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Abstract

We address the problem of Visual Relationship Detection
(VRD) which aims to describe the relationships between pairs
of objects in the form of triplets of (subject, predicate, ob-
ject). We observe that given a pair of bounding box proposals,
objects often participate in multiple relations implying the
distribution of triplets is multimodal. We leverage the strong
correlations within triplets to learn the joint distribution of
triplet variables conditioned on the image and the bounding
box proposals, doing away with the hitherto used independent
distribution of triplets. To make learning the triplet joint dis-
tribution feasible, we introduce a novel technique of learning
conditional triplet distributions in the form of their normal-
ized low rank non-negative tensor decompositions. Normal-
ized tensor decompositions take form of mixture distributions
of discrete variables and thus are able to capture multimodal-
ity. This allows us to efficiently learn higher order discrete
multimodal distributions and at the same time keep the pa-
rameter size manageable. We further model the probability of
selecting an object proposal pair and include a relation triplet
prior in our model. We show that each part of the model im-
proves performance and the combination outperforms state-
of-the-art score on the Visual Genome (VG) and Visual Rela-
tionship Detection (VRD) datasets.

Introduction

Object detection is a central problem in computer vision.
Recent deep learning approaches (Ren et al. 2015; Girshick
et al. 2014) have made long strides in the task of object de-
tection. However, real world images often involve multiple
objects that interact with each other. Much can be said about
the image if we can reason object interactions with each
other in addition to detection. Reasoning about the relation-
ships objects participate in provides a powerful method for
capturing mid-level information that is useful for computer
vision tasks; for example, in image captioning, richer cap-
tions can be generated if objects as well as the relationships
between objects in the image is provided. The task of Vi-
sual Relationship Detection aims to recognize and localize
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Figure 1: Visual relationships are defined with triplets of
(subject - predicate - object). Multiple predicates may exist
between a pair of box proposals suggesting the distribution
of triplets given box proposals is often multimodal. We rep-
resent this conditional triplet distribution as normalized low
rank tensor decomposition. This representation takes form
of mixture distribution of triplet variables thus capturing the
multimodality while being efficiently learnable.

the objects along with predicting the relationship that pairs
of objects participate in.

State-of-the-art methods for visual relationship detection
(Dai, Zhang, and Lin 2017; Xu et al. 2017; Liang, Lee, and
Xing 2017; Zhu and Jiang 2018) solve the problem in two
stages: an objects proposal stage that uses object detection to
propose a set of object bounding box proposals that may par-
ticipate in relations within the image, and a relation recog-
nition stage that outputs a set of possible relation triplets
given the set of bounding box proposals provided by the ob-
jects proposal stage. In this paper, we focus on the relation
recognition stage. Our main observation is that multiple re-
lations often exist between a pair of box proposals in an im-
age: for example, in Figure 1, the relations <person - next
to - horse>, <person - in front of - horse> and <person -
hold - horse> are all valid. This suggests that the distribu-
tion of triplets, given a pair of objects, is often multimodal
with multiple valid relations occurring between a pair of ob-
jects. Any learning model with a single separate output for
object and predicate classes cannot represent such a multi-
modal distribution.

In this work, we use a neural network to model the prob-
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Figure 2: Graphical model representing the relation recogni-
tion model. Given an input image and its bounding boxes, a
pair of bounding boxes is selected by the annotator and then
annotated with a relation triplet. The relation triplet node is
augmented by a single node potential representing the bias
caused by the prevalence of each triplet in the dataset.

ability of a triplet p(t|b, I) where t = (xs, xp, xo) consists
of the subject, predicate and object labels, b = (bs, bo) is the
pair of box proposals and I is the image. However, provid-
ing a separate output for each triplet combination requires a
large number of outputs and a correspondingly large number
of parameters in the network; learning such a network would
require a large training set. Instead of providing a separate
output for each triplet, our neural network outputs a low-
rank non-negative tensor decomposition, given each image
and pair proposal as input. This limits the number of out-
puts to be proportional to the sum (instead of product) of the
number of values that each variable in the triplet can take.
Further, tensor decomposition structure enables computing
gradient of loss without construction of full tensor which
makes training efficient.

The frequency of appearance of the triplets, independent
of the proposed bounding box pair, provide a useful bias for
improving performance. To incorporate information about
the unconditional frequency of appearance of each triplet,
we multiply each conditional output with a bias where the
bias is represented using a three dimensional non-negative
tensor of triplet frequencies. This gives a simple conditional
random field representation for the conditional distribution
of triplets p(t|b) = ψc(t|b)ψu(t) where ψc is the condi-
tional potential function represented using a neural network
that outputs low-rank non-negative decomposition, and ψu

is the unconditional potential function to capture the fre-
quency bias, represented using a three dimensional tensor.

In addition to multi-modality, previous studies (Lu et al.
2016; Krishna et al. 2017) have shown that there exists miss-
ing annotation problem in all visual relationship datasets, i.e.
a relationship is annotated in certain examples and the same
relationship is not annotated in other examples though it ex-
ists; for example, it is more likely that pairs of boxes close
to each other catch the attention of the annotator than pairs
which are farther apart. We model that with probability of a
pair of boxes being selected by the annotator for annotation.

The complete process of generating the relation triplets
given an image and a set of detected boxes can be repre-
sented with a probabilistic model shown in Figure 2. In sum-
mary, we make following contributions:

• We propose a novel way of learning higher order triplet
distributions in the form of their low rank tensor decom-
positions. This representation takes form of the mixture of
rank-1 tensors and thereby is able to represent multimodal

distributions.

• Our formulation enables efficient computation of gradient
of the log likelihood and errors can be backpropagated
without forming the higher order tensor.

• We further augment the conditional triplet distribution
with relation frequency prior and probability of annotat-
ing a object proposal pair which together outperform the
state-of-the-art score on visual relationship detection.

Related work

We need compact form representation of joint distribution of
triplets and tensor decompositions are a natural alternative
to represent such higher-order functions. There has been a
recent surge in using tensor decompositions in various ma-
chine learning problems (Anandkumar et al. 2014), (Janza-
min, Sedghi, and Anandkumar 2015), (Wrigley, Lee, and
Ye 2017). Low rank representation has been shown to per-
form reasonably well particularly when the size of the exact
model is large. For the task of visual relationship detection
in (Jae Hwang et al. 2018), the empirical distribution of vi-
sual relationships in the dataset was approximated with low
rank Tucker decomposition and used as a prior for regular-
ization during learning. In contrast to this work, we use ten-
sor decomposition to represent the conditional probability
distribution of the relation triplets.

Over the last few years, a number of different approaches
have been proposed for the task of recognizing relation-
ships from the image. Most of these methods can be divided
into three broad categories. One line of work uses structured
prediction techniques by message passing among the three
triplet variables (Dai, Zhang, and Lin 2017; Xu et al. 2017;
Liang, Lee, and Xing 2017; Zhu and Jiang 2018). Structured
prediction techniques are mainly useful as the predicate dis-
tribution conditioned on the object labels is highly predic-
tive as was shown in (Dai, Zhang, and Lin 2017). They take
into account within triplet dependencies by message passing
among object and predicate labels.

Another line of work introduces extra information either
in the form of word vector embeddings of the object la-
bels or use knowledge from a large corpus (Lu et al. 2016;
Yu et al. 2017; Zhang et al. 2017a; 2019a). Learning from a
large external knowledge has been shown to be an effective
strategy to tackle the missing data problem (Yu et al. 2017).
Other prevalent methods (Lu et al. 2016; Zhang et al. 2019a;
2017a; Yu et al. 2017) have used a combination of visual
and linguistic features to detect relationships between ob-
jects and showed the utility of word vector embeddings.
With much work done, it is now well established that the use
of word vectors is substantially helpful in recognizing rela-
tionships (Lu et al. 2016; Yu et al. 2017; Zhang et al. 2017a;
2019a).

A third line of work uses rank-based loss functions to en-
courage similar relations to be close to each other in the
learnt feature space (Liang et al. 2018; Zhang et al. 2019a).
Most recently (Zhang et al. 2019a) used triplet loss to match
the visual and semantic features in a projected shared space
for better discriminative power.
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In this work we look only from the visual perspective
without any sort of external information. Instead, we try to
capture the multimodal properties of the triplet distribution
and to model the generative annotation process.

Preliminaries: Tensor decomposition

Tensors are generalizations of matrices to higher dimensions
and hence a tensor can be called a multidimensional array.
A order-d tensor T is an element in RN1×N2···×Nd with Nk

possible values in kth dimension. Analogous to SVD in ma-
trices, tensors can be represented in succinct form with ten-
sor decompositions. In CANDECOMP / PARAFAC (CP)
decomposition, any tensor T can be represented as a linear
combination of outer products of vectors as

T =
R∑

r=1

wrφr,1 ⊗ φr,2 ⊗ · · · ⊗ φr,d (1)

where ⊗ is the outer product operator, each φr,k is a vec-
tor in RNk for k ∈ {1, 2, . . . , d} and the term φr,1 ⊗ φr,2 ⊗
· · ·⊗φr,d is a rank-1 tensor. wr is a scalar co-efficient which
can be absorbed in one of the vectors φr,k. Tensor value at
index (i1, i2 . . . , id) is given by

∑R
r=1 wrφ

i1
r,1φ

i2
r,2 · · ·φidr,d.

The smallest R for which an exact R-term decomposition
exists is the rank of tensor T and the decomposition (1) is its
R-rank approximation of the tensor. With this compact rep-
resentation a tensor T withN1 ×N2 · · · ×Nd entries can be
represented with R vectors for each variable in T i.e. with
R(N1+N2+· · ·+Nd) entries. More information about ten-
sor decompositions can be found in (Kolda and Bader 2009;
Rabanser, Shchur, and Günnemann 2017).

With low rank assumption, we can represent any proba-
bility distribution of multiple variables in tensor form of (1),
provided we constrain the values of T to be non-negative
and normalize it such that sum of all entries of T is 1. We
call such a normalized non-negative tensor a probability ten-
sor. Note that the form of the probability tensor in (1) is
more like mixture distribution of discrete variables and thus
is suitable for modeling multimodal triplet distribution.

Formulation

Like other recent works (Dai, Zhang, and Lin 2017; Liang,
Lee, and Xing 2017; Zhu and Jiang 2018), we treat task of
visual relationship detection with a two stage pipeline where
the boxes are given by a separately trained object detector,
Faster-RCNN (Ren et al. 2015) and a classifier predicts the
relationships between each pair of the boxes including a null
relation for box pair that do not participate in a relation.

Formally given an image I with N objects represented
by rectangular bounding box proposals, we have N(N − 1)
relations between each pair of the objects. For each pair of
subject and object box proposal (Bs = bs, Bo = bo), subject
label Xs = xs, predicate label Xp = xp and object label
Xo = xo form a triplet instance.

Conditional triplet distribution

We use two sources of information for modeling the con-
ditional triplet distribution P (Xs, Xp, Xo|Bs, Bo, I). The

first source is information available in the image and bound-
ing box pair. The second is the prior distribution of triplets,
not conditioned on the image. We represent the conditional
triplet distribution as a product of the two potential functions
P (Xs, Xp, Xo|Bs, Bo, I) = ψc(Xs, Xp, Xo|Bs, Bo, I) ·
ψu(Xs, Xp, Xo) to give a simple conditional random field.
ψu(Xs, Xp, Xo) is constructed from the training set. It

is a order-3 tensor representing the number of times each
triplet occurs in the dataset. It serves as a frequency bias to-
wards most frequently occurring relations. ψu(Xs, Xp, Xo)

∈ R
|Xo|×|Xp|×|Xo| (for |Xo| object and |Xp| predicate

classes). The value at ψu(i, j, k) is the number of times
triplet (xis, x

j
p, x

k
o) occurs in the training set where xis is the

ith subject class, xjp is the jth predicate class and xko is the
kth object class. It turns out that, only ∼ 1% of the tensor
constructed from the training set has non-zero entries. Mul-
tiplication with ψc will cause all unseen relation triplets to
vanish. To address this issue, we smoothen ψu by adding 1
to all entries. We then normalize ψu by dividing with its sum
to get prior probability of occurrence of all relation triplets.
ψc(Xs, Xp, Xo|Bs, Bo, I) ∈ R

|Xo|×|Xp|×|Xo| is also an
order-3 tensor i.e. given an image and a pair of boxes,
ψc gives probability of triplet labels. We assume that it is
well approximated with a low rank tensor. Our assump-
tion stems from the observation that out of all possible re-
lationships, only certain specific relationships tend to oc-
cur frequently given the underlying objects. The sparsity
of prior ψu further strengthens our low rank assumption
of the tensor. As the rank of any tensor cannot exceed the
number of non-zero entries in the tensor, assuming that the
tensor is low rank appears to be reasonable. Consequently,
we use a mixture of independent rank-1 tensors to repre-
sent ψc(Xs, Xp, Xo|Bs, Bo, I), allowing us to effectively
capture richer multimodal triplet distributions with a rea-
sonably compact model. We represent the order-3 tensor
ψc(Xs, Xp, Xo|Bs, Bo, I), in CP-decomposition form as

ψc(Xs, Xp, Xo|Bs, Bo, I) =

R∑
r=1

wrφrs(Xs|Bs, Bo, I)

⊗ φrp(Xp|Bs, Bo, I)⊗ φro(Xo|Bs, Bo, I)).

(2)

For notational convenience, we omit the conditioning on
the image and bounding boxes in φra from here onwards,
where φra(Xa) is the rth vector of the variable Xa for each
a ∈ {s, p, o}. We parameterize ψc(Xs, Xp, Xo|Bs, Bo, I)
with a deep neural network and learn it from the data. Given
an image and a pair of bounding boxes, the neural network
outputs a set of R vectors sa,r for a ∈ {s, p, o}. Since po-
tential functions are required to be non-negative, we repre-
sent φra(i) = es

i
a,r so that the tensor decomposition is non-

negative. Then, we normalize the output tensor by dividing
with the sum of all tensor entries to make it a probability
tensor.

Without loss of generality, we assume the weights wr in
eqn (2) can be absorbed into the vectors φra and hence there
no need for their separate representation. Our representa-
tion reduces the number of outputs required to represent the
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Figure 3: An image is input to a neural network (VGG16) to produce an intermediate feature map. For each pair of boxes
from the detector, the corresponding features are ROI-pooled and fed through three separate branches of fully connected layers
each for subject, predicate and object. Each branch outputs a set of R vectors which together form the mixture of independent
triplet distributions(ψc) capturing the multimodal distribution. ψc is multiplied with unconditional relation prior ψu constructed
from the training set to give P (Xs, Xp, Xo|Bs, Bo, I). During training, construction of ψc is not required and errors can be
backpropagated from the set of R vectors.

function from |Xs|×|Xp|×|Xo| to R(|Xs|+|Xp|+|Xo|). A
smaller sized output corresponds to a smaller number of
model parameters, making it possible to learn the model
from less data. Finally, prior ψu(Xs, Xp, Xo) is multi-
plied elementwise with ψc(Xs, Xp, Xo|Bs, Bo, I) to get the
conditional triplet distribution P (Xs, Xp, Xo|Bs, Bo, I) =
ψc(Xs, Xp, Xo|Bs, Bo, I)ψu(Xs, Xp, Xo). Note that due
to low rank assumption of the ψc, the network may output
spurious triplets which may not be seen in the training set.
Probablities of such spurious triplets are pushed down by
multiplication with the prior.

Training Loss

We learn the triplet distribution P (Xs, Xp, Xo|Bs, Bo, I)
= ψc(Xs, Xp, Xo|Bs, Bo, I) ψu(Xs, Xp, Xo) using a deep
neural network. As both ψc and ψu are normalized to
sum to 1, they both can be trained separately by treating
ψc(Xs, Xp, Xo|Bs, Bo, I) as a conditional distribution and
ψu(Xs, Xp, Xo) as a prior distribution. This type of learn-
ing is often called piecewise training of the conditional ran-
dom field (Lin et al. 2016). The prior distribution is learned
simply by computing the frequencies of the triplets in the
training set.

For conditional distribution ψc(Xs, Xp, Xo|Bs, Bo, I),
we use a neural network that outputs a set of vectors that
correspond to the tensor decomposition, given an image
and pair of bounding boxes. The network outputs a set of
R vectors each for subject, predicate and object for a to-
tal of 3R vectors. Each of these R vectors are indexed by
i, j, k for subject, predicate and object categories respec-
tively. Let sa,r be the final layer output of the network for
each a ∈ {s, p, o}. We exponentiate sa,r and then normalize
to make it a probability tensor y. (i, j, k)th entry of y can be
computed as

(3)yi,j,k =

∑R
r=1 e

sis,res
j
p,res

k
o,r

∑
l,m,n

∑R
r=1 e

sis,res
j
p,res

k
o,r

.

For training such a network, we use cross-entropy loss as it is

a classification problem. But unlike the usual case, the loss is
computed between tensors instead of vectors. If t representss
the target one-hot tensor (tensor that is zero everywhere, ex-
cept at a single tuple index which has value 1, representing
the indicator function of the tuple) and y output probability
tensor, the cross-entropy loss function is

(4)L = −
∑
i,j,k

ti,j,k log(yi,j,k).

A simple brute force method to compute eqn (4) is to fully
construct tensor y from the network output and then com-
pute loss. But this would significantly slow down training.
Instead we compute the derivative of loss with respect to fi-
nal layer output sa directly without constructing probability
tensor y.

Consider the derivative of the loss w.r.t sis,r′ where sub-
script s indicates subject variable Xs, r′ is one of the R vec-
tors and i is the ith index out of |Xs| indices. For an observed
tuple (i′, j′, k′), the derivative of the Loss L with respect to
sis,r′ is given by:

∂L

∂sis,r′
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

e
si
s,r′ ∑

m′ e
sm

′
p,r′ ∑

n′ e
sn

′
o,r′

Z i �= i′

e
si
s,r′ ∑

m′ e
sm

′
p,r′ ∑

n′ e
sn

′
o,r′

Z

− e
si
s,r′+s

j′
p,r′+sk

′
o,r′

∑R
r=1 e

sis,r+s
j′
p,r+sk

′
o,r

i = i′

where

(5)Z =
∑
l,m,n

R∑
r=1

es
l
s,r+smp,r+sno,r

is the partition function.
Naive computation of Z by summing over all entries of

tensor y may significantly slow down training. Instead we
can compute the partition function efficiently in time linear
with class size of each variable X , by simply pushing the
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outer sum
∑

l,m,n inside and only evaluate it over the corre-
sponding univariate vectors i.e.

(6)Z =

R∑
r=1

∑
l

es
l
s,r

∑
m

es
m
p,r

∑
n

es
n
o,r .

The derivatives with respect to the predicate and object vari-
able outputs esp,r′ and eso,r′ are computed in a similar way
and backpropagated to optimize the network.

Modeling missing annotations

The problem of missing annotations in relationship detec-
tion datasets is well known (Lu et al. 2016; Krishna et al.
2017). A relationship is annotated in certain examples and
the same relationship may not be annotated in other exam-
ples though it exists. We have N(N − 1) pairs for N ob-
ject boxes and only few of them are annotated with rela-
tions, rest of the pairs are considered null. Some of these
null pairs may have valid relations but are not annotated.
This confuses the model during training as examples with
similar features are considered valid as well as null. We
handle this problem by training P (Xs, Xp, Xo|Bs, Bo, I)
with only annotated positive relations. We train a separate
binary variable with equal number valid and null exam-
ples to give P (Xsel|Bs, Bo, I), probability of annotation
of box pair. At test time, P (Xsel|Bs, Bo, I)) is multiplied
with P (Xs, Xp, Xo|Bs, Bo, I)) before final ranking. With
this technique, triplet network produces reliable values for
valid relations and the unreliable values produced for box-
pairs with null relation are brought down by multiplication
with P (Xsel|Bs, Bo, I).

The final scoring function fspo for each of the tuple
(Xs, Xp, Xo, Bs, Bo) is given by the full posterior of the
relation triplet and pairs of bounding boxes for a given im-
age.

(7)P (Bs, Bo|I)P (Xs, Xp, Xo|Bs, Bo, I)P (Xsel|Bs, Bo, I)

where P (Bs, Bo|I) is from detector output.

Network Architecture

Figure (3) shows the workflow of our model. We use
VGG16 (Simonyan and Zisserman 2014) as backbone of
our network initialized with pretrained weights on Visual
Genome for detection with freezed conv1 1-conv5 3 layers
and train it with the ground truth gold proposal boxes. We
feed the network with the image to get a global feature map
of the image from which subject, predicate and object fea-
tures are ROI-Align pooled w.r.t their corresponding box re-
gions. The predicate feature is pooled from the union-box of
the subject and object boxes. After ROI-pooling, visual fea-
tures are fed through three separate branches each for sub-
ject, object and predicate.

Parallelly, we include 2-channel spatial binary mask fea-
ture of size 2 × 64 × 64 as in (Dai, Zhang, and Lin 2017).
Each channel is a matrix with 1 in bounding box region of
object (scaled to size 64 × 64) and 0 everywhere. This fea-
ture is passed through 2 convolution layers and then a fully
connected layer to get a 512-dim spatial feature which is
concatenated with ROI-pooled predicate feature. Each of the

subject, predicate and object branches has two fully con-
nected layers of size 4096 with final layer output size of
R× |Xa| for a ∈ {s, p, o}.

This ROI-pooled predicate feature concatenated with spa-
tial feature also serves as the input for binary classifier for
Xsel with a single hidden layer of 4096. We first train the
triplet network with only annotated positive relationships.
We then freeze weights of triplet network and trainXsel with
equal number of positive and negative examples.

Implementation details: We implement our method on
pytorch, a mainstream deep learning library. We set the
learning rate to 1e-4 and use SGD as optimizer. Due to the
summation in the gradient term, there is an exploding gra-
dient problem. To fix this, we clip the gradient based on the
total norm of all the learnable weights. The norm value for
gradient clipping is set at 20. We then train with propos-
als from the detector. We sample atmost 4 proposals for ev-
ery ground truth box proposal with IOU overlap of atleast
0.5. All the layers before ROI-pooling are initialized by pre-
trained weights from the detector. During inference, we fil-
ter out the overlapping boxes from the detector by enforcing
Non-Maximum Suppression (NMS) constraints with NMS
threshold set at 0.71.

Computation time: With our low-rank tensor formula-
tion of ψc, we are able to train the triplet network with VRD
dataset at 6 min/epoch and VG dataset at 90min/epoch for
7 epochs. Backpropagation on a single image takes 0.21sec
on average. Inference for a single image takes around 0.57s
with gold proposals. Training time per image is substantially
low compared to its inference time as we do not construct
full 3D tensor ψc during training.

Experiments

We evaluate our method on the Visual Genome and the Vi-
sual Relationship Detection datasets.

VG: The Visual Genome dataset was released by (Kr-
ishna et al. 2017). Unfortunately there is not a single version
of Visual Genome that is consistently used by all previous
works on this task. To show better performance of our model
across splits of VG, we use two different versions in our ex-
periments, VG200 (Zhang et al. 2017a) and VG150 (Xu et
al. 2017) for comparison with other recent works. VG200
has 200 object and 100 predicate categories. VG150 has 150
object and 50 predicate categories. We conduct our ablation
studies on VG150.
VRD: The VRD dataset was released by (Lu et al. 2016)
with standard train/test split 4000 and 1000 images respec-
tively. There are 100 object and 70 predicate categories with
6, 672 unique relationships. On average there are 24.25 re-
lationships per object category.

Evaluation tasks: Consistent with prior works, we report
results on two tasks, Relationship Detection and Phrase De-
tection. In both the tasks we are given an input image and
required to output top-50/100 relation triplets with the corre-
sponding bounding boxes for each pair. In Relationship de-
tection, a prediction is considered correct if all three triplet
labels (s,p,o) are correctly recognized, and the intersection

1https://github.com/dmharoon/VRD-Tensor-Decompostion
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Relationship Phrase Relationship detection Phrase detection
mult preds (free k) k=1 k=10 k=1 k=10

Recall at 50 100 50 100 50 100 50 100 50 100 50 100
w/ proposals from (Lu et al. 2016)

Language Cues (Plummer et al. 2017) 16.89 20.70 15.08 18.37 - - 16.89 20.70 - - 15.08 18.37
VRD (Lu et al. 2016) 17.43 22.03 20.42 25.52 13.80 14.70 17.43 22.03 16.17 17.03 20.42 25.52

LargeVRU (Zhang et al. 2019a) 19.18 22.64 21.69 25.92 16.08 17.07 19.18 22.64 18.32 19.78 21.69 25.92
Ours 24.08 28.29 29.17 34.33 17.67 18.64 24.08 28.29 20.80 22.13 29.17 34.33

w/ better proposals
L distilation(Yu et al., 2017) 22.68 31.89 26.47 29.76 19.17 21.34 22.56 29.89 23.14 24.03 26.47 29.76
Zoom-Net (Yin et al. 2018) 21.37 27.30 29.05 37.34 18.92 21.41 - - 24.82 28.09 - -

CAI + SCA-M (Yin et al. 2018) 22.34 28.52 29.64 38.39 19.54 22.39 - - 25.21 28.89 - -
LargeVRU (Zhang et al. 2019a) 26.98 32.63 32.90 39.66 23.68 26.67 26.98 32.63 28.93 32.85 32.90 39.66
MF-URLN (Zhan et al. 2019) 23.9 26.8 31.5 36.1 23.9 26.8 - - 31.5 36.1 - -

Ours 27.09 34.93 32.29 41.28 24.20 25.87 27.09 34.93 28.53 30.92 32.29 41.28

Table 1: Comparison with state of the art methods on VRD dataset.

Method Relation Detection Phrase Detection
R@50 R@100 R@50 R@100

VTranseE (Zhang et al. 2017a) 5.5 6.0 9.5 10.5
PPRFCN (Zhang et al. 2017b) 6.0 6.9 10.6 11.1

DSL (Zhu and Jiang 2018) 6.8 8.0 13.1 15.6
VSA (Han et al. 2018) 6.0 6.3 9.7 10.0

MF-URLN (Zhan et al. 2019) 14.4 16.5 26.6 32.1
Ours (k=1) 16.74 18.69 29.32 33.42

Ours (free k) 18.52 21.92 31.58 38.07

Table 2: Comparison with state-of-the-art on VG200 dataset

over union (IOU) between the predicted and the ground-
truth boxes is at least 0.5. In Phrase detection the prediction
is correct if triplet labels match and IOU of the union of the
two predicted boxes with the union of ground-truth boxes
is at least 0.5. In line with previous works (Yu et al. 2017;
Zhang et al. 2019a), we consider k relationship predictions
per object box pair before taking the top-50/100 predic-
tions per image. We report for k = 1, 10 and free k (k
is cross-validated). For the ablation studies, we fix ground
truth boxes as object proposals and report recall on the
Phrase Classification task, which masks errors from detec-
tor. We report our ablation studies on VG150 (Xu et al. 2017)
dataset.

Results

Table 1 shows results on VRD dataset. The quality of bound-
ing box proposals from the detector have significant effect
on relationship recall results. For a fair comparison, we di-
vide the results in two parts based on the detection box pro-
posals used. We compare previous works which use test set
detection proposals from (Lu et al. 2016) and also report re-
sults with improved proposals from the detector, generated
in a manner similar to (Zhang et al. 2019a).

Our method shows significant improvement over the prior
state-of-the art methods with proposals from (Lu et al.
2016). On relationship detection, there is 5% point increase
over the previous best results. These results are equally well
translated to the task of phrase detection where our model is
able to achieve nearly 8% points improvement. As the pro-
posals used are same, we can infer that the improvement is
directly from better relationship recognition. With improved

Method PhrCls (free k) PhrCls (k=1)
R@50 R@100 R@50 R@100

Freq-Overlap (Zellers et al. 2018) 39.0 43.4 32.3 32.9
Message Passing (Xu et al. 2017) 43.4 47.2 34.6 35.4

Motifnet (Zellers et al. 2018) 44.5 47.7 35.8 36.5
RelDN (Zhang et al. 2019b) 48.9 50.8 36.8 36.8

Ours 47.54 54.69 35.60 37.68

Table 3: Comparison with state-of-the-art on VG150 dataset

proposals, there is further improvement in the score.
The results on Visual Genome is shown in Tables 2 and 3.

It is not clear value of k used in prior works for VG200
dataset. Hence we report our results for k = 1 and free-k.
Our method performed best in both the tasks in both Recall-
50/100. With k=1, we outperform the most recent state-of-
the-art on VG200 dataset (Zhan et al. 2019). by a margin
of 2.3%. and with cross validated k, we achieve 4.5% im-
provement over state-of-the-art for Relation detection task
at Recall-50. Similarly, there is significant improvement in
Phrase Classification for VG150 split. It should be noted that
in both datasets, Recall-100 has significantly higher score.
This indicates that multimodal distribution is perhaps bet-
ter captured with our model as our model optimizes to push
higher scores for multiple valid relations which is reflected
in Recall score with k > 1. It should be noted that our
method performed very well for the main evaluation metric
that we are interested in, where multiple predictions from
each bounding box pair are allowed, supporting our claim of
capturing multimodal distribution of triplets.

Ablation Study and Analysis of Results

The most distinct part of our model is the mixture distribu-
tion model. As the representative power of mixture models
increases with increasing mixing components, we first eval-
uate our model with varying Rank of tensor decomposition
or number of mixing components of the model. To evalu-
ate the effectiveness of each of these components, we report
phrase classification results on VRD and VG150 datasets.
Phrase classification isolates the factor of object localiza-
tion accuracy by using ground truth boxes, meaning that
it focuses more on the relationship recognition ability of a
model. The first 5 models are tested without the dataset prior
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Figure 4: Most probable results predicted by our model.
Green shade indicates a match with ground truth labels.
Matched results indicate strong presence of multimodality
and the triplets generated that do not match are mostly rea-
sonable.

Figure 5: Results of model with prior indicate it helps in
removing spurious triplets. without prior with prior

or Xsel variable to analyze the relative gains of increasing
the number of mixing components. We further evaluate the
effect of Xsel variable and dataset prior factor with addition
to Rank-5 model. The ablation results are shown in Table 4.
Both the datasets show significant improvement when the
rank is increased from rank-1 to rank-5. Note that rank-1 ten-
sor decomposition is equivalent to independent distributions
of triplets and rank-5 to a mixture of 5 components. From
rank-1 to rank-5, recall@50 score with multiple predictions
per box pair increases by 5% points in the VG dataset and
by 2% points in the VRD dataset. This shows that tensor
decomposition structure is better able to capture the multi-
modal triplet distribution. Clearly, gain in score with multi-
ple predictions (k > 1) is better than with single prediction
(k = 1) and with recall@100 is better than recall@50 across
datasets. This result is in line with our motivation of optimiz-
ing the model for multiple relations instead of one. With a
rank-1 independent distribution, the model is optimized for
a single top-prediction, hence recall@50 with k = 1 has
similar score across ranks 1 to 5. With mixture distribution
the model is optimized for a set of valid predictions, hence
recall@50/100 score for k > 1 increases substantially with
increasing rank. As we further increase the mixing compo-
nents, there is a small reduction in score. From this, we can
infer that most conditional triplet distributions have a small
number of modes and increasing the rank further just in-
creases number of parameters in the model. Further includ-
ing the Xsel variable and dataset prior to the Rank-5 model
improves the score substantially supporting our assumption
of strong bias towards a small set of relationships.

Dataset Ablation model
Phrase classification

mult preds (free k) single pred (k=1)
R@50 R@100 R@50 R@100

VG150

Rank-1 37.35 44.49 32.16 34.30
Rank-2 42.53 47.52 33.64 35.26
Rank-3 41.89 48.35 33.89 35.31
Rank-4 41.74 48.22 33.29 35.14
Rank-5 42.71 48.95 32.21 35.35
w/ Xsel 46.25 53.05 34.57 36.57

w/ Xsel & prior 47.54 54.69 35.60 37.68

VRD

Rank-1 39.01 46.3 31.12 33.04
Rank-2 41.29 51.58 33.43 35.16
Rank-3 40.28 49.5 32.46 34.96
Rank-4 39.63 49.64 32.03 33.52
Rank-5 40.47 50.75 32.59 34.06
w/ Xsel 42.89 52.47 33.51 35.78

w/ Xsel & prior 44.02 53.99 34.14 36.07

Table 4: Ablation results on the task of phrase classification.

Qualitative Results:

Figure 4 shows some of the qualitative results of our model.
From the overlap between ground-truth and predicted labels,
it can be seen that the conditional distribution is at least bi-
modal if not tri-modal. Also, the triplets that are generated
by the models but are not annotated are mostly reasonable.

In Figure 5, we visualize results without prior multipli-
cation. We see multiple cases of erroneous phrases such
as ‘street-has-shirt’, ‘street-wear-bike’, and ‘jacket-wear-
glasses’ that are unlikely to appear in common usage. In-
terestingly, such spurious triplets are pushed down from the
top of the output lists after multiplication with prior. How-
ever, non-spurious triplets that do not appear in the train-
ing set may also be pushed down; using external language
datasets may improve performance by providing improved
usage prior.

Conclusion

We observe that the conditional distribution of relation
triplets given input bounding box pair in relation detec-
tion tasks is often multimodal. We propose use of mixture
of rank-1 tensors for modeling the conditional distribution.
This enables the model to capture multimodal properties of
the distribution with a reasonably small number of model pa-
rameters while being efficiently trainable. We further model
the generative labeling process to handle missing annota-
tions and remove spurious triplets with principled incorpo-
ration of dataset prior. We show that each of these improve
performance on the task of visual relationship recognition.
Further improvements may include a language prior from
external datasets and with our tensor-decomposition model,
it should be possible to do graph inference with higher-order
triplet potential over all the boxes in the image.
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