jobs must obey an equivalent
precedence relation in the final schedule.

The duration of a job j is calculated by taking the sum of
the durations dam of its tasks, under the mode m assigned to
j. Assuming j does not contain any started tasks, the setup
time sfm of the family f containing the tasks in j is added,
otherwise it is assumed that the setup is already complete and
no setup time is added. The final duration is then obtained by
rounding up that sum to the next full time slot.

The choice of this formulation, which deliberately overcon-
strains schedules, was made due to a combination of several
operational aspects present in the laboratory of our industrial
partner.

• Working hours for employees are quite flexible, which
makes schedules with a finer granularity than half a day
difficult to implement in practice (also with regards to labor

this paper and ignore all such assignments where present.

law). Since many tasks have a duration smaller than this,
any formulation directly scheduling tasks must necessarily
incur substantial overheads when rounding those tasks to
full time slots.

• Tasks within a family usually share many properties, such
as resource requirements and availabilities. This lessens the
impact of the overconstrained nature of a job’s properties.
Also in difference to RCPSP, precedence constraints play
a rather small role in typical TLSP instances, with only
a few percent of tasks having prerequisites, and many of
these are shared by all tasks of a family.

• In practice, there are often last-minute changes in the order
of performed tasks due to minor delays, unclear specifica-
tions, or other external factors. This formulation guaran-
tees that at least within a job, such changes can always be
performed without conflicts.

Solution Description

A solution to a TLSP instance consists of a set of jobs which
encompasses all tasks, as well as assignments to those jobs
to satisfy all requirements. In particular, each job must be
assigned a start time slot and completion time, the mode in
which the job should be executed, the workbench on which
the job is performed (if required), a set of employees, and the
required number of devices for each equipment group g.

For a more formal treatment of how a job’s properties are
calculated as well as a comprehensive list of all constraints
present in TLSP we refer to (Mischek and Musliu 2018).

Constraint Programming Model

In this section, we propose a CP model for the full TLSP. Our
implementation is written in the solver-independent modeling
language MiniZinc (Nethercote et al. 2007).

One major challenge in creating a model for the full TLSP
was finding an efficient representation for the task groupings.
Such a representation should not only be symmetry-free,
but it must also allow to schedule and assign resources to
a varying number of jobs whose requirements may change
depending on the tasks assigned to them. The approach used
in our model is to treat each task as a potential job. Each job
is identified by a representative task, which is used to assign
time slots and resources to jobs. To this end, we introduce
an array of decision variables ξ(a) that assign to each task
the representative task of the job it belongs to. To break the
symmetry in choosing the representative tasks, we assign
each task an (arbitrary) id such that the set of tasks is well-
ordered and require the representative task of each job to be
its task with the least id.

For convenience, we define the set J of tasks that act as
representatives for a job: J = {a ∈ A∗ | ξ(a) = a}. Since
the elements of this set depend on the chosen task grouping,
they are, of course, decided on by the solver during runtime.

As mentioned previously, the model must be able to cal-
culate job durations ad-hoc based on task durations, which
are real-valued fractions of time slots. Because support for
float variables is limited across different MiniZinc solvers,
we opted to approximate this calculation using integers. To
that end, all durations and setup times are scaled up by a

359

factor M and then rounded up to the next integer during
pre-processing. Because time requirements are always over-
estimated, this transformation does not lead to any invalid
schedules, but it may make some valid ones appear to be
infeasible. The impact of this rounding can, of course, be
lessened by increasing M. In our experiments, the choice of
M (between 100 and 10000) did not affect the quality of the
produced solutions, but values above 1000 led to a drastic
increase in memory usage. For this reason, we decided to use
M = 1000 for our final evaluations.

The variables sa and na assign start and end times to
jobs, respectively. They are set to valid time slots for all
tasks a ∈ J , and set to 0 for all other tasks. Together, they
functionally define the duration da = na − sa.

In the same manner as before, ma assigns a mode to each
job. Resource assignments are described as follows: The
variable aEm

ea is set to 1 if employee e is assigned to job a
and 0 otherwise, the variable aWb

ba is set to 1 if a is performed
on workbench b and 0 otherwise, and finally the variable aEq

ea
is set to 1 if a uses device e, and 0 otherwise. Similar to time
slots, all resource assignnments are set to 0 for all a �∈ J .

Hard Constraints

ξ(ξ(a)) = ξ(a) a ∈ A∗ (1)
pa = pξ(a) ∧ fa = fξ(a) a ∈ A∗ (2)

all equal({ξ(a) | a ∈ ȦF
j }) j ∈ J0 (3)

ξ(a) ≤ a a ∈ A∗ (4)

Constraints (1–3) ensure that ξ(a) describes a valid group-
ing of tasks. (1) enforces that representative tasks point at
themselves, (2) ensures that only tasks from the same project
and family can be combined, and (3) ensures that tasks inside
a fixed set are assigned to the same job. Finally, (4) serves
symmetry-breaking purposes, enforcing that the task with the
least id from each job are chosen as the representative.

sξ(a) ≥ αa ∧ nξ(a) ≤ ωa a ∈ A∗ (5)

da = na − sa a ∈ J (6)

Constraint (5) ensures that each task’s release time and
deadline are compatible with its job’s assigned start and end
times. Equation (6) defines a job’s assigned duration to be
the difference between its assigned end and start time.

da · M ≥
∑

a′∈A∗
s.t. ξ(a′)=a

da′ma
+ st(a) a ∈ J (7)

(da − 1) · M <
∑

a′∈A∗
s.t. ξ(a′)=a

da′ma
+ st(a) a ∈ J (8)

Constraints (7) and (8) calculate, scale down and round up
the job durations. Each job’s duration is the sum of the dura-
tions of its assigned tasks, plus its setup time st(a), which is
0 for jobs containing a started task and sfama

otherwise.

ξ(a) = ξ(a′) ∨ nξ(a′) ≤ sξ(a) a ∈ A∗, a′ ∈ Pa (9)

sξ(a) = 1 j ∈ J0S , a ∈ Ȧj (10)

Constraint (9) ensures that prerequisite tasks are either part
of the same job, or are completed before the job containing
their successor is started. Constraint (10) enforces that jobs
containing started tasks are assigned the start time 1.

cumulative((sa)a∈A∗ , (dmaa)a∈A∗ ,

(aEm
ea)a∈A∗ , 1) e ∈ E (11)

Constraint (11) models the unary resource constraints for
employees, ensuring that employees are not used by multiple
jobs at the same time. The constraints for workbenches and
devices (for each equipment group) are modeled in the same
way.

ema
=

∑

e∈E

aEm
ea a ∈ J (12)

ba =
∑

b∈B

aWb
bξ(a) a ∈ A∗ (13)

max
a′∈A∗

s.t. ξ(a′)=a

ra′g =
∑

e∈Gg

aEq
ea a ∈ J, g ∈ G∗ (14)

Although constraints (12–14) look very different at first
glance, they serve a similar purpose in making sure that jobs
are assigned the correct number of employees, workbenches
and equipment, respectively. The employee constraint is eas-
iest to model because the required number of employees is
only dependent on the mode assigned to the job. Workbenches
are still straight-forward because at most one of them can be
assigned to each job. Constraining the assigned equipment is
most complicated because there is no fixed upper bound like
for workbenches: instead, the constraint needs to compute
the exact maximum equipment requirements over all tasks
assigned to the job.

aEm
eξ(a) = 1 → e ∈ Ea a ∈ A∗, e ∈ E (15)

mξ(t) ∈ Ma a ∈ A∗ (16)

aEm
eξ(a) = aEm

eξ(a′) e ∈ E, p ∈ P,

(a, a′) ∈ Lp (17)

Constraints (15–16) ensure that all employees and modes
assigned to a job are available to all of its tasks. Availability
constraints for equipment and workbenches are modeled anal-
ogously. (17) enforces that linked tasks, or more precisely
their jobs, must be assigned the same employees.

Soft Constraints

TLSP contains several soft constraints according to (Mischek
and Musliu 2018).

As MiniZinc has no direct support for soft constraints,
they are defined as a function that should be minimized. The
minimization target for this model is the weighted sum of
several soft constraints s1 through s5. For the purposes of the
benchmarks presented here, all weights wi(1 ≤ i ≤ 5) are
set to 1. We realise that setting all weights to 1 is not ideal
and our industrial partner is currently tasked with tuning the
those values.

360

The individual soft constraints are formulated as follows:

s1 = w1 ·
∑

j∈J

1 (18)

s2 = w2 ·
∑

j∈J

∑

e∈(E\EPr
j)

aEm
ej (19)

s3 = w3 ·
∑

p∈P

∑

e∈E

((
∑

a∈Ap

aEm
ea) > 0) (20)

s4 = w4 ·
∑

j∈J

max(0, nj − min
a∈A∗ s.t. ξ(a)=j

(ω̄a)) (21)

s5 = w5 ·
∑

p∈P

(max
a∈Ap

(na)− min
a∈Ap s.t. ξ(a)=a

(sa)) (22)

First, we want to minimize the number of jobs with (18).
Next, (19) penalizes employee assignments that deviate from
the preferred employees, where EPr

j is the set of preferred
employees of job j. (20) minimizes the number of different
employees assigned to each project. Further, due date viola-
tions are penalized with (21) and finally, the project durations
should be minimized with (22). The minimization objective
is simply the sum

∑
1≤i≤5 si.

Optimizing for Identical Resources

One major factor that sets TLSP apart from RCPSP is how
resource requirements are described. In RCPSP each activity
can require some quantity of each resource and resources
themselves are limited but replenishable. TLSP further differ-
entiates between individual units of each resource. A task’s
requirements may require assigning only specific individual
resources. As a result, handling resource units individually
increases the size of TLSP models significantly and slows
down search. Equipment is particularly problematic here due
to the additional breakdown into different equipment groups.

Fortunately, there is a way to alleviate this: One pattern
present in real-world data as well as the test instances is that
some equipment units are completely interchangeable. In a
sense, this means they behave similarly to classical RCPSP
resources. This is the case for two units of equipment e1 and
e2 if they both belong to group g and are available to exactly
the same tasks.

To exploit the symmetry introduced by this equivalence
relation, we developed a problem transformation. The in-
dividual pieces of equipment in the input are replaced by
equipment (equivalence) classes. Then, instead of assigning
to a job individual pieces of equipment using binary decision
variables, the model uses integer variables to decide how
many members of each equipment class are assigned.

Formally, this means replacing Gg by new sets Cg , adding
corresponding sets of available devices Cag ⊆ Cg to tasks
and introducing an array qc to store the quantity of pieces in
each equipment class, such that for each device, a class exists
that is available to exactly the same tasks, and vice versa.
Furthermore, we ensure that all equipment classes from the
same group are different regarding task availabilities and that
the quantity qc of an equipment class c is equal to the number
of devices available to the same tasks. Constraints (11), (14)
and (15) need to be adapted accordingly.

Applying this transformation improved the efficiency of
the CP model in all domains, including compile time, run
time and memory usage. At the same time, we saw no perfor-
mance slowdowns even with an artificial instance that only
contains distinct equipment. We also applied this optimisation
to the existing CP model for TLSP-S (Geibinger, Mischek,
and Musliu 2019a) and found similar improvements.

Other Optimizations

There were two smaller optimizations that provided a signifi-
cant speed-up.

ξ(min
a∈Ff

a) = min
a∈Ff

a f ∈ F ∗ (23)

First, the redundant constraint (23) explicitly states that the
smallest task of each family must be a representative task
and therefore represent a job. Even though this easily follows
from hard constraints (1) and (2), the constraint provided a
large improvement to compile and search times, reducing
total run times by more than a third.

The second optimization regards the formulation of the
soft constraints. Adding decision variables for each project’s
violations of each soft constraint reduced the run time of the
search significantly. Additionally, introducing very primitive
bounds that can be resolved when the model is compiled had
further positive effect. As an example for such a bound, each
project’s duration (soft constraint (22)) must be at least as
long as its longest task plus (except for projects containing
started tasks) the smallest possible setup time of its family.
An obvious upper bound is the interval between the smallest
release date and the largest deadline.

Unfortunately, using redundant global cumulative and
global cardinality constraints as in (Geibinger, Mis-
chek, and Musliu 2019a) did not translate well to TLSP. In
the first case, an efficient formulation is not possible, because
it would require prior knowledge about the resource require-
ments of jobs. On the other hand, global cardinality
constraints can be formulated easily but offer only loose
bounds that did not result in any improvements.

Search Strategies

The previous CP model for TLSP-S (Geibinger, Mis-
chek, and Musliu 2019b) very successfully employed the
priority search annotation in MiniZinc (Feydy et al.
2017). It ordered the jobs by their earliest possible start time
and then schedule them one by one, fully assigning time
slots, a mode, and resources to each job one after another.
This search can easily be transferred to the new model for the
most part. However, there are multiple ways to include task
grouping. We closely investigated two approaches:

• Grouping before Scheduling
The first part of the search is to decide on a job grouping.
After some initial experimentation the most promising
approach to this was assigning the variables in ξ(a) family
by family, starting with the largest family. The values were
assigned in the way which creates the fewest number of
jobs. After grouping all tasks, scheduling is described by
a priority search annotation. Jobs are scheduled one

361

after another in ascending order of their lower bound on
the starting time. This means assigning each job its earliest
starting time, followed by a mode (preferring the shortest
execution time), and then employees, workbenches and
equipment (using first fail and indomain max turned
out most beneficial).

• Grouping while Scheduling
In contrast to the first approach, this search starts with
the priority search right away. Because the grouping
is not decided upon at this point, the priority search
searches over all tasks, again in ascending order of the
lower bound on the starting time. The first step when
scheduling a task a is to fix ξ(a). Afterward, time slots and
resources are assigned like in the previous strategy.
In the end, grouping while scheduling turned out to be

significantly better when it came to finding feasible solu-
tions. Not only was it faster in almost all cases, but it could
also solve one more benchmark instance. Grouping before
scheduling appeared to be slightly better at closing small
instances, including benchmark instances of up to 5 projects
and those arising during VLNS. However, the differences
are much less pronounced here. While there were some ag-
gregate differences over a large number of runs, the typical
run-to-run variance usually played a much larger factor. This
is why in the experimental evaluation of the CP model we
use the grouping while scheduling approach.

Very Large Neighborhood Search

Based on the proposed CP model, we implemented a Very
Large Neighborhood Search (VLNS). The algorithm and
implementation are based on the existing VLNS algorithm
for TLSP-S (Geibinger, Mischek, and Musliu 2019a), with
several extensions to incorporate the new CP model.

Given an initial feasible solution, the algorithm repeatedly
fixes the schedule (including the task grouping, as well as
assigned time slots and resources) for all but a small number
of projects and uses a CP model to try to find an optimal
schedule for the unfixed projects.

Although being able to modify the task grouping is, in
principle, a big advantage and allows for better solutions,
this comes at the cost of much longer run times. To alleviate
this, we employ both our new CP model and the model for
TLSP-S used by the existing VLNS, and switch between them
randomly – having some moves only change the schedule
and others also alter the task grouping.

1. Generate initial solution
Our VLNS requires a feasible schedule to operate on.
To solve the full TLSP and generate solutions without
knowing a feasible task grouping a priori, we use our new
CP model. As soon as a feasible solution is found, the
algorithm continues. There is no time limit for this stage
apart from the total time available.

2. Decide which CP Model to use
Each move utilizes either the CP model for TLSP-S pro-
posed in (Geibinger, Mischek, and Musliu 2019b) or the
CP model for the full TLSP described above. One of those
models is selected randomly and independently for each

move. The full TLSP model is chosen with a probability
given by the parameter regroupProb.

3. Fix all but k projects
Now, we generate an instance for the move. First, a ran-
dom combination of kX projects is selected to be re-
scheduled, where X is either ”fixed” or ”variable”, de-
pending on the chosen CP model. Both variables are ini-
tially set to 1 and updated at a later step in the algorithm.
The projects are chosen in such a way that all of them
overlap in the current schedule (or, if that is not possible,
could overlap based on their release and due times).Once
some projects have been chosen, an instance is created by
fixing the assignments of all jobs contained in the other
projects and cutting away all irrelevant information. In
order to further optimise the instance, the grouping and
all assignments of tasks contained in fixed projects are
assigned directly. This significantly reduces compilation
time.

4. Perform move
Once the instance has been prepared, we execute a CP
solver to (ideally) solve it to optimality. This changes the
time and resource assignments of the selected projects.
The best assignments found by the solver are then applied
to the current schedule unless doing so would increase
the penalty. To prevent the algorithm from spending too
much time on individual hard instances, the CP solver is
executed with a time limit, which is passed as a parameter
to the algorithm. We differentiate between the two CP
models, introducing the parameters fixedMzTimeout and
variableMzTimeout.
Similarly to (Geibinger, Mischek, and Musliu 2019a) we
also hot start the CP solver with a parameterized probabil-
ity given by variableHotStartProbor fixedHotStartProb,
again differentiating between the two CP models. Since
hot starting allows the solver to start from a known feasi-
ble solution, it can speed up the search significantly, albeit
with the drawback that the solver never returns different so-
lutions of the same quality, hence why a probability is used.
Also as in (Geibinger, Mischek, and Musliu 2019a) if hot
starting is not used, we modify our priority search to
assign resources randomly, for further diversification.

5. Change k and save combination
Depending on which model was used during the move this
step operates on either kfixedor kvariable, hereafter called
k. If k ≥ 1 and the move changed the schedule, k is
reset to 1. If there are no valid combinations of projects
left for k, it is increased by one or – with probability
jumpProb – by two. If there are no valid combinations of
projects left for any k and for any CP model, the algorithm
terminates. If there are no combinations left for any k
for the fixed CP model only, the TLSP model is used for
the next move. Additionally we save the combinations of
projects which have already been scheduled once and do
not select them again until there has been a change in the
schedule overlapping their time window.

6. Repeat

362

Until the algorithm’s time limit is reached, we go back to
step 2 and perform another move.

Experiments

For our evaluations we used a data set containing 33 TLSP
instances of varying size (ranging from 5 to 90 projects and
from 13 to around 1500 tasks) and scheduling period length
(88 to 782 time slots), taken from https://www.dbai.tuwien.ac.
at/staff/fmischek/TLSP/. 30 of those instances were randomly
generated and the remaining three were taken directly from
a real-world laboratory. This is the same set of instances as
was used in (Geibinger, Mischek, and Musliu 2019a) and we
refer to that paper for a comprehensive description of these
instances, and to (Mischek and Musliu 2018) for details on
the instance generation process for the randomly generated
instances. The exceptions to this are the second and third
real-world instances, which are introduced for the first time
in this paper. Those two instances are anonymized snapshots
taken directly from our industrial partner at different dates.

We conducted our experiments on a benchmark server with
224GB RAM and two AMD Opteron 6272 Processors each
with a frequency of 2.1GHz and 16 logical cores. As was
done in (Geibinger, Mischek, and Musliu 2019a), we usually
executed two independent benchmarking runs in parallel,
since all of our solution approaches are single-threaded. Each
run had a time limit of two hours. As our backend CP solver,
we used Chuffed (Chu 2011).

Parameter Configuration

As described earlier, there are a total of 6 parameters for
VLNS. First, there is the probability regroupProb of using
the TLSP model, as opposed to the model TLSP-S preserv-
ing the task grouping. Then, there are the timeouts for single
moves based on the chosen model, fixedMzTimeout and vari-
ableMzTimeout. Each move is hot-started with probability
fixedHotStartProb or variableHotStartProb. Finally, when
the algorithm is forced to increase the number of projects
re-scheduled simultaneously, jumpProb is the probability of
increasing this number by two instead of one.

For parameter tuning, we employed SMAC3 (Hutter, Hoos,
and Leyton-Brown 2011), version 0.11.0. Tuning was per-
formed on a set of 30 generated instances which were distinct
from, but chosen in the same way as our test set. We used a
budget of 1200 algorithm runs, performing four trials in par-
allel. In the end, SMAC recommended setting regroupProb to
10%, and fixedMzTimeout and variableMzTimeout to 20s and
40s, respectively. Further, fixedHotStartProb and variable-
HotStartProb were both set to 80%, reflecting the results
from (Geibinger, Mischek, and Musliu 2019a). Finally, the
recommended value for jumpProb was a low probability of
3% and stands in stark contrast to the 35% used in (Geibinger,
Mischek, and Musliu 2019b). This seems plausible given that,
in the previous VLNS for TLSP-S, the jumpProb parameter
mainly helped the algorithm explore a larger neighborhood.
This kept it from getting stuck in local optima. Incorporating
the new CP model with variable grouping, which can explore
a much larger neighborhood by itself, could thus lessen the
importance of the parameter. In fact, it might even hurt the

● ● ● ●
● ●

● ●

●

● ●

●

●
●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

0
10

00
20

00
30

00
40

00
50

00
60

00

Pe
na

lty

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 Lab1 Lab3
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Lab2

● CP
VLNS

Figure 1: Results for the CP model and for VLNS. The y-axis
shows the the total objective value for each instance, i.e. the
sum of equations (18–22). No feasible solution was found
within the time limit for instances 23, 24 and 29.

performance of the TLSP model by increasing the neighbor-
hood to a size that cannot be efficiently explored by the solver
in the given timelimit for each move.

Results

We evaluated the performance of both our CP model and
our VLNS approach. Since VLNS is non-deterministic, we
performed five runs of it for each instance with different seeds.
The results given for VLNS in this section are averages of
those five runs, unless noted otherwise.

Figure 1 shows the results for the CP approach and VLNS.
It can be immediately seen that CP could find feasible so-
lutions for 30 of the 33 instances (including all real-life in-
stance), although optimality of the solutions could be proved
only for the two smallest instances. Since the CP solver was
also used to provide an initial feasible solution for VLNS,
the same three instances as with CP alone remained unsolved.
For the remaining instances, the solutions found using VLNS
were at least as good as with CP alone, and better in all cases
but those where CP could already find optimal solutions. In
some cases, the solutions produced by VLNS were improved
by more than 50% compared to CP.

When comparing our results to those reported in
(Geibinger, Mischek, and Musliu 2019a) (see Figure 2), one
has to keep in mind that the problem solved in that paper is ac-
tually not TLSP, but TLSP-S, which requires that a (feasible)
grouping of tasks into jobs is already provided and cannot
be changed. On the one hand, this means that for any given
instance, the optimal solution for TLSP is at least as good
as the one for TLSP-S for any provided grouping. On the
other hand, not having to include grouping allows for much
simpler and more efficient models, including, but not limited
to precomputed constants for the number and properties of
jobs. As long as the given grouping is good enough, it is
easier to find good solutions within limited time than for a
model that simultaneously has to build up and dynamically
adjust such a grouping.

This effect could also be seen in our results: For small
instances with up to 10 projects, we could consistently im-
prove upon the best known results for TLSP-S using the
initially given grouping. However, as the instances get larger,

363

●

●

●

●

●

●

●

CP VLNS
CP

(TLSP−S)
VLNS

(TLSP−S)

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

Pe
na

lty
(re

la
tiv

e
to

 b
es

t k
no

w
n)

Figure 2: Results for CP and VLNS are compared to existing
solutions for TLSP-S. To normalize over different instance
sizes, the penalty for each run was divided by the penalty of
the best known solution for the instance.

this is no longer always the case, in particular for CP alone,
which falls behind its counterpart for TLSP-S. VLNS fares
much better, presumably due to the fact that the instances to
evaluate at each move are consistently small, and we report
several new best-known solutions even for large instances.
The initial solution in the first step of the algorithm was found
within one minute for 18 of the 30 generated instances, and
within 7 minutes for further 8 instances. For three instances,
no feasible solution could be found at all within two hours.

In order to provide a fair comparison between the VLNS
for TLSP-S and our approach for TLSP, we also evaluated
a variant of our VLNS algorithm where the initial solution
is generated by the CP model for TLSP-S, using initially
provided grouping. The rest of the solution process was per-
formed as described in the section above. Figure 3 shows the
results for this experiment. Here, the inclusion of regrouping
moves resulted in improved solutions for almost every single
instance, by up to a third of the original best known penalty.

On the other hand, any solution approach for TLSP-S can
be applied to TLSP, if it is combined with a mechanism to
generate an initial grouping. For this purpose, we created a
greedy construction heuristic. This heuristic iteratively as-
signs tasks to existing jobs as long as this does not introduce
a local infeasibility for that job (e.g. by having less resources
available than required or by creating a cycle in the prece-
dence graph). A new job is created whenever this assignment
is not possible for a task. The only exception in this pro-
cess are fixed tasks, which are assigned first to ensure that
they end up in the same job. As an example of a TLSP-S
solver, we used the CP model from (Geibinger, Mischek,
and Musliu 2019a). For better comparability with our new
model for TLSP, we also included the optimization regarding
equipment classes described in a previous section. We then
ran the TLSP-S model with the grouping obtained by our
construction heuristic. This grouping turned out to be infeasi-
ble for 10 of the 33 instances, including all three real-world

●

●

●

VLNS
VLNS

(TLSP−S init)
VLNS

(TLSP−S)

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

1.
30

Pe
na

lty
(re

la
tiv

e
to

 b
es

t k
no

w
n)

2 outliers omitted

Figure 3: Comparison of VLNS and VLNS for TLSP-S (also
depicted in Figure 2) with a variant of VLNS that generates
its initial solution using the CP model for TLSP-S (center).
Penalties are normalized by the best known solution for each
instance.

instances. For the remaining instances, the TLSP-S solver
managed to find feasible solutions that are comparable to
those achieved by our TLSP-S model. This shows that while
solution approaches for TLSP-S can find good solutions in
some scenarios, approaches such as ours have to be used
in those cases where a feasible grouping is not known and
cannot be easily found.

Conclusion

In this work we successfully modeled the real-world schedul-
ing problem TLSP, which so far has only been studied in its
restricted case TLSP-S. Besides utilising and adapting exist-
ing approaches for formalising scheduling problems from the
literature and earlier work, we found a novel way to model the
task grouping aspect of the problem. Furthermore, we investi-
gated several optimisations for our approach and managed to
further improve the performance for larger instances. In order
to improve the quality of solutions for large instances, we
developed a Very Large Neighborhood Search based on our
exact method and an existing VLNS for TLSP-S. We eval-
uated our methods with 30 randomly generated benchmark
instances and 3 real-world examples. With our CP model we
could prove optimality for the two smallest benchmark in-
stances and found feasible solutions for all but 3 instances in
total. Furthermore, VLNS was able to reduce the penalty of
the solutions for every instance where the TLSP model found
a feasible solution. We also experimented with an approach
which takes a feasible TLSP-S solution and uses VLNS to
improve the penalty and showed that this generally achieves
better results than using VLNS with our TLSP model.

The methods discussed in this paper are currently being
deployed for real-world use and show very good results. For
the future we plan to improve VLNS by making it less reliant
on a feasible initial solution, which is currently its main bot-
tleneck for larger instances. We also plan to investigate even

364

more general constraint formulations that will allow us to de-
ploy our models in other settings with similar requirements.

Acknowledgments

The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs and the National Foundation
for Research, Technology and Development is gratefully ac-
knowledged.

References

Bellenguez, O., and Néron, E. 2005. Lower bounds for
the multi-skill project scheduling problem with hierarchical
levels of skills. In Burke, E., and Trick, M., eds., Practice
and Theory of Automated Timetabling V, 229–243. Berlin,
Heidelberg: Springer Berlin Heidelberg.
Brucker, P.; Drexl, A.; Möhring, R.; Neumann, K.; and Pesch,
E. 1999. Resource-constrained project scheduling: Notation,
classification, models, and methods. European Journal of
Operational Research 112(1):3 – 41.
Chu, G. 2011. Improving combinatorial optimization. Ph.D.
Dissertation, University of Melbourne, Australia.
Elmaghraby, S. E. 1977. Activity networks: Project planning
and control by network models. John Wiley & Sons.
Feydy, T.; Goldwaser, A.; Schutt, A.; Stuckey, P. J.; and
Young, K. D. 2017. Priority search with minizinc. In ModRef
2017: The Sixteenth International Workshop on Constraint
Modelling and Reformulation at CP2017.
Geibinger, T.; Mischek, F.; and Musliu, N. 2019a. Investi-
gating constraint programming and hybrid methods for real
world industrial test laboratory scheduling. Submitted to
journal, preprint at arXiv:1911.04766.
Geibinger, T.; Mischek, F.; and Musliu, N. 2019b. Inves-
tigating constraint programming for real world industrial
test laboratory scheduling. In Integration of Constraint Pro-
gramming, Artificial Intelligence, and Operations Research -
16th International Conference, CPAIOR 2019, Thessaloniki,
Greece, June 4-7, 2019, Proceedings, 304–319.
Hartmann, S., and Briskorn, D. 2010. A survey of variants
and extensions of the resource-constrained project schedul-
ing problem. European Journal of Operational Research
207(1):1 – 14.
Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2011. Se-
quential model-based optimization for general algorithm con-
figuration. In Coello, C. A. C., ed., Learning and Intelligent
Optimization, 507–523. Berlin, Heidelberg: Springer Berlin
Heidelberg.
Mika, M.; Waligóra, G.; and Węglarz, J. 2006. Modelling
setup times in project scheduling. Perspectives in modern
project scheduling 131–163.
Mika, M.; Waligóra, G.; and Węglarz, J. 2008. Tabu search
for multi-mode resource-constrained project scheduling with
schedule-dependent setup times. European Journal of Oper-
ational Research 187(3):1238 – 1250.
Mika, M.; Waligóra, G.; and Węglarz, J. 2015. Overview and
state of the art. In Schwindt, C., and Zimmermann, J., eds.,

Handbook on Project Management and Scheduling Vol.1.
Cham: Springer International Publishing. 445–490.
Mischek, F., and Musliu, N. 2018. The test laboratory
scheduling problem. Technical report, Christian Doppler
Laboratory for Artificial Intelligence and Optimization for
Planning and Scheduling, TU Wien, CD-TR 2018/1.
Mischek, F., and Musliu, N. 2019. A local search framework
for industrial test laboratory scheduling. Submitted to journal,
preprint at dbai.tuwien.ac.at/staff/fmischek/TLSP/.
Nethercote, N.; Stuckey, P. J.; Becket, R.; Brand, S.; Duck,
G. J.; and Tack, G. 2007. Minizinc: Towards a standard CP
modelling language. In Principles and Practice of Constraint
Programming - CP 2007, 13th International Conference, CP
2007, Providence, RI, USA, September 23-27, 2007, Proceed-
ings, 529–543.
Potts, C. N., and Kovalyov, M. Y. 2000. Scheduling with
batching: A review. European Journal of Operational Re-
search 120(2):228 – 249.
Schwindt, C., and Trautmann, N. 2000. Batch scheduling
in process industries: an application of resource–constrained
project scheduling. OR-Spektrum 22(4):501–524.
Szeredi, R., and Schutt, A. 2016. Modelling and solving
multi-mode resource-constrained project scheduling. In Prin-
ciples and Practice of Constraint Programming - 22nd Inter-
national Conference, CP 2016, Toulouse, France, September
5-9, 2016, Proceedings, 483–492.
Węglarz, J.; Józefowska, J.; Mika, M.; and Waligóra, G. 2011.
Project scheduling with finite or infinite number of activity
processing modes – a survey. European Journal of Opera-
tional Research 208(3):177 – 205.
Young, K. D.; Feydy, T.; and Schutt, A. 2017. Constraint
programming applied to the multi-skill project scheduling
problem. In Principles and Practice of Constraint Program-
ming - 23rd International Conference, CP 2017, Melbourne,
VIC, Australia, August 28 - September 1, 2017, Proceedings,
308–317.

365

