
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

3D Human Pose Estimation Using
Spatio-Temporal Networks with Explicit Occlusion Training

Yu Cheng,1∗ Bo Yang,2* Bo Wang,2* Robby T. Tan1,3

1National University of Singapore, 2Tencent Game AI Research Center, 3Yale-NUS College
e0321276@u.nus.edu, {brandonyang, bohawkwang}@tencent.com, robby.tan@nus.edu.sg

Abstract

Estimating 3D poses from a monocular video is still a chal-
lenging task, despite the significant progress that has been
made in the recent years. Generally, the performance of exist-
ing methods drops when the target person is too small/large,
or the motion is too fast/slow relative to the scale and speed
of the training data. Moreover, to our knowledge, many of
these methods are not designed or trained under severe oc-
clusion explicitly, making their performance on handling oc-
clusion compromised. Addressing these problems, we intro-
duce a spatio-temporal network for robust 3D human pose es-
timation. As humans in videos may appear in different scales
and have various motion speeds, we apply multi-scale spa-
tial features for 2D joints or keypoints prediction in each in-
dividual frame, and multi-stride temporal convolutional net-
works (TCNs) to estimate 3D joints or keypoints. Further-
more, we design a spatio-temporal discriminator based on
body structures as well as limb motions to assess whether the
predicted pose forms a valid pose and a valid movement. Dur-
ing training, we explicitly mask out some keypoints to simu-
late various occlusion cases, from minor to severe occlusion,
so that our network can learn better and becomes robust to
various degrees of occlusion. As there are limited 3D ground
truth data, we further utilize 2D video data to inject a semi-
supervised learning capability to our network. Experiments
on public data sets validate the effectiveness of our method,
and our ablation studies show the strengths of our network’s
individual submodules.

Introduction

This paper focuses on 3D human pose estimation from a
monocular RGB video. A 3D pose is defined as the 3D
coordinates of pre-defined keypoints on humans, such as
shoulder, pelvis, wrist, and etc. Recent top-down approaches
(Hossain and Little 2018; Wandt and Rosenhahn 2019;
Pavllo et al. 2019; Cheng et al. 2019) have shown promising
results, where spatial features from individual frames are ex-
tracted to detect a target person and estimate the 2D poses,
and temporal context is used to produce consistent 3D pre-
dictions.
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Figure 1: Examples of our 3D human pose estimation under
different movement speeds.

However, we find that existing methods do not fully
exploit the spatial and temporal information available in
videos. As a result, they suffer from the problem of large
variations in sizes and speeds of the target person in wild
videos. In this paper, we address this problem. First, we con-
sider multi-scale features both spatially and temporally to
deal with persons at various distances with different speeds
of motions. We use the High Resolution Network (HR-
Net) (Sun et al. 2019) which exploits multi-scale spatial
features to produce one heat map for each keypoint. Un-
like most previous works (Newell, Yang, and Deng 2016;
Pavllo et al. 2019) that only use the peaks in the heat maps,
we encode these maps into a latent space to incorporate more
spatial information. Then, we apply temporal convolutional
networks (TCNs) (Pavllo et al. 2019) to these latent features
with different strides, e.g., 1, 2, 4, and 8, and concatenate
them together for prediction of the 3D poses. Figure 1 shows
some expamples of our results.

Moreover, to reduce the risk of invalid 3D poses, we also
utilize a discriminator in our framework like many previ-
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Figure 2: Illustration for our framework. We only show two different temporal strides for clarity purpose. KPTS is short for
keypoints; KCS is Kinematic Chain Space; TKCS means Temporal KCS.

ous works (Yang et al. 2018; Wandt and Rosenhahn 2019;
Chen et al. 2019; Zhang et al. 2019). Different from these
methods’ single frame based discriminators, we check the
pose validity spatio-temporally. Our main reasoning is that
valid poses in individual frames do not necessarily consti-
tute a valid sequence. We extend the spatial KCS (Kinematic
Chain Space) (Wandt and Rosenhahn 2019), a successful
single image descriptor for pose discriminator, and introduce
a temporal KCS to represent motions of human joints. This
temporal KCS descriptor is used by another TCN to check
the validity of the estimated 3D pose sequence.

Finally, in order to deal with occlusion, during the training
of our TCNs, we mask out some keypoints or frames by set-
ting the corresponding heat maps to zero, as shown in Figure
2. There are two types of works that are similar to ours. One
is the partial occlusion modeling by setting coordinates of
some keypoints to zero (Cheng et al. 2019). The other is hu-
man dynamics, which only handles occlusion that happens
in the end of a temporal window, since it predicts several fu-
ture frames from given past frames’ information (Kanazawa
et al. 2019; Zhang et al. 2019). However, our approach can
handle both partial and total occlusion cases in individual
frames or in a sequence of frames. Hence, our method is
more general in handling human 3D pose estimation un-
der occlusion. Moreover, the occlusion module allows us to
do semi-supervised learning that utilizes both 3D and 2D
datasets.

As a summary, our contributions are as follows:
• Incorporate multi-scale spatial and temporal features for

robust pose estimation in video.
• Introduce a spatio-temporal discriminator to regularize

the validity of a pose sequence.
• Perform diverse data augmentation for TCN to deal with

different occlusion cases.
Experiments on public datasets show the efficacy of our

contributions.

Related Works

Within the last few years, pose estimation has been
undergoing rapid development with deep learning tech-
niques (Tompson et al. 2014; Toshev and Szegedy 2014;
Newell, Yang, and Deng 2016; Cao et al. 2019; Mehta et al.
2017b). Researchers keep pushing the frontier of this field
from different angles via better utilizing spatial or temporal
information, learning human dynamics, pose regularization,
and semi-supervised/self-supervised learning.

To better utilize spatial information, some recent works
focused on cross stage feature aggregation or multi-scale
spatial feature fusion to maintain the high resolution in the
feature maps (Chen et al. 2018; Sun et al. 2019; Kanazawa
et al. 2019). Although this helps to improve the 2D estima-
tors, there is an inherent ambiguity for inferring 3D human
structure from a single 2D image. To overcome this limi-
tation, some researchers further utilized temporal informa-
tion in video (Pavllo et al. 2019; Hossain and Little 2018;
Cheng et al. 2019; Bertasius et al. 2019), and showed obvi-
ous improvement. However, their fixed temporal scales limit
their performance on videos with different motion speeds
from the ones in training.

To regularize predictions to be reasonable 3D human
poses, pose discriminators have been proposed (Yang et al.
2018; Wandt and Rosenhahn 2019; Chen et al. 2019). These
methods utilize the idea of Generative Adversarial Networks
(GAN) to check whether the estimated 3D pose is consistent
with the pose distribution in the ground truth data. However,
most of existing works focused on determining if a given
3D human pose is reasonable. Combining a series of rea-
sonable 3D poses together does not make the whole series a
reasonable human motion trajectory. As a result, we propose
temporal KCS which checks both the spatial and temporal
validity of 3D poses.

To deal with partial occlusions, some techniques have
been designed to recover occluded keypoints from unoc-
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cluded ones according to the spatial or temporal context
(Radwan, Dhall, and Goecke 2013; Rogez, Weinzaepfel,
and Schmid 2017; de Bem et al. 2018; Guo and Dai 2018;
Cheng et al. 2019) or scene constraints (Zanfir, Mari-
noiu, and Sminchisescu 2018; Zanfir et al. 2018). Some
methods further introduced the concept of “human dynam-
ics” (Kanazawa et al. 2019; Zhang et al. 2019), which pre-
dicts future human poses according to single or multiple ex-
isting frames in a video without any future frames. In real
scenarios, we may have full, partial, or total occlusion for
individual or continuous frames. Therefore, we introduce a
method to integrate these two categories of methods into one
unified framework by explicitly performing occlusion aug-
mentation for all these cases during training. Due to lim-
ited 3D human pose data, recent methods suggest to fur-
ther utilize 2D human pose datasets in a semi-supervised
or self-supervised fashion (Wandt and Rosenhahn 2019;
Wang et al. 2019; Kocabas, Karagoz, and Akbas 2019;
Chen et al. 2019). They project estimated 3D pose back to
2D image space so that 2D ground-truth can be used for loss
computation. Such approaches reduce the risk of over-fitting
on small amount of 3D data. We also adopt this method and
combine it with our explicit occlusion augmentation.

Methodology

Our method belongs to the top-down pose estimation cat-
egory. Given an input video, we first detect and track the
persons by any state-of-the-art detector and tracker, such as
Mask R-CNN (He et al. 2017) and PoseFlow (Xiu et al.
2018). Subsequently, we perform the pose estimation for
each person individually.

Multi-Scale Features for Pose Estimation

Given a series of bounding boxes for a person in a video,
we first normalize the image within each bounding box to a
pre-defined fixed size, e.g., 256× 256, and then apply High
Resolution Networks (HRNet) (Sun et al. 2019) to each nor-
malized image patch to produce K heat maps, each of which
indicates the possibility of certain human joint’s location.
The HRNet conducts repeated multi-scale fusions by ex-
changing the information across the parallel multi-scale sub-
networks. Thus, the estimated heat maps incorporate spatial
multi-scale features to provide more accurate 2D pose esti-
mations.

We concatenate the K heat maps in each frame as a K-
dimensional image mt, where t is the frame index, and ap-
ply an embedding network fE to produce a low dimensional
representation as rt = fE(mt). Such embedding incorpo-
rates more spatial information from the whole heat maps
than only using maps’ peaks as most previous works do.
The effectiveness of the embedding is shown in the ablation
study in Table 2.

Given a sequence of heat map embeddings {rt}, we ap-
ply TCN to them. As human motions may be fast or slow,
we consider multi-scale features in the temporal domain. As
shown in Figure 2, we apply TCN with temporal strides of 1,
2, 3, 5, 7 and concatenate these features for the final pose es-
timation. Such multi-scale features in both spatial and tem-
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Figure 3: Comparison of single-scale and multi-scale TCN
results. Errors are labeled in red circles. The single-scale
TCN fails to provide accurate predictions for fast motion
frames.

poral domains enable our networks to deal with various sce-
narios. Figure 3 shows an example video clip with fast mo-
tion of playing baseball. We observe that multi-scale TCN is
able to produce more accurate results than single-scale TCN.

We use both 3D dataset Human3.6M (Ionescu et al. 2014)
and 2D dataset Penn Action (Zhang, Zhu, and Derpanis
2013) for training. Human3.6M has multi-view captured
videos and 3D ground-truths, while PENN only has 2D
ground-truths for visible keypoints. For Human3.6M data,
the 3D MSE loss is defined as:

L3d = (X −X3D)2, (1)

where X is our predicted 3D coordinates for all keypoints,
and X3D is the 3D ground truth. As Human3.6M data set
provides videos from multiple views, we expect the 3D esti-
mation results from different views should be the same after
rotation alignment. So, we define the multi-view loss as:

Lmv = (Rv1→v2Xv1 −Xv2)
2, (2)

where Rv1→v2 is the rotation matrix from viewpoint 1 to
viewpoint 2, and is precomputed from the ground-truth cam-
era parameters. The Xv1 and Xv2 are the predicted 3D re-
sults in viewpoints 1 and 2.

For the 2D dataset, we project the 3D prediction to 2D
space assuming orthogonal projection, and the 2D MSE loss
is defined as:

L2d = (Orth(X)−X2D)2, (3)

where Orth(·) is the orthogonal projection operator, and
X2D is the 2D ground truth.

Spatio-Temporal KCS Pose Discriminator

To reduce the risk of generation of unreasonable 3D poses,
we introduce a novel spatio-temporal discriminator to check
the validity of a pose sequence, rather than just poses in
individual frames like previous works (Yang et al. 2018;
Wandt and Rosenhahn 2019; Chen et al. 2019).

10633



Frame t Frame t+i

Figure 4: Illustration for Temporal Kinematic Chain Space
(TKCS) between two neighboring bones.

Among all single frame discriminators, the Kinematic
Chain Space (KCS) used in (Wandt and Rosenhahn 2019)
is one of the most effective methods. Each bone, defined as
the connection between two neighboring human keypoints
such as elbow and wrist, is represented as a 3D vector bm,
indicating the direction from one keypoint to its neighbor.
All such vectors form a 3 × M matrix B, where M is the
predefined number of bones for a human structure. They use
Ψ = BTB as the features for discriminator, where the di-
agonal elements in Ψ indicate the square of bone length and
other elements represent the weighted angle between two
bones as an inner production.

Inspired by their spatial KCS, we introduce a Temporal
KCS (TKCS) defined as:

Φ = BT
t+iBt+i −BT

t Bt. (4)
where i is the temporal interval between the KCS. The diag-
onal elements in Φ indicates the bone length changes, and
other elements denote the change of angles between two
bones. Figure 4 shows an example of two neighboring bones
b1 and b2. The spatial KCS measures the lengths of b1 and
b2 as well as angles between them, θ12. The temporal KCS
measures the bone length changes between two frames with
temporal interval i, i.e., differences between bt1 and bt+i

1 as
well as bt2 and bt+i

2 , and the angle change between neighbor-
ing bones, i.e., difference between θt12 and θt+i

12 .
We concatenate the spatial KCS, temporal KCS, and the

predicted keypoint coordinates, and then feed them to a TCN
to build a discriminator. Such approach not only considers
whether a pose is valid in individual frames, but also checks
the validity of transitions across frames. We follow the pro-
cedure in the standard GAN to train the discriminator, and
use it to produce a regularization loss for our predicted poses
as Lgen.

In addition, to increase the robustness under different
view angles, we introduce a rotational matrix as an augmen-
tation to the generated 3D pose, as shown in the following
equation:

L′
gen = Lgen(RX), (5)

where R is a rotational matrix Rotation(α, β, γ), and α,
β, γ are rotational angles along x, y, and z axis, respec-
tively. As the rotational angles along x and z angles should
be smaller compared with rotations along y for normal hu-
man poses, in our experiments, β is randomly sampled from
[−π, π] while α and γ are sampled from [−0.2π, 0.2π].

The overall loss function for our training is defined as
L = L3d + w1Lmv + w2L2d + w3L

′
gen, (6)

Frame 81          Frame 100           Frame 134

Input Frame
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with Occlusion 
Augmentation

Figure 5: Comparison of results from models trained with
and without occlusion augmentation. Wrong estimations are
labeled in red circles.

where w1, w2, w3 are set to 0.5, 0.1, 0.01, respectively, and
are fixed in all our experiments.

Data Augmentation for Occlusions

To make our approach capable of dealing with different
occlusion cases, we perform data augmentation during the
training.

We use random masking of keypoints to simulate the oc-
cluded condition. Three types of occlusion are applied in
the training process. The first type is the frame-wise occlu-
sion. Given a sequence of heatmaps produced by the 2D key-
point estimator, we randomly mask several frames by set-
ting their heatmaps to zero, indicating that the whole frame
is occluded or has low confidence. Second, the point-wise
occlusion is applied by randomly setting certain keypoints’
heatmaps to zero. This simulates the scenario that certain
keypoints are occluded. Third, we apply area occlusion by
setting a virtual occluder area. The heatmaps of keypoints
located within this area are set to zero.

In addition, as the output of 2D pose estimator is not
strictly Gaussian distribution, we introduce random noise
to the heatmaps of the input sequence. To further improve
the robustness under wrong detection cases, the points are
randomly shifted or randomly swapped symmetrically. For
example, the left knee is swapped with the right knee and
the elbow point is sifted by 10 pixels. We expect the trained
multi-scale TCN is able to recover the correct 3D pose using
context information from partly wrong 2D estimations.

Note that, when the occlusion masks are all at the end of
our TCN receptive field, it degrades to the human dynamics
case, i.e., estimation of future poses without any future ob-
servation. Therefore, our framework is a more generalized
approach for occlusion handling. We could predict human
poses from temporal context information with or without
meaningful observation in a few frames in the video clip.
Figure 5 demonstrates an example where occlusion augmen-
tation helps to generate robust pose estimation results in a
video clip where a target person is occluded.
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Experiments

Experiment Settings

Data Sets. Human3.6M (Ionescu et al. 2014) is a large 3D
human pose dataset. It has 3.6 million images including
eleven actors performing daily-life activities, and seven ac-
tors are annotated. The 3D ground-truth is provided by the
mocap system, and the intrinsic/extrinsic camera parameters
are known. Similar to some existing methods (Hossain and
Little 2018; Pavllo et al. 2019; Pavlakos, Zhou, and Dani-
ilidis 2018; Yang et al. 2018), we use subjects 1, 5, 6, 7, 8
for training, and the subjects 9 and 11 for evaluation.

HumanEva-I is a relatively smaller dataset. Following the
typical protocol (Martinez et al. 2017; Hossain and Lit-
tle 2018; Pavllo et al. 2019), we use the same data divi-
sion to train one model for all three actions (Walk, Jog,
Box), and use the remaining data for testing. MPI-INF-
3DHP (Mehta et al. 2017a) is a relatively new dataset that
is captured in an indoor setting which is similar to the set-
ting of Human3.6M. Following recent methods (Kanazawa
et al. 2018; Pavlakos, Zhou, and Daniilidis 2018; Chen et
al. 2019) that report their performance on this dataset, we
utilize this dataset for quantitative evaluation. 3DPW (von
Marcard et al. 2018) is a new dataset contains multi-person
outdoor scenes. We use the testing set of 3DPW to per-
form quantitative evaluation following (Martinez et al. 2017;
Kanazawa et al. 2019).

Evaluation protocols. We apply a few common evalua-
tion protocols in our experiments. Protocol #1 refers to the
Mean Per Joint Position Error (MPJPE) which is the mil-
limeters between the ground-truth and the predicted key-
points. Protocol #2, often called P-MPJPE, refers to the
same error after applying alignment between the predicted
keypoints and the ground-truth. Percentage of Correct 3D
Keypoints (3D PCK) under 150mm radius is used for quan-
titative evaluation for MPI-INF-3DHP following (Mehta et
al. 2017a). To compare with other human dynamics/pose
forecasting methods, mean angle error (MAE) is used fol-
lowing (Jain et al. 2016).

Hyper-Parameter Sensitivity Analysis

We conduct the sensitivity test of four hyper-parameters
mentioned in this paper: embedding dimension for encoder,
temporal length, temporal strides for TCN, and temporal in-
terval for TKCS. The results are shown in Table 1. We find
the best parameter settings by fixing three and adjusting the
other one. To focus on understanding the influence of each
parameter, semi-supervised learning using extra 2D data is
disabled here.

For the embedding dimension, we observe that within a
reasonably large range, the performance is not affected sig-
nificantly. The dimension 64 is insufficient and results in
large error. Within the range 256 to 1024, the errors only
differ 0.4mm, indicating that the model is insensitive to the
setting of embedding dimension.

For the temporal length, we test the range from 8 to 128.
We can observe a steady reduction of errors until satura-
tion at 128. In addition, we adjust the temporal strides and

Emb T Len T Strides T Intvl P #1 P #2
64 64 1,2,3 1 58.3 44.2

128 64 1,2,3 1 46.7 36.1
256 64 1,2,3 1 43.1 33.8
512 64 1,2,3 1 42.6 33.4
1024 64 1,2,3 1 42.9 33.6
512 8 1,2,3 1 50.2 40.1
512 16 1,2,3 1 46.9 36.0
512 32 1,2,3 1 44.0 33.9
512 64 1,2,3 1 42.6 33.4
512 128 1,2,3 1 42.9 33.7
512 64 1 1 45.4 35.9
512 64 1,2 1 44.3 34.8
512 64 1,2,3 1 42.6 33.4
512 64 1,2,3,5 1 41.8 32.1
512 64 1,2,3,5,7 1 41.2 31.5
512 64 1,2,3 1 42.6 33.4
512 64 1,2,3 3 43.1 33.7
512 64 1,2,3 5 44.0 34.4

Table 1: Parameter sensitivity test based on Protocol #1 and
#2 of Human 3.6M dataset. Emb stands for embedding di-
mension, T Len stands for Temporal length, T Strides stands
for temporal strides, T Intvl stands for the temporal interval
for TKCS.

Method Protocol 1 Protocol 2
Base 51.7 40.5

+embedding 51.0 40.1
+multi-stride TCN 48.6 37.6
+Multi-view loss 47.3 36.9

+Spatial KCS 44.9 34.0
+Temporal KCS 41.2 31.5

+2D Data 40.1 30.7

Table 2: Ablation study on Human3.6M dataset under Pro-
tocol #1 and #2. Best in bold.

find out that by adding more strides, the performance is im-
proved and finally reaches 41.2mm with 5 strides compared
to 45.4mm for single stride. We also test different temporal
intervals for TKCS and observe interval 1 produces the best
performance.

Ablation Studies

We conduct ablation studies to analyze each component of
the proposed framework as shown in Table 2. As the base-
line, we build a TCN to regress the 3D keypoints’ positions
based solely on their 2D coordinates (x, y), which are ob-
tained from the peaks in heatmaps from 2D pose detector.
During TCN training, the 3D skeletons are also rotated along
x, y, z axes as mentioned before. We use the standard MSE
loss for the training.

We then add the modules one-by-one to perform ablation
studies, including heat maps embedding, multi-stride TCN,
multi-view loss, spatial KCS, temporal KCS, and 2D data
semi-supervised learning. We see that by adding more mod-
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Method Direct Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg
Fang et al. AAAI (2018) 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4
Yang et al. CVPR (2018) 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6
Hossain & Little ECCV (2018) 44.2 46.7 52.3 49.3 59.9 59.4 47.5 46.2 59.9 65.6 55.8 50.4 52.3 43.5 45.1 51.9
Li et al. CVPR (2019) 43.8 48.6 49.1 49.8 57.6 61.5 45.9 48.3 62.0 73.4 54.8 50.6 56.0 43.4 45.5 52.7
Chen et al. CVPR (2019) - - - - - - - - - - - - - - - 51.0
Wandt et al. CVPR (2019) * 50.0 53.5 44.7 51.6 49.0 58.7 48.8 51.3 51.1 66.0 46.6 50.6 42.5 38.8 60.4 50.9
Pavllo et al. CVPR (2019) 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Cheng et al. ICCV (2019) 38.3 41.3 46.1 40.1 41.6 51.9 41.8 40.9 51.5 58.4 42.2 44.6 41.7 33.7 30.1 42.9
Our result 36.2 38.1 42.7 35.9 38.2 45.7 36.8 42.0 45.9 51.3 41.8 41.5 43.8 33.1 28.6 40.1

Table 3: Quantitative evaluation using MPJPE in millimeter between estimated pose and the ground-truth on Human3.6M
under Protocol #1, no rigid alignment or transform applied in post-processing. Best in bold, second best underlined. * indicates
ground-truth 2D labels are used.

Method Direct Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg
Fang et al. AAAI (2018) 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7
Yang et al. CVPR (2018) 26.9 30.9 36.3 39.9 43.9 47.4 28.8 29.4 36.9 58.4 41.5 30.5 29.5 42.5 32.2 37.7
Hossain & Little ECCV (2018) 36.9 37.9 42.8 40.3 46.8 46.7 37.7 36.5 48.9 52.6 45.6 39.6 43.5 35.2 38.5 42.0
Kocabas et al. CVPR (2019) - - - - - - - - - - - - - - - 45.0
Li et al. CVPR (2019) 35.5 39.8 41.3 42.3 46.0 48.9 36.9 37.3 51.0 60.6 44.9 40.2 44.1 33.1 36.9 42.6
Wandt et al. CVPR (2019) * 33.6 38.8 32.6 37.5 36.0 44.1 37.8 34.9 39.2 52.0 37.5 39.8 34.1 40.3 34.9 38.2
Pavllo et al. CVPR (2019) 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
Cheng et al. ICCV (2019) 28.7 30.3 35.1 31.6 30.2 36.8 31.5 29.3 41.3 45.9 33.1 34.0 31.4 26.1 27.8 32.8
Our result 26.2 28.1 31.1 28.4 28.5 32.9 29.7 31.0 34.6 40.2 32.4 32.8 33.1 26.0 26.1 30.7

Table 4: Quantitative evaluation using P-MPJPE in millimeter between estimated pose and the ground-truth on Human3.6M
under Protocol #2. Procrustes alignment to the ground-truth is used in post-processing. Best in bold, second best underlined. *
indicates ground-truth 2D labels are used.

ules, the performance steadily improves, validating the ef-
fectiveness of our proposed modules. The largest improve-
ments come from multi-stride TCN, spatial KCS, and tem-
poral KCS modules. Temporal multi-scale features increase
the capability of the networks to deal with videos with differ-
ent speeds of motions. Although the spatial KCS constraints
the pose validity at individual frames properly, our tempo-
ral KCS clearly further improves the performance, which
demonstrates that checking the pose validity of a single
frame itself is insufficient, and checking the validity of the
temporal pose sequence is necessary.

Quantitative Results

The experiment results on Human 3.6M are shown in Ta-
ble 3 and Table 4 for Protocol #1 and #2, respectively. The
MPJPE is reduced by 2.8mm compared to previous work
and yields an error reduction of 6.5% . The P-MPJPE is re-
duced by 2.1mm and obtained 6.4% error reduction. The
performance on actions which already have low error rates
is not improved significantly, but for those actions such as
photo capturing and sitting down, the errors are reduced
by > 5mm. Since in these actions, occlusion happens fre-
quently, more temporal information and effective pose reg-
ularization are needed for producing correct estimations.
Considering existing methods almost get saturated on this
dataset, our improvement is promising.

We also evaluate our model’s potential on human dynam-
ics which is targeted to predict several future frames’ 3D
skeleton. The performance is shown in Table 5. Note that,
(Chiu et al. 2019) uses past 3D ground-truth keypoints as
input for prediction, while our method does not use any
ground-truth but takes images from video as input to esti-
mate the keypoints first, and then predict the future 3D in-

formation, which is a more difficult task. Nevertheless, we
still achieve similar performance compared with the state-
of-the-art, which demonstrates the versatility of the pro-
posed framework. Our method is not designed specifically
for human dynamics prediction, but is a more generalized
framework for pose estimation with or without observations
(due to occlusion) in various scenarios.

Table 6 shows our evaluation results on HumanEva-I
dataset and an improvement of 0.8mm is achieved in av-
erage, which implies an error reduction of 5.6%. For MPI-
INF-3DHP dataset, we use only our model trained on Hu-
man3.6M dataset, but do not fine-tune or retrain on the
3DHP data set. Following existing methods (Chiu et al.
2019; Martinez, Black, and Romero 2017), we evaluate the
Percentage of Correct 3D Keypoints (3D PCK) where points
error under 150mm is considered correct (as the keypoints
definitions are different in Human3.6M and 3DHP, we eval-
uate only the overlapped keypoints). As shown in Table 7,
even if we do not perform any re-training or fine-tuning, we
still achieve an improvement of 1.6% PCK, indicating the
effectiveness of our approach.

As above 3D human pose datasets contain mostly single-
person indoor scenes, we also evaluate our framework on
3DPW, a new outdoor multi-person 3D poses dataset. Fol-
lowing (Martinez et al. 2017; Kanazawa et al. 2019) we
do not train on 3DPW and only use its testing set for
quantitative evaluation. The P-MPJPE value of our method
on 3DPW testing set is 71.8, which outperforms the re-
sults, 157.0 and 80.1, reported in (Martinez et al. 2017;
Kanazawa et al. 2019).
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Actions Walking Eating Smoking Discussion
Milliseconds 80 160 320 560 1000 80 160 320 560 1000 80 160 320 560 1000 80 160 320 560 1000

Ghosh et al. (2017) 1.00 1.11 1.39 1.55 1.39 1.31 1.49 1.86 1.76 2.01 0.92 1.03 1.15 1.38 1.77 1.11 1.20 1.38 1.53 1.73
Martinez et al. (2017) 0.32 0.54 0.72 0.86 0.96 0.25 0.42 0.64 0.94 1.30 0.33 0.60 1.01 1.23 1.83 0.34 0.74 1.04 1.43 1.75
Chiu et al. (2019) 0.25 0.41 0.58 0.74 0.77 0.20 0.33 0.53 0.84 1.14 0.26 0.48 0.88 0.98 1.66 0.30 0.66 0.98 1.39 1.74
Our result 0.29 0.48 0.65 0.79 0.92 0.25 0.39 0.58 0.87 1.02 0.34 0.44 0.90 1.07 1.52 0.33 0.63 0.90 1.30 1.77

Table 5: Evaluation on Human3.6M dataset on human dynamics protocol. Mean angle error of predicted 3D poses after different
time intervals is used following (Martinez, Black, and Romero 2017; Ghosh et al. 2017). The milliseconds is the set future time
for checking the performance. Best in bold, second best underlined.

Base 
Results

Input 
Frames

Multi-Scale 
Only Results

Our Final 
Results

Frame 54 Frame 80 Frame 88 Frame 91 Frame 532 Frame 542 Frame 550 Frame 560

Figure 6: Examples of results from our whole framework compared with different baseline results. First row shows the images
from two video clips; second row shows the 3D results that uses baseline approach described in Ablation Studies; third row
shows the 3D results that uses multi-scale temporal features without occlusion augmentation and spatio-temporal KCS; last row
shows the results of the whole framework. Wrong estimations are labeled in red circles.

Method Walking Jogging Avg
Pavlakos et al. (2018)* 18.8 12.7 29.2 23.5 15.4 14.5 18.3
Hossain et al. (2018) 19.1 13.6 43.9 23.2 16.9 15.5 22.0
Wang et al. (2019) 17.2 13.4 20.5 27.9 19.5 20.9 19.9
Pavllo et al. (2019) 13.4 10.2 27.2 17.1 13.1 13.8 15.8
Cheng et al. (2019) 11.7 10.1 22.8 18.7 11.4 11.0 14.3
Our result 10.6 11.8 19.3 15.8 11.5 12.2 13.5

Table 6: Evaluation on HumanEva-I dataset under Protocol
#2. Legend: (*) uses extra depth annotations for ordinal su-
pervision. Best in bold, second best underlined.

Qualitative Results

Figure 6 shows the 3D pose estimation results of the pro-
posed framework compared with different baseline results.
The first video clip (left four columns) shows a person play-
ing baseball, which contains fast motion of limbs; the sec-
ond video clip (right four columns) shows a person walk-
ing from left to right while some other people passing him,
leading to occlusion. We use the same baseline method as
used in the Ablation Studies. The baseline (the second row)
fails on both video clips, because it cannot handle fast mo-
tion or occlusion. The results in the third row are from the
method that uses multi-scale temporal features but without
occlusion augmentation and spatio-temporal KCS based dis-
criminator. We observe that it can handle the fast motion

Method PCK
Mehta et al. 3DV (2017a) 72.5
Yang et al. CVPR (2018) 69.0
Chen et al. CVPR (2019) 71.1
Kocabas et al. CVPR (2019) 77.5
Wandt et al. CVPR (2019) 82.5
Our result 84.1

Table 7: Evaluation on MPI-INF-3DHP dataset using 3D
PCK. Best in bold, second best underlined. Only overlapped
keypoints with Human3.6M are used for evaluation.

case to some extent but fails on the occlusion video, and the
generated poses do not always satisfy anthropometrical con-
straints. The last row shows the results of our whole frame-
work and it demonstrates our method can handle different
motion speeds and various types of occlusion.

Conclusion

In this paper, we present a new method based on three major
components: multi-scale temporal features, spatio-temporal
KCS pose discriminator, and occlusion data augmentation.
Our method can deal with videos with various motion speeds
and different types of occlusion. The effectiveness of each
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component of our method is illustrated in the ablation stud-
ies. To compare with the state-of-the-art 3D pose estimation
methods, we evaluate the proposed method on four public
3D human pose datasets with commonly used protocols and
demonstrate our method’s superior performance. Compari-
son with the human dynamics methods is provided as well
to show our method is versatile and potentially can be used
for other pose tasks, like pose forecasting.
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