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Abstract

We describe an unsupervised domain adaptation framework
for images by a transform to an abstract intermediate domain
and ensemble classifiers seeking a consensus. The interme-
diate domain can be thought as a latent domain where both
the source and target domains can be transferred easily. The
proposed framework aligns both domains to the intermediate
domain, which greatly improves the adaptation performance
when the source and target domains are notably dissimilar. In
addition, we propose an ensemble model trained by confus-
ing multiple classifiers and letting them make a consensus al-
ternately to enhance the adaptation performance for ambigu-
ous samples. To estimate the hidden intermediate domain and
the unknown labels of the target domain simultaneously, we
develop a training algorithm using a double-structured archi-
tecture. We validate the proposed framework in hard adapta-
tion scenarios with real-world datasets from simple synthetic
domains to complex real-world domains. The proposed algo-
rithm outperforms the previous state-of-the-art algorithms on
various environments.

Introduction

With the advent of deep convolutional neural networks
(CNN), supervised learning has substantially improved the
performance of image classification algorithms. However,
supervised learning requires laborious and expensive label-
ing efforts to prepare the train data to cover all possible test
environments. To alleviate this effort and cost of labeling
the training data in various environments, Unsupervised Do-
main Adaptation (UDA) has been introduced to automati-
cally generate the labels of the unlabeled data of new do-
main by exploiting the knowledge of the labeled data (Saito
et al. 2018; Ganin and Lempitsky 2015; Shu et al. 2018;
Bousmalis et al. 2017; Ghifary, Kleijn, and Zhang 2014).
Conventionally, the labeled data is called by source domain,
while the unlabeled data is denoted by target domain. How-
ever, UDA does not necessarily produce satisfactory results
when the characteristics of the source and target domains
are very distinct from each other. The different character-
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Figure 1: intermediate domain transfer approach. (a) The
important attributes to classify the digits were distorted by
the generative model-based algorithm (Russo et al. 2018)
when the source and target domains are far different. (b) To
tackle the problem, the proposed framework aligns the two
domains simultaneously into a hidden intermediate domain.

istics include diverse backgrounds, viewpoints, and image
capturing systems.

The recent UDA approaches for CNN can be categorized
by two schemes: domain classifier-based scheme (Ganin
and Lempitsky 2015; Shu et al. 2018; Saito et al. 2018)
and generative model-based scheme (Bousmalis et al. 2017;
Russo et al. 2018; Volpi et al. 2018). The domain classifier-
based scheme utilizes the additional classifier to guess the
domain of the input samples. Then, by training the feature
generator to confuse the domain classifier, the features of the
target domain become similar to the features of the source
domain. The generative model-based scheme utilizes a gen-
erative model to change the characteristics of the source im-
ages to be similar with the target images. Then, a CNN is
trained by the target-like images changed by the generative
model. The previous works are described in the following
related work section in detail.

However, both schemes have shown limited performance
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when the source and target domains are significantly dif-
ferent. When the generative model-based scheme learns the
style transfer between the two distinct domains, the essen-
tial information to classify the target domain can be lost,
as shown in Fig. 1 (a). Likewise, the domain classifier-
based scheme cannot adapt the distinct domains because
its assumption of the overlapped feature distribution is bro-
ken when the two domains are too different. However, to
solve the hard scenarios adapting simple synthetic domains
to complex real-world domains, the adaptation between the
two distinct domains is significantly important.

To tackle the limitation, we propose a framework us-
ing a new scheme of intermediate domain alignment and
consensus-based ensemble classifier. In the intermediate do-
main alignment, the source and target domains are aligned
into the intermediate domain without losing critical infor-
mation inherent in these two domains. The intermediate do-
main is obtained by cross-domain image adaptors such that
the differences between the source and target domains are
semantically reduced as shown in Fig. 1 (b). In addition,
to classify the ambiguous target samples correctly, we de-
termine their labels according to the consensus of multiple
classifiers. To robustly find the intermediate domain even
with the missing target labels, we also propose a iterative
training method based on a double-structured architecture.
The proposed framework is validated by numerous exper-
iments including the real-world datasets, which show the
state-of-the-art performance and the large improvement for
hard adaptation scenarios.

Related work
Domain Classifier-based UDA: In contrast to the tradi-
tional approaches (Ben-David et al. 2010; Wang and Ma-
hadevan 2011; Ghifary, Kleijn, and Zhang 2014) with hand-
crafted features and kernel-based mappings, the domain
classifier-based UDA algorithms merge the feature vectors
from a neural network by confusing the domain classifier
that distinguishes the source and target domains. Ganin and
Lempitsky (2015) proposed a new model containing a fea-
ture generator, a label predictor, and a domain classifier,
which has a gradient reversal layer to prohibit the feature
generator from distinguishing the domains. Following Ganin
and Lempitsky (2015), many researchers have utilized the
domain classifier for UDA problems (Tzeng et al. 2017;
Shu et al. 2018; Saito et al. 2018; Long et al. 2015; Bous-
malis et al. 2016; Saito, Ushiku, and Harada 2017). Tzeng et
al. (2017) combined the feature generator providing similar
features from the source and target domains and the classi-
fier trained only by the source domain. Saito et al. (2018)
proposed a framework which unifies the feature vectors by
iteratively minimizing and maximizing the discrepancy of
two class predictors.
Generative Model-based UDA: The generative model-
based UDA approaches have been proposed recently fol-
lowing the increased interest to the generative adversar-
ial networks (Goodfellow et al. 2014; Zhu et al. 2017).
Bousmalis et al. (2017) proposed a fundamental archi-
tecture for the generative model-based UDA approaches,
which showed high applicability into the real-world settings.

Sankaranarayanan et al. (2018) trained an embedding net-
work and used its embedded vector for the input noises
of the generative adversarial network that transforms the
source images to be similar to the target images. Hoffman et
al. (2018) developed cyCADA that considers the pixel-level
and feature-level consistency under the cyclic reconstruction
scheme. Russo et al. (2018) suggested SBADA containing
two networks each trained by considering the source and tar-
get domains reversely. The proposed algorithm transfers the
two domains into the hidden intermediate domain while cy-
CADA and SBADA transfer the two domains into the other
ones respectively. Gong et al. (2019) utilized the intermedi-
ate domain that interpolates the styles of source and target
domains, which is different from the proposed intermediate
domain that is an entirely new domain where the source and
target domains are simplified simultaneously. By employing
the intermediate domain, we can improve the performance
when the two domains are notably distinct from each other.

Besides the generative adversarial network, some of the
generative model-based UDA approaches have utilized auto-
encoding networks (Murez et al. 2018; Volpi et al. 2018).
Volpi et al. (2018) proposed a scheme to augment the em-
bedded features by an adversarial learning scheme. Murez et
al. (2018) suggested a framework to estimate a shared em-
bedding domain by using numerous cyclic combinations
among the three different domains and the class labels. How-
ever, the algorithm needs a lot of augmented data and hy-
perparameters to control the numerous cyclic combinations,
which increases the cost to tune the algorithms.

Methodology

Overall architecture

Fig. 2 shows the overall architecture of the proposed frame-
work. In front of a classification model, there are two cross-
domain image adaptors (As, At) for the source and target
domains, respectively. After As and At, there are two net-
works of a forward network (G, C1,...,CNc

) and an inverse
network (G−, C−

1 ,...,C−
Nc

). When we use only the conven-
tional forward network, we found that only At is updated
and just the target domain is aligned into the source domain.
As shown by the gray and yellow lines in Fig. 3, the trans-
form parameters in As do not change at all without the in-
verse network. This happens due to the unbalanced training
where As can be trained by the strong supervision loss using
source labels, while At cannot. Hence, we resolve the prob-
lem by adding the inverse network, which can give the same
types of losses to both of As and At. Through updating As

and At respectively by the inverse and forward networks,
the balanced cross-domain image adaptors can be obtained,
which results in the intended intermediate domain.

The model including the forward and inverse networks
is defined by a double-structured architecture. The for-
ward network is composed of one feature generator (G)
and Nc classifiers (C1, ..., CNc

). Similarly, the inverse net-
work has one feature generator (G−), and Nc classifiers
(C−

1 , ..., C−
Nc

). The forward and inverse networks have same
layer composition, but the inverse network is trained to adapt
the target domain to the source domain by using the class la-
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Figure 2: Overall network architecture

bels of the target domain predicted by the forward network.
All the classifiers have same structures including last soft-
max layers but are initialized by different random weights.

When image samples are given, As and At get the im-
ages from the source and target domains, respectively, and
the images are aligned to the intermediate domain. The
aligned images are fed into G or G−, and then the gener-
ated features are classified by the following {C1, ..., CNc

} or
{C−

1 , ..., C−
Nc

}. The notations (As, At, G,G−, C1, C
−
1 , · · · )

for the network architecture also represent the weight pa-
rameters in the corresponding network components. For
simplicity, we define θk = {As, At, G,Ck} for forward
network and θ−k = {As, At, G

−, C−
k } for inverse network

(k ∈ {1, · · · , Nc}). Then, for an input sample x, we can
define the probability vectors predicted from Ck and C−

k by
p(y|x, θk) and p(y|x, θ−k ), respectively.

Then, the proposed framework should be trained to find
transformation parameters of As and At and classify the tar-
get samples well by G and C1, ..., CNc . When the features
are overlapped well, the results from C1, ..., CNc would
make a consensus on the class label predicted for a specific
target image. Thus, we train the network by considering the
labels of the source domain and the consensus of multiple
classifiers simultaneously.

Cross-domain image adaptors

When the two domains are augmented properly, the per-
formance of the domain adaptation becomes much im-
proved (Saito, Ushiku, and Harada 2017), and the design
of the cross-domain image adaptors is motivated from the
conventional augmentation methods. We utilize two trans-
formers for each of As and At: color transformer and spatial
transformer. The color transformer works for the augmenta-
tions of color styles such as contrast adjusting and intensity
inverting, and the spatial transformer is used for the augmen-
tations of camera viewpoints such as cropping and rotating.
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Figure 3: Necessity of inverse network

The color transformer is a small CNN fed by the input
images to give a color transform matrix Tc ∈ R3×9 as its
output. Based on the resulted Tc ∈ R3×9, we transform the
pixel-wise colors of input images in a quadratic form by:

[r′i, g
′
i, b

′
i]
T = Tc[ri, gi, bi, r

2
i , g

2
i , b

2
i , rigi, ribi, gibi]

T , (1)

where [ri, gi, bi] is the original rgb color vector for i-th pixel
and [r′i, g

′
i, b

′
i] means the color vector transformed by the

color transformer for i-th pixel. Using Tc from the color
transformer, the colors of the entire pixels contained in the
input image are transformed. Since the quadratic form of a
color vector ([ri, gi, bi, r2i , g

2
i , b

2
i , rigi, ribi, gibi]) is a con-

stant variable and the color transformation is a kind of linear
calculations, the color transformer can be trained by an end-
to-end scheme.

Similarly, the spatial transformer contains a small CNN
that gets the color-transformed image as an input and results
in an affine transform matrix Ts ∈ R2×3. According to the
estimated Ts ∈ R2×3, the intensity of the color-transformed
images at the position (x, y) is mapped to the different loca-
tion (x′, y′) as:

[x′, y′]T = Ts[x, y, 1]
T . (2)

Then, we can estimate the pixel intensity of the spatial trans-
formed image at (x′, y′) by a bilinear interpolation at a sub-
pixel position T−1

s [x′, y′] of the color transformed image.
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Like the color transformer, the spatial transformer can be
trained in an end-to-end scheme because the affine trans-
form mapping and the bilinear interpolation are a combi-
nation of linear calculations. The detail description of the
spatial transformer can be referred by the spatial transform
network (Jaderberg et al. 2015).

Training loss terms

The proposed network should be trained by utilizing two
clues: the labels of the source samples and the consensus of
the predicted labels for the target samples. Based on the two
feasible information, we build three loss terms: supervised
loss, consensus loss, and fooling loss.

The supervised loss is a conventional cross-entropy loss to
train the given labels for the sample images in a supervised
learning manner. Thus, the supervised loss is defined as:

Ls(X,Y, θ) = − 1

N

N∑
i=1

y(i)
o

T
log p(y|x(i), θ), (3)

where x(i) and y
(i)
o mean the i-th sample image and its cor-

responding label which are contained in {X,Y}, respec-
tively, N is the number of sample images in X, and θ is
one of θk or θ−k for k ∈ {1, · · · , Nc}. By applying the su-
pervised loss to train the network, the result from a specific
classifier is driven to the given labels for the samples.

The second term is the consensus loss. The results from
the multiple classifiers should make a consensus by predict-
ing the same class label for the specific sample if we find
the ideal feature generator. Thus, we design the consensus
loss term to drive the classifiers to give the same probabil-
ity estimated by their ensemble model. The ensemble results
of the forward network (p̂(y|x(i))) and the inverse network
(p̂−(y|x(i))) are designed by averaging the results of all the
classifiers as:

p̂(y|x(i)) =
1

Nc

Nc∑
k=1

p(y|x(i), θk)

p̂−(y|x(i)) =
1

Nc

Nc∑
k=1

p(y|x(i), θ−k ).

(4)

Based on the ensemble model, the consensus loss terms for
the forward network (Lc) and the inverse network (L−

c ) are
respectively designed as following:

Lc(X) = − 1

N

N∑
i=1

Nc∑
k=1

p̂(y|x(i)) log p(y|x(i), θk)

L−
c (X) = − 1

N

N∑
i=1

Nc∑
k=1

p̂−(y|x(i)) log p(y|x(i), θ−k ).

(5)

Thus, the consensus loss drives the multiple classifiers to
have the same results as their ensemble results.

The final term is the fooling loss. When we update the net-
works only by the supervised loss and the consensus loss, the
multiple classifiers converge early to make a consensus be-
fore the feature generator and the cross-domain image adap-
tors generalize the two domains. To prevent the problem,
the fooling loss is invented to make the convergence slow.

Algorithm 1: Sequential training method
Input: Xs, Ys, Xt, {G,C1,..., CNc

},
{G−, C−

1 ,..., C−
Nc

}
while not at the maximum iteration do

Update G, C1,...,CNc
using Eq. 7

Update C1,...,CNc
using Eq. 8

Update At, G using Eq. 9
Estimate Y∗

t using Eq. 10
Update G−, Cinv

1 ,...,C−
Nc

using Eq. 11
Update C−

1 ,...,C−
Nc

using Eq. 12
Update G− using Eq. 13
Update As using Eq. 14

end

Thus, the fooling loss should let a specific classifier predict
ambiguously, which is derived by an inverse of a marginal
entropy as follows:

Lf (X, θ) =
1

N

N∑
i=1

p(y|x(i), θ) log p(y|x(i), θ). (6)

Training method

As summarized in Algorithm ??, the proposed loss terms
are applied sequentially by seven steps at every iteration.
The first three steps are performed to update At and the for-
ward network, while As and the inverse network are trained
in the last four steps. By adopting the multiple losses se-
quentially, we can ignore the scale factors among the loss
terms. Furthermore, the amount of memory usage can be re-
duced because only a part of the entire model is updated in
each step. All the updating steps are performed by Adam
optimizer (Kingma and Ba 2015) and iterated until the pre-
defined value of maximum iterations.

We have a source image x
(i)
s and its corresponding scalar

label y
(i)
s , which are i-th labeled sample in a source do-

main {Xs,Ys}. x(i)
t represents i-th target image compos-

ing a target domain {Xt} without any corresponding label.
We can represent the input flow for every step as following;
step 1: Ck(G(As(Xs))), Step 2, 3: Ck(G(At(Xt))), Step 4:
C−

k (G−(At(Xt))), Step 5, 6, 7: C−
k (G−(As(Xs))).

Step 1: In the first step, G and {C1,..., CNc} are updated
by the supervised loss Ls, so the first updating step can be
represented as:

arg min
G,C1,...,CNc

Nc∑
k=1

Ls(Xs,Ys, θk). (7)

Through the first step, the forward network are driven to pre-
dict correct labels for the source images. Thus, the semantic
information to classify the data sample preserves in the net-
work even with the fooling and the consensus losses.
Step 2: The second step leads {C1,...,CNc

} to give am-
biguous prediction for the target images by using Lf . We
just consider the predictions for the target images in Step 2,
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which can be represented as:

arg min
C1,...,CNc

Nc∑
k=1

Lf (Xt, θk). (8)

In this step, we only update the classifiers because the fool-
ing loss targets on confusing the predictions of classifiers.
Step 3: The third step is applied to unify the latent features
of two domains based on the consensus of the multiple clas-
sifiers. Meanwhile, At is trained in this step. Thus, the up-
date at Step 3 can be derived as:

arg min
At,G

Lc(Xt). (9)

Then, by driving the classifiers to make a consensus, At and
G are trained for the hidden intermediate domain and the
unified latent feature, respectively.

After the third step, to train the inverse network, the pre-
dicted labels of the target images are obtained by the updated
forward network as:

ŷ
(i)
t = p̂(y|x(i)

t ), (10)

and a set containing all the predicted target labels ŷ(i)
t is de-

noted by Y∗
t . In the remaining steps, the inverse network is

updated similarly to the first three training steps for the for-
ward network, while considering the source and target im-
ages reversely by using Y∗

t as the source labels. Thus, the
inverse network considers {Xt,Y

∗
t } and {Xs} as its source

and target domains, respectively.
Step 4: This step updates G− and {C−

1 ,...,C−
Nc

} in a super-
vised manner as:

arg min
G−,C−

1 ,...,C−
Nc

Nc∑
k=1

Ls(Xt,Y
∗
t , θ

−
k ). (11)

Step 5: Then, the fifth step confuses {C−
1 ,...,C−

Nc
} by the

fooling loss as following:

arg min
C−

1 ,...,C−
Nc

Nc∑
k=1

Lf (Xs, θ
−
k ). (12)

Step 6: The sixth step is a little bit different from Step 3
where the image adaptor and the feature generator of the for-
ward network are updated simultaneously. However, in Step
6, only the feature generator is updated by the consensus loss
as represented by:

argmin
G−

L−
c (Xs). (13)

Step 7: At the final step, we train As to let {C−
1 ,...,C−

Nc
}

make a consensus to Ys. Thus, the final step is given as:

argmin
As

Nc∑
k=1

Ls(Xs,Ys, θ
−
k ). (14)

After the training, the inverse network is removed, and
then we can predict the labels of the target images by
Eq. 10 through the cross-domain image adaptor for the tar-
get domain and the forward network. Even though the target
pseudo-labels are noisy, the noisy labels are used in Step
4-6 training the inverse network (G−, C−

1 ,...,C−
Nc

) that is
removed after the training. Thus, the noisy target pseudo-
labels do not affect the adaptation performance.

Table 1: Comparison on algorithm complexity

Acc. Sec/Epoch #(Epoch) #(Loss Param.)
SBADA 61.1% 76.73 s 500 6
Proposed 78.5% 1.12 s 100 0

Table 2: Quantitative results for variant algorithms

Source→Target Distinct Domains Similar Domains
MNIST → SVHN USPS → MNIST

Source Only 47.8% 63.4%
DANN 35.7% 73.0%
DRCN 40.1% 73.7%

SBADA 61.1% 95.0%
IEDA-noIAN 63.5% (– 15.0%) 87.4% (– 9.9%)
IEDA-noSTN 63.0% (– 15.5%) 85.1% (– 12.2%)
IEDA-noCTN 72.9% (– 5.6%) 97.2% (– 0.3%)
IEDA-single 69.7% (– 8.8%) 89.1% (– 8.2%)
IEDA-3Step 73.6% (– 4.9%) 97.3% (– 0.2%)

IEDA-1C 72.4% (– 6.1%) 75.1% (– 22.1%)
IEDA-2C 71.8% (– 6.7%) 83.0% (– 14.3%)

IEDA-noFooling 64.9% (– 13.6%) 94.1% (– 3.2%)
IEDA 78.5% 97.5%

Experimental results

Implementation

The number of multiple classifiers was set to Nc = 5. The
learning rates for the feature generator and the classifiers
were set to 0.0002, while the learning rates of the relatively
small image adaptors are set to 2e−6. The decay weight loss
was added to all the optimization steps with a loss scale of
0.0005. The detail network architectures are given in Ap-
pendix A of the supplementary document1.

We used PyTorch (Paszke et al. 2017) to implement the
proposed framework. The computational environment had
an Intel i7-8700 CPU @ 3.20GHz, 32GB RAM, and an
NVIDIA GTX 1080 Ti GPU. For our target task where a
simple domain is adapted to a complex domain, the previ-
ous state-of-the-art algorithms are complicated and require
much training time. In Table 1, we present the complexity of
the proposed framework for MNIST→SVHN that is one of
the challenging scenarios. IEDA is simpler and much faster
than SBADA (Russo et al. 2018) that is the state-of-the-art
algorithm on the scenario, even with better performance.

For validating the performance of the proposed algorithm,
we compare it with the state-of-the-art algorithms includ-
ing MMD (Long et al. 2015), DANN (Ganin and Lempit-
sky 2015), DRCN (Ghifary et al. 2016), DSN (Bousmalis
et al. 2016), CoGAN (Liu and Tuzel 2016), ATT (Saito,
Ushiku, and Harada 2017), MCDDA (Saito et al. 2018),
SBADA (Russo et al. 2018), SAFN (Xu et al. 2019), and
DANSVD (Shkodrani, Hofmann, and Gavves 2018). All
their results are obtained using the public results or their
original programs.

Ablation tests

To analyze the proposed framework of Intermediate do-
main transfer and Ensemble classifier for Domain Adap-

1https://sites.google.com/site/jwchoivision/
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Table 3: Quantitative comparison on classification datasets

Source MNIST SVHN MNIST USPS STL CIFAR
Target SVHN MNIST USPS MNIST CIFAR STL

Source Only 47.8% 67.1% 76.7% 63.4% 55.8% 72.1%
MMD - 71.1% - - - -
DANN 35.7% 71.1% 77.1% 73.0% - -
DRCN - 82.0% 91.8% 73.7% 58.7% 66.4%
DSN - 82.7% 91.3% - - -

CoGAN - - 91.2% 89.1% - -
ATT 52.8% 86.0% - - - -

MCDDA 28.7% 96.2% 94.2% 94.1% - -
SBADA 61.1% 76.1% 97.6% 95.0% - -

DANSVD - 97.8% - - - 61.5%
IEDA 78.5% 98.9% 95.0% 97.5% 62.3% 78.3%

tation (IEDA), we additionally implement several vari-
ants of IEDA: IEDA-noIAN, IEDA-noSTN, IEDA-noCTN,
IEDA-noINV, IEDA-3Step, IEDA-1C, IEDA-2C, and IEDA-
noFooling. With digit datasets of MNIST (LeCun et al.
1998), SVHN (Netzer et al. 2011), and USPS (LeCun
et al. 1998), we built two scenarios of distinct domains
(MNIST→SVHN) and similar domains (USPS→MNIST)
to compare the effectiveness of the framework components
for the two different cases. Especially, MNIST→SVHN is
a challenging task because SVHN has a much higher diver-
sity of color change, clutter, and affine transformation than
MNIST. Table 2 compares the variants quantitatively.

The first three variants (IEDA-noIAN, IEDA-noSTN,
IEDA-noCTN) are implemented to validate the effective-
ness of the intermediate domain. In IEDA-noIAN, the two
cross-domain image adaptors were entirely removed from
IEDA. In IEDA-noSTN, the spatial transformers in the im-
age adaptors were excluded, while the color transformer re-
mains. On the contrary, the image adaptors in IEDA-noCTN
contain the spatial transformers only. The intermediate do-
main scheme was powerful when the two domains are dis-
tinct to each other, so the improved performance for the dis-
tinct domains (MNIST→SVHN) was much larger than the
similar domains (USPS→MNIST) from the results of IEDA-
noIAN. In IEDA-noCTN, the CTN shows little effectiveness
for USPS→MNIST because both datasets are gray-level.

The next two variants (IEDA-single, IEDA-3Step) validate
the strength of the double-structured architecture. IEDA-
single only utilizes the forward network. Then, As cannot
be trained, which results in no image transfer of the source
images. Likewise, IEDA-3Step ignores the inverse network,
but As is trained in Step 1 by the supervised loss (Eq. 7).
From the result of IEDA-single, when the image transfer of
the source images is neglected, the performance drops for
both of the two scenarios. With IEDA-3Step, the intermedi-
ate domain is biased to the source domain, which results in

Figure 5: Transformed images by the image adaptors

Source/Target Domain Intermediate Domain

Figure 6: Feature distribution by t-SNE

the performance reduction for the distinct domains.
The last three variants (IEDA-1C, IEDA-2C, IEDA-

noFooling) explain the necessity of the consensus-based
multiple classifiers. The number of multiple classifiers (Nc)
were set to 1 and 2 in IEDA-1C and IEDA-2C, respectively.
IEDA-noFooling ignores the training steps of Step 2 and
Step 5 where the fooling loss is used. At first, from the re-
sults of IEDA-1C and IEDA-2C, the small number of classi-
fiers works critical for the scenario of similar domains. Since
the proposed framework cannot adapt the ambiguous sam-
ples yet for the distinct domains, the performance reduces
by the limited amount with the small number of classifiers
on MNIST→SVHN. In contrast, the performance decreased
much for the similar domains where the ambiguous sam-
ples are classified well by the proposed framework. Since
the number of classifiers is crucial for the similar domains,
we perform the additional ablation study for the number of
classifiers on USPS→MNIST. As shown in Fig. 4, the per-
formance increases monotonically until being saturated at 5
classifiers. From the results of IEDA-noFooling, we can find
that the fooling loss is essential to adapt two distinct do-
mains, while the similar domains can be adapted reasonably
without the fooling loss.

Experiments on digit datasets

To validate the proposed framework, we perform the ex-
periments using various combinations of three conventional
digit recognition datasets: MNIST (LeCun et al. 1998),
SVHN (Netzer et al. 2011), and USPS (LeCun et al. 1998).
All the quantitative results for the digit datasets are given at
Table 3. In addition, the transformed images for the interme-
diate domain are represented in Fig. 5.
MNIST ↔ SVHN: MNIST dataset contains hand-written
digit images, while SVHN is a dataset captured from real-
world environments such as traffic signs and signboards.
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Contrary to MNIST dataset where the digits are normal-
ized to be located at the centers, the digits of SVHN dataset
are positioned randomly. In contrast to the previous works,
the proposed framework showed state-of-the-art adaptation
accuracy (78.5%) when adapting MNIST to SVHN. Mean-
while, the proposed framework also showed the state-of-the-
art performance even for the reversal adaptation from SVHN
to MNIST. The qualitative results show that, when we adapt
MNIST to SVHN for their intermediate domain, MNIST is
painted by some color to cover the color variation of SVHN,
while SVHN is translated and zoomed to place the digits at
the center like MNIST.
USPS ↔ MNIST: Like MNIST dataset, USPS dataset con-
sists of numerous hand-written digit images, and the pro-
posed algorithm also outperformed the state-of-the-art algo-
rithms for the datasets. As shown in the qualitative results,
the major difference between USPS and MNIST is the blur-
riness of the digits. However, the two domains become simi-
lar in the intermediate domain by blurring the clear MNIST,
while the blurred USPS is clarified. Even though the color
variation makes the two domains visually different, the color
information does not affect the model adaptation because
the two initial domains contain only the gray-level images.
We estimate t-SNE of the sample features obtained by G as
shown in Fig. 6. Even though the intermediate images look
visually different in USPS→MNIST, the intermediate im-
ages from USPS (Yellow points) and MNIST (Purple points)
become much closer in the feature space.

Experiments on object datasets

We evaluate the proposed framework on object clas-
sification datasets: CIFAR10 (Krizhevsky and Hinton
2009), STL10 (Coates, Ng, and Lee 2011), and VisDA
Dataset (Peng et al. 2017). CIFAR10 and STL10 datasets
are the conventional object classification datasets, and they
have 9 overlapped class labels as referred to (Ghifary et al.
2016). As shown in the last two columns of Table 3, even
with the network resulting in a low accuracy when only
the source samples are used for training (Source Only), the
proposed framework showed largely improved performance.
When we look at the intermediate domain images for CI-
FAR10 and STL10 as shown in Appendix B, the informa-
tive target objects are zoomed and colored by red, while the
background is colored by green. This can be interpreted as a
kind of attention mechanism, which can improve the domain
adaptation performance. We also present the experimental
results using VisDA dataset in Appendix C.

Experiments on X-ray medical images

To show the robustness of the proposed framework for
challenging problems, we applied the proposed algo-
rithm to adapt the recognition of Pneumonia from an
aligned dataset (Kermany et al. 2018) into a misaligned
dataset (Wang et al. 2017), which are shown in Fig. 7. Every
experimental setting is equivalent to the VisDA experiment,
and IEDA gives the best performance as shown in Table 4.

NORMAL PNEUMONIA

Chest X-ray Dataset RSNA Dataset

NORMAL PNEUMONIA

Figure 7: X-ray dataset examples

Table 4: Quantitative results on X-ray datasets

Algorithm Source Only MCDDA IEDA
Accuracy 58.5% 67.21% 72.37%

Additional analysis

In contrast to the previous studies where the pseudo-labels
from a single classifier are utilized (Cicek and Soatto 2019;
Kumar et al. 2018), the consensus loss considers the ensem-
ble predictive probability from the multiple classifiers. Thus,
we can simultaneously consider the uncertainty among sev-
eral labels and every correlation among the weak classi-
fiers. To show the effectiveness of the consensus loss for
the ensemble model, we perform additional experiments.
When we replace the consensus loss by the cross-entropy
loss based on the pseudo-labels from the ensemble classi-
fiers, the performance reduces to 32.7% in MNIST→SVHN.
When the consensus loss is replaced by the marginal en-
tropy for each classifier to ignore the correlations among the
multiple classifiers, the performance decreases to 59.6% in
MNIST→SVHN.

In contrast to Zou et al. (2019) regularizing the pseudo-
labels, the proposed framework entirely ignores the pre-
dicted class by the fooling loss. When the fooling loss
is replaced by the regularization loss proposed by Zou
et al. (2019), the performance decreases to 58.62% for
MNIST→SVHN. Thus, we can confirm that the proposed
fooling loss is effective for the ensemble classifier.

Conclusion

In this paper, a unsupervised domain adaptation framework
based on the bi-directional domain transformation to the hid-
den intermediate domain was suggested. Our main contribu-
tion is to introduce the importance of the intermediate do-
main for the domain adaptation tasks, which be transformed
easily from the two domains. Furthermore, the alternate up-
dating of multiple classifiers makes the neural network clas-
sify the ambiguous samples robustly. The intermediate do-
main and the sample labels of target domain could be jointly
estimated by the training scheme using the double-structured
architecture. With numerous ablation tests, we validated the
effectiveness of the intermediate domain for the various do-
mains, and the proposed algorithm outperformed the previ-
ous state-of-the-art algorithms. In addition, while the previ-
ous studies need to tune the parameters for the respective
dataset, the proposed algorithm shares all the training pa-
rameters for every dataset, which validates its simplicity and
generality. Even though the proposed framework showed
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significantly high performance just by two simple transform-
ers in the image adaptors, the framework can be extended by
adding new transformers for various environments.
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