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Abstract

In real-world urban logistics operations, changes to the routes
and tasks occur in response to dynamic events. To ensure
customers’ demands are met, planners need to make these
changes quickly (sometimes instantaneously). This paper
proposes the formulation of a dynamic vehicle routing prob-
lem with time windows and both known and stochastic cus-
tomers as a route-based Markov Decision Process. We pro-
pose a solution approach that combines Deep Reinforce-
ment Learning (specifically neural networks-based Temporal-
Difference learning with experience replay) to approximate
the value function and a routing heuristic based on Simulated
Annealing, called DRLSA. Our approach enables optimized
re-routing decision to be generated almost instantaneously.
Furthermore, to exploit the structure of this problem, we pro-
pose a state representation based on the total cost of the re-
maining routes of the vehicles. We show that the cost of the
remaining routes of vehicles can serve as proxy to the se-
quence of the routes and time window requirements. DRLSA
is evaluated against the commonly used Approximate Value
Iteration (AVI) and Multiple Scenario Approach (MSA). Our
experiment results show that DRLSA can achieve on aver-
age, 10% improvement over myopic, outperforming AVI and
MSA even with small training episodes on problems with de-
gree of dynamism above 0.5.

Introduction

We consider a real-time planning problem in urban logis-
tics in which changes to the routes and tasks are required
in response to dynamic events. For example, customers may
add or cancel requests throughout the day; travel or service
times may change drastically due to traffic congestion; or-
der amounts or demands may need to be modified. To en-
sure customers’ demands are met, logistics service providers
need to dynamically respond to these changes quickly.

More precisely, we consider a Dynamic Vehicle Routing
Problem (DVRP) with time windows and both known (i.e.
fixed) and stochastic customers. We model this problem as a
route-based Markov Decision Process (MDP), and to solve
the problem efficiently, we propose an approach that com-
bines Deep Reinforcement Learning (RL) (specifically neu-
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ral networks-based Temporal-Difference (TD) learning with
experience replay) to approximate the value function and a
routing heuristic based on Simulated Annealing (SA), called
DRLSA. Furthermore, to exploit the structure of this prob-
lem, we propose a state representation based on the total cost
of the remaining routes of the vehicles and the current time
at the point of decision-making. We show that the cost of
the remaining routes of vehicles can serve as proxy to the
sequence of the routes and time window requirements. This
state representation captures both spatial and temporal fea-
tures which impact decision-making.

Given our approach, an optimized re-routing decision can
be produced almost instantaneously for moderately large
problem instances based on small training episodes in the
magnitude of thousands. This is contrasted with sampling-
based online approaches which reportedly take the order of
100 seconds per decision (Voccia, Campbell, and Thomas
2017) and most MDP-based approaches that adopted Value
Function Approximation (VFA) method only managed to
solve single vehicle problems without any additional con-
straints like time windows or capacity and required training
episodes in the magnitude of millions (Ulmer, Mattfeld, and
Köster 2017; Ulmer, Thomas, and Mattfeld 2018). Our ap-
proach is also oblivious to probability distributions of de-
mand uncertainty unlike stochastic optimization methods.

We compare experimentally the performance of DRLSA
with Approximate Value Iteration (AVI) (Ulmer, Thomas,
and Mattfeld 2018) and Multiple Scenario Approach (MSA)
(Bent and Van Hentenryck 2004b), and show that DRLSA
outperforms both methods in problem settings where dy-
namic requests take up more than 50% of the total requests.

This paper makes the following contributions:
• We formulate our problem as a route-based MDP and pro-

pose a state representation based on the total cost of the
remaining routes of the vehicles and the current time at
the point of decision-making.

• We propose a solution approach that combines neural
networks-based TD learning with experience replay to ap-
proximate value function and a routing heuristic based on
SA (called DRLSA) to solve the problem.

• We show experimentally that our approach outperforms
existing methods when dynamic requests are prevalent.
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Related Works

Research on DVRPs witnessed a surge in the recent decade
(see survey by Psaraftis, Wen, and Kontovas (2016)). This
trend is likely to continue given increasing needs toward ser-
vices like same-day delivery.

DVRP can be broadly categorized into dynamic-
deterministic and dynamic-stochastic (Pillac et al. 2013).
Even within dynamic-stochastic VRP (DSVRP), stochas-
ticity arises in different aspects namely travel times, de-
mands, customers or combinations of these stochastic as-
pects (Ritzinger, Puchinger, and Hartl 2016). Research focus
in the recent decade has been on DSVRP as it models more
closely the real-world environment. This paper focuses on
solving DVRP with both known and stochastic customers.

DVRP can be modelled as MDP because in DVRP, deci-
sions need to be made in view of uncertainty and are done
sequentially. Conventional MDP identifies optimal decision
such as next customer to visit at every decision point. How-
ever, this does not address our need, as we need to deter-
mine not only who the next customer is (which may be suffi-
cient for ride-sharing problems), but what the updated route
plan is (as goods must be loaded onto vehicles prior to de-
livery, which typically should not be undone arising from
future requests). Ulmer et al. (2017) proposed route-based
MDP as a common modeling framework for DVRP. In route-
based MDP, the state and action space include updates to the
routes. This paper adopts the route-based MDP as the model.

There are 3 broad categories of approaches for solving
DSVRP:

1. Offline or Pre-processed decision support. Policies or
values for decision-making are computed prior to exe-
cution of plan. Here, the solution approaches are mainly
MDP-based. Unfortunately, MDP-based approaches fall
into the curse of dimensionality and hence are not suit-
able for most real-world problems (Pillac et al. 2013).
Approximate Dynamic Programming (ADP) approaches
are commonly used to tackle the scalability issue, and one
such ADP method for DVRP is Approximate Value It-
eration (AVI). Ulmer, Thomas, and Mattfeld (2018) and
Agussurja, Cheng, and Lau (2019) proposed AVI to solve
DVRP as an MDP. Both papers proposed state aggrega-
tion and representation to further overcome the challenge
of large state space. Another main challenge of ADP is to
generate enough scenarios during the training phase so as
to accurately assign a value to a state. AVI approximates
the value function as a lookup table and may fail if certain
state is not encountered during the training phase. Most
works used AVI on single vehicle setting without time
window constraints which may not extend well for more
complex problems like those with multiple vehicles and
additional constraints such as time windows or capacity.
VFA via non-parametric models such as neural networks
is a popular choice for more complex problems. This pa-
per proposes a neural-network based VFA.
We also like to point out there has been increasing re-
search on machine learning methods (such as sequence-
to-sequence models and deep RL) for solving classi-
cal combinatorial optimization problems (Vinyals, For-

tunato, and Jaitly 2015; Bello et al. 2016; Nazari et
al. 2018). The main idea behind is to let algorithms
learn their own heuristics rather than depending on hand-
crafted heuristics. These methods had been applied to
pure DVRP where initial routes are not existent and
routes are constructed from scratch. These methods may
not work on partially dynamic problems like ours where
initial routes are already available and re-routings are
done dynamically with minimal disruptions to the exist-
ing routes for practical reasons.

2. Online decision. Unlike the pre-processed decision sup-
port approaches, online decisions do not compute optimal
global policy; rather computations are performed during
the execution of plan. Common approaches in this cate-
gory are usually termed as lookahead strategy or rolling
horizon procedures (Powell 2011) such as rollout algo-
rithms (Bertsekas, Tsitsiklis, and Wu 1997; Secomandi
2001; Goodson, Thomas, and Ohlmann 2017) and Multi-
ple Scenario Approach (MSA) (Bent and Van Hentenryck
2004b; Voccia, Campbell, and Thomas 2017). They are
mainly sampling-based approaches. The common feature
of these methods is that they focus on the current state
and instance. They do not consider the values of all pos-
sible states but only the relevant states at the decision
point. At the decision point, the methods do ‘roll-out’
or ‘lookahead’ to simulate what will happen in the fu-
ture and use this information to guide decision-making.
Bent and Van Hentenryck (2004a) introduced the con-
sensus algorithm into MSA to solve online VRPs with
stochastic customers. Consensus algorithm performs of-
fline optimization on the available and sampled requests
once per scenario and returns the decision with the largest
score or lowest cost. Online decisions approaches are
suitable where there is no strict time constraint imposed
when decision-making is required and work well with in-
creasing degree of dynamism (DoD). Thus, the choice
between online or offline methods will be very much de-
pendent on how fast decisions need to be made during
execution time.

3. Hybrid approaches. There have been attempts to com-
bine both approaches to leverage the strengths of both
approaches. Ulmer et al. (2018) proposes offline-online
approximate dynamic programming which embeds the
offline VFA into the online roll-out algorithm. Ulmer et
al. (2018) only managed to run at most 16 ‘lookahead’
samples for every decision instance due to resource con-
straint. The gain achieved through this hybrid approach
may not be compelling enough given the vast compro-
mise in terms of decision-making time. De Filippo, Lom-
bardi, and Milano (2018) proposed an integration of of-
fline and online optimization by considering multi-stage
optimization problems where the first phase requires of-
fline decision and the subsequent phases require online
decision. The proposed approach works on DVRP with
stochastic travel time where customers are assigned of-
fline but routes are optimized online. This, however, does
not work for DVRP with stochastic customers as cus-
tomer requests are not known beforehand.
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Problem Description and Model

Problem Description

We are given a fleet of M identical vehicles initially located
at the depot at the start of the day. Each vehicle has an initial
route βm(0) consisting of a sequence of customer orders,
C0 to fulfill for that particular day. Every route starts and
end at the depot. Every order has a delivery time window
[en, ln]. In addition, there is a lunch hour when no delivery
can be made. A waiting time is incurred if the vehicle either
arrives early or during the lunch hour. Throughout the day,
new orders arrive from Cr. An action/decision xk is selected
to modify a route assigned with the new order(s). Delivery
later than the time window upper bound incurs a penalty cost
per unit time violated. The objective is to minimize the sum
of total travel and waiting times of all vehicles and penalty
cost for time window violations. In this paper, we focus on
insertion of new orders rather than cancellation since both
warrant similar approach and insertion is more challenging
and interesting than cancellation.

Model Formulation

We model this dynamic multi-vehicle same-day delivery
routing problem with time windows and stochastic cus-
tomers as a route-based MDP. Table 1 provides the set of
notations and the corresponding descriptions used in the
model.

Why Route-based MDP? Ulmer et al. (2017) first pro-
posed route-based MDP as a unifying modelling framework
for VRP where the action is not merely the next customer to
visit but the remaining route to be assigned to a vehicle. Un-
like the passenger ride-sharing problem where single-action
(myopic) MDP makes more sense with somewhat simple
consideration of passengers’ pickup and drop off locations,
logistics suffers much more restrictions and complications.

Firstly, the planning horizon is much longer (e.g. entire
day) and the delivery time windows and meal breaks must
be considered, so the decision of which vehicle and sequence
to serve a given request must anticipate future dynamic re-
quests. This implies that the value of a state needs to take
into account the projected route of the vehicle in anticipa-
tion of future new requests. The calculations of rewards take
into account the penalty and waiting time that may occur
into the future and these calculations can only be derived if
a route is available.

Secondly, the problem setting we address is a real-world
Business-to-Business (B2B) delivery operation. The visibil-
ity of entire routes is important to drivers from the point
of view of execution planning, cargo loading, tracking and
communication on the ground. Each delivery job is tied to its
respective cargo that needs to be loaded to the assigned ve-
hicle, and swapping cargo between vehicles is not viable op-
erationally. Note however that in this paper, in order to sim-
plify discussion, we assume that a new request can be served
without considering its pickup. The reader may deduce that
incorporating pickup is fairly straightforward, since we are
making route changes within a single vehicle.

Table 1: Set of Notations used in the MDP model.
Notation Description

M Set of identical vehicles, M ∈ {1, ...,M}
Depot is set as location 0

δm(k) A route or sequence of remaining
locations to visit by vehicle m at

decision epoch k
δxm(k) A route or sequence of remaining

locations to visit by vehicle m after
executing decision x at decision epoch k

βm(k) A route or sequence of locations to visit
and visited by vehicle m updated as of

decision epoch k
βx
m(k) A route or sequence of locations to visit

and visited by vehicle m after executing
decision x at decision epoch k

vlocm(k) Location of vehicle m at decision epoch k
t(k) Time at decision epoch k
Ck Set of realized orders updated as of

decision epoch k
Cr Set of stochastic orders

CSn(k) Order status of customer order n at
decision epoch k

[en, ln] Delivery time window at customer
location for order n

τ(δm(k)) Total travel time of vehicle
m when following route δm(k)

τ(βm(k)) Total travel time of vehicle
m when following route βm(k)

wait(δm(k)) Total waiting time of vehicle m when
following route δm(k)

wait(βm(k)) Total waiting time of vehicle m when
following route βm(k)

pen(δm(k)) Total penalty cost for time windows
violation of vehicle m when following

route δm(k)
pen(βm(k)) Total penalty cost for time windows

violation of vehicle m when following
route βm(k)

Decision Epoch. A decision epoch or decision point k oc-
curs at every time step t(k). This means that dynamic event
can take place at any time throughout the time horizon. Thus,
by this definition, k is equal to t(k). This definition of de-
cision epoch is chosen to simulate real-world environment
where dynamic events can take place at any time and also to
facilitate modelling the arrival rate of these events.

State. A state of the MDP consists of two parts, pre-
decision state Sk and post-decision state Sx

k . Sk captures
the necessary information required such as the current time,
locations of all the vehicles, the remaining routes of all the
vehicles and the statuses of all the realized orders. Sk is rep-
resented as the following tuple:
Sk = 〈t(k), vloc(k), δ(k), CS(k)〉
where vloc(k) = (vlocm(k))m∈M , δ(k) = (δm(k))m∈M

and CS(k) = (CSn(k))n∈Ck
. The post-decision state Sx

k
captures the changes to the state upon executing a decision.
t(k) remains the same while the other three components are
updated depending on the decision taken.
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Figure 1: Illustration on how the reward function is derived.

Action/Decision. xk at decision epoch k is the action of
updating the remaining route of the vehicle which is as-
signed to serve the new order. The route of the chosen ve-
hicle m, δm(k) is revised to δxm(k) after executing xk ∈
X(Sk) where all orders should be delivered within [en, ln].
Note that the time window is a soft constraint while lunch
hour period is a hard constraint. We also assume that there is
no swapping of customer orders among vehicles as the load
picked up for a particular customer order must be delivered
to the respective customer.

Transition. There are two main transitions in the model
namely, from pre-decision state, Sk to post-decision Sx

k and
from Sx

k to the next pre-decision state, Sk+1. The transition
from Sk to Sx

k has been mentioned in earlier. Meanwhile,
during transition from Sx

k to Sk+1, a realization of new or-
der, ω takes place, and Ck+1 is updated by adding the new
order to Ck and Sk+1 = (Sx

k , ω) where ω ∈ Cr.

Reward Function. The ”reward” function, R(Sk, xk) is
defined as the incremental increase in total cost of being in
state Sk and choosing decision x. Cost(Sk, x) is defined as
the total cost (i.e. travel plus wait plus time window viola-
tion) when choosing decision x at state Sk.

Cost(Sk, x) =

M∑

m=1

τ(βx
m(k)) + wait(βx

m(k)) + pen(βx
m(k))

R(Sk, xk) = Cost(Sk, xk)− Cost(Sk−1, xk−1)
Figure 1 illustrates how this reward function is derived.

Value Function. The value function equation, V (Sk) can
be approximated to the following Bellman Equation:
V̂ (Sk) = minx∈X(Sk){R(Sk, x) + γV̂ (Sx

k )}
The goal is to minimize the expected future cost over the
planning horizon. In other words, given a state Sk, select de-
cision x that returns the minimum V̂ (Sk). As shown in Fig-
ure 1, the approximated value function (for e.g. V̂ (S1, x1))
would take into consideration expected the future rewards
from yet-to-realized dynamic events.

Figure 2: Framework of the proposed approach, DRLSA.

Solution Approach

Our solution approach is adapted from Ulmer, Thomas, and
Mattfeld (2018) but with major modification given the dif-
ferences in problem settings. Figure 2 shows that our pro-
posed approach, DRLSA, comprises two phases namely
training phase and run-time. We propose neural networks-
based TD learning with experience replay to approximate
the value function which is subsequently utilized by a Sim-
ulated Annealing (SA) algorithm to generate the revised
routes during run-time. Due to large state space, a state rep-
resentation based on the cost of the remaining routes of ve-
hicles and current time is used to capture the spatial and tem-
poral attributes of the state.

VFA via TD Learning with Experience Replay

During the training phase, we use a set of historical delivery
plans to simulate the initial delivery plans and, depending on
the value of DoD, a percentage of the orders in the plan is
randomly removed and these orders are added subsequently
as realizations of new orders. This is done to simulate dy-
namic events. This offline simulation outputs the approxi-
mated value function for each post-decision state, V̂ (Sx

k , θ)
in a form of a non-parametric function or neural networks.
The bulk of the computational time of this approach is dur-
ing this training phase; and during execution, the run time is
spent on SA to generate the changes to the routes.

Algorithm 1 describes how our proposed neural networks-
based TD learning with experience replay algorithm approx-
imates the value function. This algorithm is adapted from
the vanilla version of Deep Q-Network (DQN) with expe-
rience replay (Mnih et al. 2013) with V (Sx, θ) replacing
Q(S, x, θ) at lines 11, 16, 20 and 21 since we are approx-
imating the value function instead of the state-action value
or Q-function. Similar to DQN, two value function networks
are used to deal with non-stationarity of the target network
and experience replay to ensure that randomly selected sam-
ples are independent. However, another difference is that this
proposed algorithm is on-policy while DQN is off-policy
(see difference in line 16). Mini-batch gradient descent is
used to update the parameter of target network as shown in
line 20. In addition, line 11 includes SA operator to choose
the optimal re-routing action instead of computing the ’true’
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argmin. SA explores the search space via 2-opt local search
probabilistically. Routing heuristic is used here since com-
puting the ’true’ argmin involves brute force enumerating
of all possible re-routing sequences.

Why Deep RL? We propose an RL-based approach be-
cause it is model-free and labelled data are not available.
Furthermore, deep RL-based method allows the neural net-
works to approximate the value function and tune the cor-
responding parameters based on the observed rewards over
many training episodes. There is no need to make assump-
tion on the underlying relationships between the features in
the states. The approximated value function also takes into
account the underlying probability distribution of the oc-
currences of dynamic event without the need to explicitly
specify the probability distribution of the new orders un-
like stochastic optimizations methods. Compared to lookup-
based ones like AVI, neural networks-based VFA is also able
to handle larger state space.

Why Approximate Value Function? We chose an algo-
rithm that approximates the value function instead of Q-
function. This is deliberately chosen to fit the context of our
problem. In DSVRP, a decision involves a re-routing of the
remaining routes which does NOT consist of an explicit ac-
tion per se. As shown in Figure 3, the decision in response to
new customer 6 is not merely choosing the position for inser-
tion but it can also include swapping of existing customers’
positions. This means that the action space is exponentially
large with respect to number of customers, since every sce-
nario consists of different possible actions due to different
possible lengths of routes and different possible customer
locations. Zhang and Dietterich (2000) also concluded that
Q-function is not suitable in problem settings where the ac-

Figure 3: A re-routing decision is more than insertion of new
customer and may include swapping of existing customers.

tions are largely dependent on the current states like job
scheduling problems. Specifying the Q-value of each action
is not possible since action space changes depending on the
current state. This also means that off-policy TD learning
method like Q-learning may not be applicable directly. Thus,
approximating the value of a state using on-policy TD learn-
ing is more suitable for this problem setting.

Routing Optimization via SA

During the run-time phase, a set of scenarios of daily deliv-
ery plans and dynamic realizations of stochastic new orders
are presented. Our approach utilizes the approximate value
function from the training phase to compute value of each
decision explored during the SA search. As shown in Figure
2, x∗

k is modified using SA taking into account both imme-
diate cost plus expected future reward computed by the ap-
proximate value function, V̂ (Sx

k ). We note that many routing
heuristics can be used to optimize the routes. In this paper,
we picked SA due to its efficiency and effectiveness to pro-
vide fast quality solution for vehicle routing problems (Chi-
ang and Russell 1996; Osman 1993). The focus of the paper
is not to find the best heuristics for routing, but a flexible
solution framework which enables different heuristics to be
used in optimizing the routes.

State Representation

Due to the large state space, the post-decision states are usu-
ally aggregated or represented based on certain handcrafted
features. It is important to find features that exploit the struc-
ture of the problem and are able to sufficiently differentiate
between two distinct states which may require two different
policies. Thus, we propose a state representation based on
the current time and the cost of the remaining routes of the
vehicles at decision epoch k which includes the penalty cost
for time window violations for each vehicle. The proposed
state representation is shown below:
S′x

k = 〈t(k), Costremain(Sk, x), Costpenalty(Sk, x)〉
where Costremain(Sk, x) = (Costremain,m(Sx, k))m∈M ,
Cost(remain,m)(Sk, x) = τ(δxm(k)) + wait(δxm(k)),
Costpenalty(Sk, x) = (Costpenalty,m(Sk, x))m∈M ,
Cost(penalty,m)(Sk, x) = pen(δxm(k))
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Time. t(k) is an important temporal feature in the prob-
lem because the earlier the decision point during run-time,
the more likely there will be new stochastic requests in the
future and thus, the anticipatory value for future rewards is
higher. The same principle applies when t(k) happens later
during run-time.

Cost of Remaining Routes. The re-routing decision to the
existing route does not depend on the previous visited loca-
tions prior to decision point k. This is because the immediate
and future rewards only depend on the remaining routes.

Specifying the exact remaining routes of the vehicles,
δ(k) may result in a very large state space. The pro-
posed state representation uses the cost of remaining routes,
Costremain(Sk, x) as a proxy to for the routes. For exam-
ple, the cost of route [3, 4, 5, 0] is different from [3, 5, 4, 0]
and this sufficiently differentiate the routes. There may be
scenarios where the cost of two routes may be the same even
though the exact sequences of the routes are different. How-
ever, this is not a concern since re-routing decision is depen-
dent on the immediate reward and the post-decision state
which are different in both scenarios. For example, insert-
ing Customer 6 at the second position (i.e. [3, 6, 4, 5, 0] and
[3, 6, 5, 4, 0] respectively) will result in different immediate
rewards and post-decision states in both scenarios.

Penalty Cost. State representation also needs to capture
the time window requirements. Assuming two different new
orders with the same location but different time windows
requirements, inserting these two orders at the same exact
position in a route may result in different reward and post-
decision state. This is because the penalty costs for the time
window violations are different. Thus, the total penalty cost
can serve as a proxy for the time window requirement.

Note that the state representation does not need to explic-
itly specify the exact route as routing optimization is handled
by SA during run-time.

Experiments

The objective of the experiment is to evaluate the perfor-
mance of DRLSA against other existing algorithms, both
offline and online. We evaluate these approaches based on
how much improvement they achieve over the pure re-
optimization method i.e. myopic approach.

Benchmark Algorithms

Approximate Value Iteration. Algorithm 2 shows the
AVI algorithm adapted to the problem setting of this paper.
Cumulative observed rewards are used to approximate the
future expected rewards of a state (lines 12 and 16). We use
SA as routing heuristics to compute the argmin in line 7
and same state representation for a fairer comparison.

Multiple Scenario Approach. MSA with consensus al-
gorithm used in this experiment is adapted from Bent and
Van Hentenryck (2004a; 2004b). MSA does not have train-
ing phase and is directly applied during the run-time. The
main idea of this algorithm is to find the optimal route at
every decision point by sampling lookahead scenarios and

compute the decision that returns the lowest average total
cost across the samples.

Algorithm 3 details how this algorithm is applied during
the run-time. At every decision point k, J samples of future
new requests are collected (line 8). For every sample, an op-
timal route is calculated assuming that all the future new
requests until k+H are known at k (line 9). We also use SA
as the routing heuristic to compute the optimal route. The
resulting optimal route from each sample is stored with the
sampled future new orders removed (line 10). This will rep-
resent one possible re-routing decision. Across many sam-
ples, unique re-routing decisions are stored and the average
total cost is calculated for every unique decision or route
(line 11). Route with the lowest average total cost will be
selected as the best decision (line 14).

Myopic Approach. This approach is simply choosing a
decision that gives the minimal immediate total rewards.

Experiment Design

We use 2-month’s worth of historical delivery data from a
local logistics service provider containing 48 customer loca-
tions. The data contains the daily delivery plans generated by
an optimization algorithm that minimizes travel time, wait
time, make span (the amount of time the vehicle is out dur-
ing the delivery) and penalty cost due to time window vio-
lations. The delivery data is split into training (34 days) and
test sets (10 days). 2 vehicles are used for this experiment
with an average of 22 daily orders.

For every test scenario, a random daily delivery plan from
the test set is picked as the initial routes of the vehicles. De-
pending on DoD, a percentage of the orders in the initial
plan is randomly removed and are added subsequently dur-
ing the simulation; following a Poisson process. The spa-
tial distribution of customers requesting these new orders are
based on probability distribution derived from the historical
data. We need to specify this distribution in running MSA
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and not for DRLSA or AVI as these two methods will learn
the underlying distribution during training.

We use the percentage improvement in terms of the final
total cost that the approaches (DRLSA or AVI or MSA) can
achieve over myopic as the performance measure.
%improveDRLSA =

CostDRLSA(SK)−Costmyopic(SK)
Costmyopic(SK) ×

100%
By this definition, the tested approaches must achieve a

negative % improvement if they are to result in lower cost.
For simplicity’s sake and consistency with other works in
the literature, we report reduction in cost as positive value
and increase in cost as negative value.

Experiment Setup. The experiment consists of 3 phases.
The 3 phases of experiment are as follow:

• DRLSA vs. AVI. We use 3 different values of DoD,
0.3, 0.5 and 0.7. DoD refers to the percentage of total
orders that are dynamic. For each DoD, we ran 20 exper-
iment runs. Each experiment run consists of 50 daily test
scenarios.

• DRLSA vs. MSA. We use only DoD = 0.7 with 100 test
scenarios and sample size, J = 50 and 100.

• Further Experimentations on DRLSA. We test DRLSA
with larger DoDs and larger problem scale.

Model and Training Setup. DRLSA is a fully connected
neural network with 2 hidden layers with 64 nodes and 32
nodes respectively. We experimented on various ranges of

Table 2: Average % of improvement of DRLSA vs. AVI over
different DoDs.

Method 0.3 0.5 0.7

Average% DRLSA -1.95% -0.98% 11.90%
of improvement

over 20 AVI 0.24% -1.25% -1.51%
experiment runs

parameters such as number of hidden layers, nodes, batch
size, update and learn frequencies and learning rate. We em-
pirically evaluated and found that the following parameters
resulted in the best performance in terms of average total
cost: batch size = 20, learn and update frequencies of once
in every 5 steps, learning rate = 0.001 and γ = 0.99. The
value of ε in the ε-greedy step is set to be decreasing as the
number of training episode increases. Stochastic Gradient
Descent is used as the optimizer. For AVI, we use a constant
value of α = 0.1. For MSA, we set H as large number to
simulate that all future requests are known. SA is the default
routing heuristic with the following dynamic cooling func-
tion, T = Tmax × e−f(

stepcurrent
stepmax

) where stepmax = 2500
and Tmax = 25000.

VFA via non-parametric function has an advantage over
the table-based ones because it may not need to observe all
possible states and approximate the function based on the
observed ones. We observe that for DRLSA, the average to-
tal cost of past 100 episodes begins to drop and stabilizes af-
ter 2500 training episodes. Thus, we set the number of train-
ing episodes for DRLSA to be 3500 and 35000 for AVI. We
show that even with less training episodes, DRLSA is able
to outperform AVI.

Assumptions. There are several assumptions used in mod-
elling the DVRP environment. There is no capacity con-
straint, no new order after certain designated time and no
swapping of loads among vehicles once assigned. New or-
ders can be loaded from another customer locations so no
depot returns are required. Vehicle which is on the way to
the next customer order needs to fulfill the order first. Travel
and service times are assumed to be static.

Experiment Results

DRLSA vs. AVI. Table 2 provides the summary of the
phase one results. The proposed approach outperforms AVI
for DoD = 0.7, achieving on average 12% improvement
over myopic. Figure 4 shows the average performances of
DRLSA and AVI over myopic over 20 experiment runs. Al-
though the training time of DRLSA is 4 times longer than
AVI (DRLSA takes about 36 secs/scenario compared to AVI
which takes about 8 secs), the computation time during run-
time is almost instantaneous (< 10 secs/decision) for both.

We observe that AVI performs quite poorly for every
DoD. This can be due to the fact that the training episodes
may not be sufficient for the algorithm to approximate most
or all possible state representations. AVI approximates value
of states that have never been encountered during training as
0 and this is equivalent to myopic approach. It is no surprise
that AVI results in near 0% improvement. DRLSA does not
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Figure 4: Average % of improvement of DRLSA vs. AVI
over different experiment runs.

Table 3: Average % of improvement and computation time
per scenario for DRLSA vs. MSA.

Average% of Average
Improvement over 100 Computation

Test Scenarios Time per
Scenario (in mins)

DRLSA 9.61% < 1
MSA 1.73% 3
(J = 50)
MSA 2.20% 10
(J = 100)

perform better than myopic when DoD ≤ 0.5. This is ex-
pected as lower DoD means new stochastic orders are less
likely to occur and anticipating a rarely occurring event be-
comes more challenging (which perhaps cannot be learnt).
Nevertheless, this experiment is able to show that DRLSA is
able to achieve good result even with small training episodes
and with higher DoDs.

DRLSA vs. MSA. DRLSA achieves an average of 9.6%
improvement over 100 test scenarios, outperforming MSA
even with J = 100 and it is more than 10 times faster in
terms of computation time (see Table 3). MSA needs a very
large sample size in order to evaluate the re-routing deci-
sions. To sample the instances of future new requests in the
next time horizon H , it needs to take into consideration a
combination of the locations of those requests, the arrival
time of the requests and the corresponding time window re-
quirements. Therefore, the performance of online approach
like MSA depends on how good the stochastic model is
in simulating the future events. On the other hand, offline,
learning-based approach such as DRLSA is able to learn
the underlying probability distribution of the dynamic events
based on historical data.

To our knowledge, there is no study in the literature that
compares performance between offline and online decisions
approaches and no set of benchmark test parameters avail-
able. Nevertheless, based on our experiment, to outperform
DRLSA, MSA needs J >> 100 and even longer computa-
tion time.

Table 4: Performances of DRLSA for increasing DoDs.
Method 0.6 0.7 0.8

Average%
of improvement DRLSA 1.92% 11.90% 12.72%

over 20
experiment runs

Further Experimentation on DRLSA. We evaluate the
performance of DRLSA over higher DoDs and are able to
show that DRLSA indeed performs better with increasing
DoDs (see Table 4).

To evaluate its scalability, we did further experiments with
3 and 4 vehicles with average total daily orders of 30 and 40
respectively, The available datasets only allow us to scale
up to 4 vehicles with 40 total daily orders. Based on 20 ex-
periment runs, DRLSA achieves an average of 15.71% and
20.88% improvements over myopic respectively.

Experiment Discussion

Ritzinger, Puchinger, and Hartl (2016) summarized the
performances of various successful pre-processed decision
methods in the literature. For larger-sized customers (> 30),
most approaches managed to achieve improvements in the
region of 5% − 10% over myopic. Our experiment shows
that the performance of DRLSA is comparable with those
cited in that study. However, we note that the experiment
setups across the papers may be different.

This experiment also shows that our proposed approach,
DRSLA is able to outperform both AVI and MSA even with
a relatively small number of training episodes. AVI’s poor
performance also reiterates our hypothesis that AVI may not
work well in complex problems with large state spaces (due
to multi-vehicle and multi-constraints settings) even with
state aggregation as a very large number of training episodes
(in the magnitude of millions) are required to reasonably
approximate the value function of most of the states. The
experiment also shows that offline approach like DRLSA
is more suited than the online counterparts like MSA for
problem setting that requires instantaneous decision-making
such as same-day delivery operations.

Conclusion and Future Works

We propose in this paper an efficient and effective approach
to cope with real-time decision making in dynamic vehi-
cle routing. We believe our approach is fairly generic in
that it can be applied to tackle other dynamic planning and
scheduling problems. The approach is oblivious to probabil-
ity distributions of demand uncertainty, but what is needed
is a relatively small training set based on historical data.

Our immediate further work is to further evaluate the ap-
plicability and scalability of this method on different scenar-
ios such as larger-sized problems, different datasets (even
synthetic ones) and other real-world dynamic optimisation
problems like scheduling or other routing problems.
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