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Abstract

Image completion is the problem of generating whole images
from fragments only. It encompasses inpainting (generating a
patch given its surrounding), reverse inpainting/extrapolation
(generating the periphery given the central patch) as well as
colorization (generating one or several channels given other
ones). In this paper, we employ a deep network to perform
image completion, with adversarial training as well as per-
ceptual and completion losses, and call it the “missing data
encoder” (MDE). We consider several configurations based
on how the seed fragments are chosen. We show that train-
ing MDE for “random extrapolation and colorization” (MDE-
REC), i.e. using random channel-independent fragments, al-
lows a better capture of the image semantics and geometry.
MDE training makes use of a novel “hide-and-seek” adver-
sarial loss, where the discriminator seeks the original non-
masked regions, while the generator tries to hide them. We
validate our models qualitatively and quantitatively on several
datasets, showing their interest for image completion, repre-
sentation learning as well as face occlusion handling.

Introduction

In this paper, we investigate the problem of image comple-
tion, i.e. the one of generating a complete image from RGB
or single-channel parts of an original image. From a rep-
resentation learning standpoint, learning to perform image
completion amounts to encoding the underlying structures
of the visual objects. A number of approaches have been
proposed in the literature that try to learn this structure in
an unsupervised fashion, in the hope that the representations
learned by doing so could help other (mostly supervised)
tasks, such as image classification, object detection or se-
mantic segmentation. Indeed, for a number of these tasks,
performing a supervised pre-training on a large database
such as ImageNet is beneficial to the accuracy. Yet, collect-
ing such vast amounts of data is tedious, if not impractical.

Following recent advances in the field of text understand-
ing (Graves 2013), one can wonder if using the regularity
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Figure 1: Image completion from a small fragment in each
color channel. From left to right: Original image masked
channel-wise; Images generated with proposed missing
data encoder, trained respectively with completion, per-
ceptual+adversarial and perceptual+adversarial+hide-and-
seek losses (see text for details). In all cases, the image is
completed using only the information within the boxes. The
hide-and-seek loss ensures that there is no trace left of the
generation process in the completed images.

of the images in an unsupervised fashion would yield such
representations at virtually no cost. This echoes the ideas in-
troduced in (Mathieu, Couprie, and LeCun 2016), where it
is theorized that a strong artificial intelligence model should
build an inner representation through unsupervised learn-
ing. A general idea for doing so is to design a proxy task
for pretraining. The authors in (Doersch, Gupta, and Efros
2015) proposed to predict the relative position of two adja-
cent image patches from their content. In the same vein, the
authors in (Noroozi and Favaro 2016) trained a network to
solve jigsaw puzzles, created by shuffling a grid of patches.
Intuitively, the network has to learn the structure of the ob-
jects to correctly predict the patches spatial layout and to
solve the puzzle. Image colorization (Larsson, Maire, and
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Figure 2: Overview of the Missing Data Encoder. At train time, random channel-wise masking is applied to the image, which
then passes through the generator that completes it. MDE uses perceptual, reconstruction and adversarial losses, including a
novel hide-and-seek loss where a mask reconstruction network “seeks” to regenerate the mask while the generator “hides” it.

Shakhnarovich 2017) has also been used as a proxy task:
in (Zhang, Isola, and Efros 2017), the authors introduce the
split-brain autoencoder, where each encoder aims at recon-
structing a specific channel (e.g. a color or a depth chan-
nel) given another one. Achieving such a completion task
requires an even better capture of the visual structures, as
compared to predicting only loose spatial layout as in (Do-
ersch, Gupta, and Efros 2015; Noroozi and Favaro 2016).
Yet, colorization is a restricted form of completion where
only the chrominance information needs to be inferred.

Other proxy tasks have been proposed, such as learning
motion-based segmentation in videos (Pathak et al. 2017).
Some approaches involve completing images given only a
fraction of the original image. To this end, the authors of
(Oord, Kalchbrenner, and Kavukcuoglu 2016) use recurrent
networks to encode the spatial dependency of pixels for im-
age completion and generation. However, the learned rep-
resentations cannot be easily transferred to other tasks, as
most models now involve convolutional networks. A partic-
ular case of completion is inpainting, where a central patch
is reconstructed given its context, as in (Pathak et al. 2016).
Similarly, Li et al. (Li et al. 2017) propose a generative face
completion method. These approaches generally rely on ad-
versarial training (Goodfellow et al. 2014), where a discrim-
inator network aims at distinguishing the fake data, provided
by the generator network, from the true data.

Lastly, the problem of completion is related with the work
in (Mathieu, Couprie, and LeCun 2016), where the authors
generate a new frame given the past frames in a video. While
the setups are different, we can draw a parallel between the
temporal dependency between two events, and the spatial
dependency between objects in an image. For instance, a
man’s trajectory is predictable in the short-term as it usually
varies smoothly and in relation with a context. Similarly, if

we see a mug in an image we are likely to also observe a
desk, or a hand.

In this paper, we propose a framework for image com-
pletion using a deep neural network that we call the miss-
ing data encoder (MDE). We study several image comple-
tion scenarios with MDE: inpainting, reverse inpainting, col-
orization and the more general task of completing from ran-
dom fragments in the different color channels – we call it the
“random extrapolation and colorization” (REC). The latter
proves to be the best at capturing the visual semantics. MDE
uses skip-connections to ensure that the input image regions
are not altered, and is trained with completion losses, adver-
sarial loss, perceptual loss and a novel adversarial hide-and-
seek loss, as shown on Figure 1. We demonstrate on multi-
ple datasets that we can extrapolate high quality images from
only small fragments, and that MDE-REC encodes semantic
information as well as object geometry. The contributions of
this paper are three-fold:

• We introduce MDE, a framework for image completion
that uses a u-net-like architecture with completion, per-
ceptual and adversarial losses. The best performing MDE-
REC model uses a channel-wise random masking which
encompasses inpainting, reverse inpainting and coloriza-
tion as special cases.

• We introduce a novel adversarial hide-and-seek loss that
complements the standard adversarial objective function
for image completion, by ensuring that there is no trace
left of the generation process in the completed images.

• We thoroughly validate our model on multiple datasets,
showing that MDE-REC encodes image geometry and
semantics. We show several applications of MDE-REC
including image generation, representation learning, and
face completion under targetted occlusions.
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The missing data encoder

Figure 2 provides an overview of MDE-REC. As it was done
in (Pathak et al. 2016) for inpainting and in (Mathieu, Cou-
prie, and LeCun 2016) for video frame prediction, we use
GANs as our base architectural brick.

Given an RGB image Z of size W ×H × 3, we mask it
by element-wise multiplication with a random binary mask
M of same size. As we will see in what follows, this mask
can be generated in different ways. The generator G with
parameters θg maps the masked image M �Z to a complete
image Gθg (M � Z). This new image can be decomposed
as a reconstructed region, M � Gθg (M � Z) that should
closely resemble the original fragment M � Z, and a com-
pleted one, (1 −M) � Gθg (M � Z). The discriminator D
with parameters θd has to distinguish the generated images
from the real ones. Given an image training set {Zi}N1=1 and
associated masks {Mi}N1=1, this is obtained by minimizing:

LDisc(θd) = − 1

N

N∑

i=1

logDθd (Zi) + log[1−Dθd (Gθg (Mi � Zi))].

(1)
The generator has to fool the discriminator by minimizing:

LGen(θg) = − 1

N

N∑

i=1

logDθd(Gθg (Mi � Zi)). (2)

In practice, optimizing solely Ladv(θg, θd) = LGen(θg)+
LDisc(θd) at train time leads to unstable behaviors. To avoid
this, a classic approach (Pathak et al. 2016; Li et al. 2017)
consists in adding an L2 completion loss between the com-
pleted and the original regions:

Lcompl(θg) =
1

N

N∑

i=1

∥∥(1−Mi)� (Gθg (Mi � Zi)− Zi)
∥∥2

2
.

(3)
However, optimizing Lcompl(θg) + λadvLadv(θg, θd)

leads to bad results, as the discriminator network quickly
wins against the generator, which generates unrealistic im-
ages. Also, nothing prevents the generated image to differ
from the original one on the non-masked regions.

Preserving input information

The authors of (Pathak et al. 2016) use an overlap between
the inpainted region and the context, and apply a strong
penalty for bad reconstructions of this region to “guide”
training. In this vein, we add a reconstruction loss on the
non-masked regions:

Lrec(θg) =
1

N

N∑

i=1

‖Mi � (Gθg (Mi � Zi)− Zi)‖22. (4)

Note that such a task merely consists in autoencoding the
original element: it is way easier than the task of completion
and thus effectively serves as a guide for the latter task. Note
that it is crucial to reconstruct the original element with high
fidelity. In practice, we observe that, even if we apply a large
cost to bad reconstruction of the non-masked regions, these
regions are often modified. This is problematic since, in that

case, the extrapolated regions do not exactly match the input
information at the mask boundary. To address this problem,
we use a u-net-like architecture, with skip-connections be-
tween the encoder and decoder to help preserve further the
input regions.

Perceptual loss

One way to better complement the adversarial loss is to add
a completion loss not directly in the image space, which re-
sults in blurry images, but in the representation space of a
pretrained network such as VGG-16. As it has been pointed
out (Johnson, Alahi, and Fei-Fei 2016), the first layers of a
VGG network trained on large databases such as ImageNet
learn filters related to image structures at different scales.
Comparing images through such deep features rather than
pixel-wise intensities is thus more meaningful in terms of
visual structure and semantics. This so-called “perceptual”
loss can be written:

Lvgg
compl(θg) =

1

N
L∑

�=1

λ�

L∑

�=1

N∑

i=1

λ� ‖φl(Gθ(Mi � Zi)) − φl(Zi)‖2
2 ,

(5)
where φ� denotes the output of the �th layer of VGG-16 and,
classically, λ1 = 1, λ2 = 0.5, λ3 = 0.25, λ4 = 0.125,
λ5 = 0.0625 and λ� = 0 for all the fully-connected layers.

Mask generation

During training, for each RGB image Z we generate a
binary mask M = (M c)3c=1 over the image channels.
For each channel, M c is defined by a rectangle Rc(S) =
(xc, yc, wc, hc) of size wc × hc, lower-left corner (xc, yc)
and area SWH , with S ∈ (0, 1) the image masking ratio
hyperparameter. Figure 3 summarizes different configura-
tions for the mask generation process. Note that except for
inpainting, in all of them, the rectangle interior defines the
un-masked image region, the one that the network sees. The
most general masking is used to perform “random extrapo-
lation and colorization” (REC, Fig. 3(5)). This task amounts
to the completion of the image over the intersection of the
three channel-wise masked regions and the colorization of
remaining regions.

The other completion tasks are special cases of REC. For
instance, random extrapolation (RE, Fig. 3(4)) is the par-
ticular case where the masks are the same for all channels.
For colorization (Fig. 3 (3)), the mask covers the entirety
of one or two channels and nothing of remaining channels,
Reverse Inpainting (RI, Figure 3(2)) is obtained from RE
by fixing the mask coordinates and dimensions. Finally, in-
painting (I, Figure 3(1)) is obtained from RI by switching
the binary mask M to 1−M .

The proportion of dropped pixels (i.e. those for which all
channels are missing) in the RI and RE tasks is exactly 1−S.
In the general case of REC, when boxes are different across
channels, an average proportion of (1−S)3 pixels is dropped
and an average proportion of 1−S3 is corrupted (at least one
channel is missing). When S = 0.1 as in most of our ex-
periments, this amounts to 72.9% (resp. 99.9%) of dropped
(resp. corrupted) pixels in average.
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Figure 3: Different masking methods for different image completion tasks. (1) Inpainting (I): complete center given periphery;
(2) Reverse Inpainting (RI): complete periphery given center: (3) Colorization: complete one or two color channels given the
rest; (4) Random Extrapolation (RE): as RI but with a random known region; (5) Random Extrapolation and Colorization
(REC): the most general task of completing image from independent random masking in the three channels.

Hide-and-seek loss

Despite the use of adversarial training and perceptual loss,
the generator quickly learns to reconstruct the non-masked
regions, which results in discontinuities on the boundaries of
the masked regions. To avoid this, we design a novel adver-
sarial mask reconstruction loss, which consists in estimating
the locations of the original input masks by looking at the
generated images (for MDE-RE and MDE-REC). Another
formulation consists in reconstructing the binary mask di-
rectly. To this end, we introduce a mask reconstruction net-
work R with parameters θr that takes as input the generated
images and outputs a binary mask. The adversarial mask re-
construction loss can be written:

LHnS
disc (θr) = − 1

N

N∑

i=1

Mi logRθr (Gθg (Mi � Zi)) (6)

In case of a fake image, this loss makes the discriminator
“seek” the original mask. On the other hand, the generator
tries to “hide” it by pushing the reconstructed mask away
from the original one Mi:

LHnS
gen (θg) =

1

N

N∑

i=1

Mi logRθr (Gθg (Mi � Zi)) (7)

Alternatively, the generator “hide” the original mask by
pushing the reconstructed mask towards another mask M̃i

randomly drawn from the same distribution as Mi:

LHnS
gen (θg) = − 1

N

N∑

i=1

M̃i logRθr (Gθg (Mi � Zi)) (8)

We refer to the sum of these losses as our hide-and-seek
(HnS) loss which will be denoted respectively LHnS

rec (θg, θr)
(Eq 6+7) and LHnS

alt (θg, θr) (Eq 6+8). We also implement a
direct regression approach to HnS, that consists in estimat-
ing the bounding box coordinates. As pointed out in (Liu
et al. 2018), regressing coordinates is a hard task for con-
volutional networks as their structure enforces translational

invariance. Thus, we also concatenate 2 channels containing
x and y-coordinates to the discriminator’s inputs. We refer
to this version as LHnS

coord.

Implementation details

As shown on Figure 4, the generator is composed of an en-
coder and a decoder. The encoder is similar to VGG net-
work, except it only uses one large fully-connected layer at
the end. As it is a classical setup in the literature, the de-
coder mirrors the encoder, but here with the addition of skip-
connections to explicitly preserve the non-masked regions.
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Figure 4: Architecture of the generator. Green: encoder,
Blue: decoder. The blocks indicate conv/BN/ReLU layers
and the descending/ascending arrows indicate downsam-
pling (strided conv) and upsampling (transposed conv).

The discriminator is very similar to the encoder part of the
generator, except that the fully-connected layer is replaced
by a global average pooling: as discriminating between real
and fake images is considered easier than generating images,
it is assumed that the discriminator shall have fewer parame-
ters. As in (Radford, Metz, and Chintala 2015), we use leaky
ReLU activations in the discriminator and strided convolu-
tions everywhere instead of max-pooling. We also use a sig-
moid layer as the last layer of the generator to better scale the
outputs. The mask reconstruction network follows a similar
U-net shape as the generator, except is has a lighter design
with only 13 layers (6 encoder, 6 decoder with an extra 1×1
sigmoid layer to produce the final mask). We use ADAM op-
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timizer with a learning rate of 2.10−4 for the generator and
2.10−5 for the discriminator. We train with a momentum of
0.5 and polynomial learning rate annealing. Finally, we ap-
ply 300 000 updates with batch size 24 to train the network.

Experiments
We validate our method both on three datasets, and show its
interest for image completion, representation learning and
face occlusion handling. MNIST contains 55k train and 10k
test images. As the images are grayscale and low resolu-
tion, we upscale them to 96 × 96 and only apply MDE-RE.
The Oxford-102 flowers dataset consists in 8187 images de-
scribing 102 classes of flowers. We train our models on 7167
images from the train and test partitions, and apply them
on the 1020 validation images. We report results obtained
with MDE-RI, MDE-RE and MDE-REC. CelebA (Liu et al.
2015) is a large-scale database containing 202k 218 × 178
celebrity images coming from 10k identities, each annotated
with 40 binary attributes (such as gender, eyeglasses, smile),
and 5 landmarks. As in (Zhong, Sullivan, and Li 2016), we
use the train partition that contains 162k images from 8k
identities to train our models. The test partition contains 20k
instances from 1k identities that are different from the train-
ing set identities. We use the aligned images, apply a rescal-
ing factor (0.75) and resize the face crops to 96× 96.

Qualitative evaluation

Figure 5 shows images generated with MDE on the three
datasets. In all cases, the images look very realistic: On
MNIST, the generated digits usually match the ground truth
ones. On Oxford-102, both the flowers and backgrounds
are generated correctly. This implies that even with few
data, MDE is able to capture the data distribution. Similarly,
on CelebA, the generated images may present some alter-
ations w.r.t. the ground truth images: the generator may sup-
press particularly low-probability patterns, such as beards,
glasses, hats or a particular facial expression. Notice how-
ever the quality of the completion, as there is no blurry
pattern or artifact on the generated images. Figure 6 shows
more results on CelebA. For each ground truth (GT) image,
alternative completions can be generated by applying a new
mask before passing the images to the generator. Depend-
ing on the mask position and dimensions, the generator can
discard background information, or swap haircuts, remove
beards or mustache, or change the facial expression.

Quantitative evaluation

Evaluation metrics We use several metrics to assess the
quality of the generated images. The peak signal-to-noise
ratio (pSNR) quantifies the pixel-wise resemblance between
the generated and ground truth images. The structural simi-
larity (SSIM) index assesses the image holistic visual qual-
ity. Lastly, we measure the inception score (Salimans et al.
2016), which evaluates both the semantic relevance of the
generated images as well as their diversity. As computing
the inception score requires using a network pretrained on
a similar distribution (in our case, a face database), we use
VGG-face, as in (Wang et al. 2018). For the same reason, we
only perform quantitative evaluation on CelebA.

Ablation study Figure 7 shows pSNR and inception score
for multiple train and test scenarios. First, we observe that
models trained for colorization, inpainting or reverse in-
painting have very low pSNR and inception score when
tested in a mismatched scenario (e.g. training with inpainting
and testing for colorization). Conversely, MDE-RE performs
well for inpainting and reverse inpainting, as these scenar-
ios can be viewed as special cases of random extrapolation.
However, MDE-RE generalizes poorly to colorization and
REC tasks. Conversely, MDE-REC performs well on every
task both in terms of pSNR and inception. In terms of pSNR,
MDE-RE and MDE-REC trained with high S tend to be bet-
ter when S is also high in test, and vice-versa, for both RE
and REC tasks. However, MDE-RE and MDE-REC trained
with S = 0.1 always have higher inception score. Therefore,
MDE-REC with S = 0.1 is a more generic model that has a
better transferability to other completion tasks.

Second, we train a MDE-REC with S = 0.1 and com-
pletion loss, adversarial loss, perceptual loss as well as
HnS loss (either LHnS

coord or the reconstruction-based LHnS
rec

and LHnS
alt ). We set λvgg

rec = 2.10−5, λadv = 10−2 and
λHnS = 10.e−2 for LHnS

coord and λHnS = 10 otherwise. Fig-
ure 8 draws a comparison between those approaches. As it
is classical, optimizing only Lrec results in blurry images,
which have a low inception score. Using adversarial training
and perceptual loss leads to higher inception. Furthermore,
using Lvgg

rec , Ladv and LHnS yields the best results for every
S. Thus, the proposed hide-and-seek loss increases the se-
mantic quality of the generated images by ensuring that no
stitching artifacts are present in it. As such, optimizing over
LHnS
alt is particularly interesting, as using a reconstruction

objective likely facilitate the task for the network, and gen-
erating random boxes instead of simply pushing the ground
truth mask away for the generator allows to better take every
image region into account.

What does MDE learn? To study the representations
learned by different MDE models, we quantify the trans-
ferability of the learned features for attribute prediction and
landmark alignment. To do so, we truncate the pretrained
MDE models after the fully-connected layer, and append
two 4000 → 40 and 4000 → 10 fully-connected sigmoid
layers to map the attributes and landmark coordinates, with
a L2-norm between these predictions and the ground truth
values. We perform 5000 updates with batch size 16 (i.e. less
than one epoch). We report in table 1 the average Euclidean
distance between the landmarks as well as the average trace
of the confusion matrix.

We observe that reverse inpainting as a pretraining trans-
fers more efficiently to landmark localization and attribute
prediction, as compared to inpainting. When compared with
colorization, it is less accurate on the attribute prediction
task, but better at predicting the face geometry. This stems
from the fact that models trained with reverse inpainting
only see a limited fraction of the input image. Conversely,
MDE-RE models obtain high performance for predicting at-
tributes but a slightly lower accuracy in landmark localiza-
tion. Finally, MDE-REC models are significantly better for
both landmark localization and attribute prediction. Through
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Figure 5: Completing images with proposed Missing Data Encoders. Left: Examples of images generated with MDE-RI (3 top
rows, S = 0.25), MDE-RE (3 central rows, S = 0.33) and MDE-REC (3 bottom rows, S = 0.1) on CelebA. Center: images
generated with MDE-RI (3 top rows, S = 0.25), MDE-RE (3 central rows, S = 0.33) and MDE-REC (3 bottom rows, S = 0.2)
on Oxford-102. Right: Examples of images generated with MDE-RE (S = 0.25) on MNIST. Images with the dashed boxes are
ground truth images and the boxes indicate the non-masked information. For MDE-REC on CelebA and Oxford-102, the red,
green and blue boxes show preserved information in R,G,B channels, respectively. Best viewed in color.
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Figure 6: Generating multiple image completions with MDE-REC. For each GT image, a trained MDE (with S = 0.1) is
sampled 5 times with different input masks.

the channel-wise random region dropping and completion,
they benefit from both completion and colorization pre-
trainings at the same time. By doing so, they learn to en-
code the face geometry and high-level semantics in a more
efficient way. Note that for both MDE-RE and MDE-REC,
the models trained with lower S are not necessarily the best
at predicting attributes: this is due to fine-grained attributes
such as the presence of earrings or lipstick not being suc-
cessfully embedded within the generator.

Table 2 shows a comparison with recent state-of-the-

art approaches, and MDE-REC trained with 50 000 up-
dates. Our method is competitive with recent methods that
use bigger architectures (Meyerson and Miikkulainen 2018;
He et al. 2017) or pre-training involving large annotated
dataset (350k face recognition dataset) (Zhong, Sullivan, and
Li 2016). This shows that MDE-REC learns useful represen-
tations in a completely unsupervised fashion.

Face completion under targeted occlusions: We also
study the application of MDE-REC (S = 0.1) to face com-
pletion under occlusions. We use the same protocol as in (Li

10693



���
��
�

�
	

��

�
	

��

�
���

��
�

�

��
��
�

�

��
��
�

�

��
��

�

�
��
��

�

�
��
��

�

�
��
��

�
��

�

�

��

��

��

��

��

��

�	
�� �	
�� ������ ������� ������

������ ����� ������ ������ ������

������������	

�
�
�

�

���
��
�

�
	

��

�
	

��

�
���

��
�

�

��
��
�

�

��
��
�

�

��
��

�

�
��
��

�

�
��
��

�

�
��
��

�
��

�

�

��

��

��

��

��

��

������������	

��
�
�
�
��
	
�
��
�
	
��

�������������	

Figure 7: Comparing MDE variants in different test setups in terms of pSNR and Inception score. I: inpainting. RI: reverse
inpainting. Col 1-2: colorization (1-2 channels). RE: random extrapolation. REC: random extrapolation and colorization.
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Figure 8: Loss ablation with MDE-REC (S = 0.1).

et al. 2017) and compare with CE (Pathak et al. 2016) and
GFC (Li et al. 2017). The results show that MDE-REC is
more efficient than the random inpainting proposed by (Li
et al. 2017). In addition, our method is agnostic to the na-
ture of the dataset, as opposed to (Li et al. 2017), where the
authors use an auxiliary face parsing network. As shown in
Table 3, results for MDE are significantly better nearly ev-
erywhere. Furthermore, high values of the inception score
(which ranges from 18.80 to 27.28) indicates that the gener-
ated images are sharp and realistic.

Conclusion

In this paper, we introduced the Missing Data Encoder for
image completion, unsupervised representation learning and
face occlusion handling. The network is trained to complete
an image from a rectangular region drawn at random in each
channel independently, a task that subsumes to some ex-
tent inpainting, reverse inpainting and colorization. To this
end, we introduced a novel “hide-and-seek” adversarial loss,
where the discriminator seeks the original non-masked re-
gions, while the generator tries to hide them. We showed on
several datasets that MDE allows to generate high quality
images from only small seed fragments. By learning to do
so, our architecture captures high level semantic informa-
tion without supervision. It also extends the state-of-the-art

Table 1: Performance comparison after only 5000 updates.
“Landmarks”: average pt-to-pt error. “Attributes”: average
trace of the confusion matrix for each attribute.

Pretraining Landmarks Attributes
Random weights 9.753 19.79
MDE-Colorization (1c) 2.358 11.69
MDE-Colorization (2c) 2.278 10.92
MDE-Inpainting 5.411 16.12
MDE-RI 1,496 13,73
MDE-RE(0.25) 2.039 12.72
MDE-RE(0.33) 1.719 11.41
MDE-RE(0.5) 1.759 10.39
MDE-REC(0.1) 1.509 10.49
MDE-REC(0.3) 1.451 10.30
MDE-REC(0.5) 1.498 10.16

Table 2: Attribute recognition. Comparison of unsupervised
MDE pre-training with state-of-the-art (% avg. error).

Method attributes
(Zhong, Sullivan, and Li 2016) 13.4
(He et al. 2017) 10.37
(He et al. 2017) 9.58
(Meyerson and Miikkulainen 2018) 10.21
(Meyerson and Miikkulainen 2018) 10.29
(Meyerson and Miikkulainen 2018) 8.64

MDE-REC(0.5) 9.17

Table 3: Comparison for face completion under targeted oc-
clusions. CE and GFC are excerpted from (Li et al. 2017).

pSNR SSIM
Occlusion CE GFC MDE CE GFC MDE
Right half 18.6 19.4 21.6 0.772 0.804 0.814

Left half 18.4 19.3 21.8 0.774 0.808 0.815

Both eyes 17.9 18.3 21.8 0.719 0.731 0.839

Right eye 19.0 19.1 22.4 0.754 0.759 0.855

Left eye 19.1 18.9 22.6 0.757 0.755 0.860

Mouth 19.3 19.7 21.9 0.818 0.824 0.818
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for face completion under occlusion. Future work involves
using MDE pretraining for classification or semantic seg-
mentation, as well as investigating the use of the proposed
“hide and seek” loss for other applications such as object
detection. For additional details and codes, please visit the
project page at gitlab.com/adapo/themissingdataencoder.
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