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Abstract

Convolutional neural networks (CNNs) have become a key
asset to most of fields in Al Despite their successful per-
formance, CNNs suffer from a major drawback. They fail to
capture the hierarchy of spatial relation among different parts
of an entity. As a remedy to this problem, the idea of cap-
sules was proposed by Hinton. In this paper, we propose the
SubSpace Capsule Network (SCN) that exploits the idea of
capsule networks to model possible variations in the appear-
ance or implicitly-defined properties of an entity through a
group of capsule subspaces instead of simply grouping neu-
rons to create capsules. A capsule is created by projecting an
input feature vector from a lower layer onto the capsule sub-
space using a learnable transformation. This transformation
finds the degree of alignment of the input with the properties
modeled by the capsule subspace.

We show that SCN is a general capsule network that can
successfully be applied to both discriminative and genera-
tive models without incurring computational overhead com-
pared to CNN during test time. Effectiveness of SCN is eval-
uated through a comprehensive set of experiments on su-
pervised image classification, semi-supervised image classi-
fication and high-resolution image generation tasks using the
generative adversarial network (GAN) framework. SCN sig-
nificantly improves the performance of the baseline models
in all 3 tasks.

1 Introduction

In the recent years, convolutional neural networks (CNNs)
have become a key asset to most of fields in Al. Various tasks
in computer vision, reinforcement learning, natural language
and speech processing systems have achieved significant im-
provement by using them. New applications like music gen-
eration (Dong et al. 2018), visual text correction (Mazaheri
and Shah 2018), online fashion recommendation (Han et al.
2017) are founded on the feature learning capability of CNN
architectures. Despite their successful performance, CNNs
suffer from a major drawback. They fail to capture the hier-
archy of spatial relation among different parts of an entity.
As a remedy to this problem, Hinton et al. introduced the
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idea of Capsule Networks (Hinton, Krizhevsky, and Wang
2011). Capsule networks received a flurry of attention after
achieving the state-of-the-art performance on image classifi-
cation (Sabour, Frosst, and Hinton 2017), text classification
(Zhao et al. 2018), action detection and localization (Duarte,
Rawat, and Shah 2018), image segmentation tasks (Lal.onde
and Bagci 2018), etc. Moreover, many efforts have been
made to improve the structure of capsule networks (Hinton,
Sabour, and Frosst 2018) (Bahadori 2018)(Zhang, Edraki,
and Qi 2018) as a new generation of deep neural networks.

A capsule is defined as a group of neurons that can ul-
timately model different properties such as pose, texture or
deformation of an entity or a part of an entity. Each layer
of a capsule network consists of many capsules. In a well-
trained capsule network, activation vector of each capsule
represents the instantiation parameters of the entity and the
length of the capsule scores the presence of that feature or
part of that entity In this paper, while we still follow the
main definition of capsules, we propose Subspace Capsule
Networks (SCNs), which build capsules based on the degree
of relevance of an input feature vector to a group of learned
subspaces . In SCNs, corresponding to each entity or part
of that entity, a specific capsule subspace is learned. Then
a capsule is created by projecting the input feature vector
onto the capsule subspace using a learned transformation,
defined based on the basis of the corresponding capsule sub-
space. Intuitively speaking, a capsule subspace captures the
variation in visual properties; like appearance, pose, texture
and deformation; of an object or an implicitly defined feature
of that object The length of the output vector of a subspace
capsule represents the degree of alignment of an input with
the properties modeled by that subspace. Hence, if a sub-
space capsule has a large activity vector, it means that the
input feature vector is highly related to the entity modeled
by that subspace and vice versa. This form of creating sub-
space capsules makes it independent of any form of routing
required in capsule network introduced in (Sabour, Frosst,
and Hinton 2017) or (Hinton, Sabour, and Frosst 2018). Due
to this property, SCN is easily scalable to large network ar-
chitectures and large datasets.

Closest to our work is the CapProNet model, proposed
by (Zhang, Edraki, and Qi 2018), in which authors apply



subspace-based capsules merely in the last layer of an im-
age classification network and only require capsule length
for prediction. In the classification task with N classes, a
group of capsule subspaces {Si,...Sy} are learned. Then
the capsule corresponding to each class is created by orthog-
onal projection of the input feature vector from backbone
model onto the learned subspace. The input image belongs
to the class with the largest capsule length. In SCN, unlike
CapProNet we are interested in both subspace capsules and
norm of capsules.
The summary of our contributions is as follows:

e The proposed SCN is a general capsule model that
can be used without any change in the formulation
in both generative models as well as discriminative

models.

SCN is computationally efficient with no computa-
tional overhead during test phase and a negligible
computational overhead with help of the method in-
troduced in Section (5) during training, compared to
the baselines.

When applied in generator model of a GAN, SCN
consistently improves the relative FID score of gen-
erated samples by at least 20% in all of our experi-
ments.

SCN achieves state-of-the-art performance in semi-
supervised classification of CIFARI0 and SVH
datasets and improves the relative error rate of the
baseline models by at least 23% for these 2 datasets.

SCN is easily scalable to large architectures and
datasets like ImageNet. When applies on the last
block of the Resnet model, it decreases the Top-1 er-
ror rate by 5% relatively.

The rest of the paper is organized as follows. We first briefly
review some of the related studies with capsule networks
and GAN models in Section 2. Subspace Capsule Network
is formally presented in Section 3 followed by studying the
effects of SCN on the GAN framework in Section 4. Imple-
mentation details are discussed in Section 5. We evaluate
the performance of SCN in Section 6 and the conclusion is
presented in Section 7.

2 Related Work

The idea of capsule networks was first introduced in Trans-
forming auto-encoders, where Hinton et al. pointed out that
CNNSs cannot achieve viewpoint invariance just by looking
at the activity of a single neuron, and a more complex struc-
ture like a capsule is necessary. Output of a capsule is a vec-
tor that summarizes information about an entity or part of
that entity. The main advantages of capsule networks is that
the part-whole relation can be captured through the capsules
of consecutive layers. (Sabour, Frosst, and Hinton 2017) de-
fine a capsule as a group of neurons, whose orientation of its
output vector represents the instantiation parameters of a vi-
sual entity modeled by that capsule and its length represents
the probability of entity’s existence. They use dynamic rout-
ing between capsules to capture the part-whole relationship.
Dynamic routing works based on measuring the agreement
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Figure 1: MNIST samples are generated by varying each di-
mension of capsules of first layer by a value in the range of
[—2.5,2.5]

of two capsule in consecutive layers using scalar product of
their capsule vectors. The subsequent paper (Hinton, Sabour,
and Frosst 2018) extends the idea of capsule by separating it
into a 4 x 4 pose matrix and an activation probability. Dy-
namic routing is updated to EM-routing algorithm, which
is a more efficient way in measuring the agreement between
capsules. The new capsule structure leads to the state-of-the-
art performance in classification task of SmallNorb dataset.
(Singh et al. 2019) use capsule idea in low-resolution image
recognition. The idea of 3D capsules introduced in (Duarte,
Rawat, and Shah 2018) to tackle action detection and local-
ization problem. CapProNet (Zhang, Edraki, and Qi 2018)
proposes learning a group of capsule subspaces in the final
layer of a CNN for the image classification task. Capsule
network was also applied on medical image segmentation
task by (LaLonde and Bagci 2018) and achieve competitive
results based on the convolution-deconvolution capsule net-
work structure.

The common point among all of these studies is that they
all try to solve a discriminative task, like classification, im-
age segmentation, and action detection using a capsule net-
work. There have been a few attempts in using the capsule
architecture in a generative model. CapsuleGAN (Jaiswal et
al. 2018) applies capsule network in the discriminator of
a GAN to improve the quality of generated samples and
CapsPix2Pix (Bass et al. 2019) uses convolution capsules
to synthesise images conditioned on segmentation labels to
pre-train segmentation models for the medical image seg-
mentation task. Since the introduction of GANs by (Good-
fellow et al. 2014), many efforts have been made to improve
the stability of training and quality of generated samples.
Among them Wasserstein loss with gradient penalty (Ar-
jovsky, Chintala, and Bottou 2017)(Gulrajani et al. 2017)
and Spectral Normalization (Miyato et al. 2018) success-
fully stabilize the training process by enforcing Lipschitz
continuity on discriminator and ProgressiveGAN (Karras et
al. 2017) and BigGAN (Brock, Donahue, and Simonyan
2018) generate high-quality samples by improving the ar-
chitecture.

In this paper, we exploit the inherent property of subspace
capsules, which is modeling the variation in appearance of a
visual entity in a GAN model, to produce diverse and high-
quality image samples. We also show the superiority of our
proposed model in semi-supervised image classification us-
ing the GAN framework and also supervised image classifi-



cation.

3 Subspace Capsule Networks

In this section, we formalize the idea of subspace capsule
networks (SCNs) by presenting their main components. In
each layer, a SCN learns a group of capsule subspaces, each
of which captures possible variations of an implicitly defined
visual entity. An input from the lower layer is projected onto
each of these capsule subspaces to create new capsules. If
the input and a capsule subspace are related; for instance,
the input is a part of the entity represented by a capsule sub-
space; the output vector (projection of the input vector on
to the the corresponding subspace) will be large. Moreover,
the orientation of a capsule vector represents the properties
of that entity.

Since the key component of a SCN is finding the level of
alignment of input feature vectors and capsule subspaces, we
elaborate on the proposed projection matrix and formulate
subspace capsules. Then, capsule activation functions are
presented followed by subspace capsule convolution layer
and the idea of subspace capsule mean pooling.

Projection onto a Capsule Subspace

For the layer k, suppose « € R? is an input feature vector
from a lower layer k£ — 1. Suppose a capsule subspace S
with dimensions c is formed as the span of the columns of
the weight matrix W € R?*¢, where ¢ < d.

The most straight-forward way to find the degree of align-
ment of feature vector & and capsule subspace S is to or-
thogonally project « onto subspace S. This problem has a
closed-form solution as follows

y=WWIw)"'wT g,

P

ey

where P € R4*¢ is the matrix of orthogonal projection onto
S, and y € R? is the projection of & onto S. The larger the
length of y, the more correlated « and capsule subspace S
are. In other words, « has more of the properties modeled
by S.

However, the projection matrix P € R?*“ has the major
drawback of being a square matrix. This means that if we
create a capsule by projecting the feature vector = € R onto
capsule subspace S using P, that capsule is still in the d-
dimensional space. Practically speaking, if d is large, which
is usually the case in deep models, having different capsule
types using the orthogonal projection matrix P would be
impossible since it demands a lots of memory. To be able to
benefit from various sizes of capsules through the sequence
of subspace capsule layers, one needs a transformation that
allows the input feature vector « to be mapped onto the c-
dimensional space of capsule subspace, while it still pre-
serves the relation among the capsules in the consecutive
layers of network. We propose to employ an intermediate
domain indicated by a transformation matrix P, € R°*% in
order to exploit capsule subspaces. This matrix is derived by
decomposing the orthogonal projection matrix P as

P=P,P, @
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where
Py=WWTw)=1/2
P,.=(WTw) 12wT,

(3a)
(3b)

Here P. is the transformation that maps the input feature
vector z into the c-dimensional capsule space', and P is
the transformation that projects vectors in the capsule space
back to the original d-dimensional space of input feature
vector . Now, the capsule that corresponds to the capsule
subspace S can be created by projecting feature vector x
onto the c-dimensional capsule space as

u=P,x.

“4)

Here, u indicates the low-dimensional representation of & in
the capsule space. Matrix P is a semi-definite and symmet-
ric matrix. Thus its decomposition as suggested in Equation
(2) has special properties. We claim that a capsule created
using P, has the same information about the instantiation
parameters and also the score of presence of features, as it
would be created by transformation P. Proof of this claim
follows from the Theorem 1.

Theorem 1 Let P, as defined in (1), denote an orthogonal
projection matrix onto the subspace spanned by columns of
the weight matrix W € R4*¢. Assume P is decomposed into
two matrices Py and P as in (2). Then, the transformation
matrix P g is an isomorphic transformation between R¢ and
RY, ie., Yu € R, |lulz = || Pgul|2.

The following can be concluded from Theorem 1.

e The norm of the capsule vector u defined in Equation (4)
represents the score of features modeled by S in the input
feature vector @, since ||u|| = ||y||, where ||.|| denotes

that [5-norm of a vector.

For two input feature vectors 1 and x-, the relation be-
tween their corresponding capsules v and ws is the same
as the relation between y; and y,. For instance the angle
between w; and ug is the same as the angle between y;
and y,.

Activation Function

We apply two types of activation functions on subspace cap-
sule based on our interpretation of the length of the out-
put vector of a capsule. The length of the output vector of
a capsule can be interpreted from the confidence perspec-
tive. A high confidence for a capsule shows that the input
feature vector is highly aligned with the capsule subspace.
In other words, the input feature vector contains the entity
that is modeled by capsule subspace. We also want to sup-
press the effect of noisy capsules of layer L on activating
the capsules of the next layer. Following this perspective we
propose “sparking” function given by

(&)

u
v = maz(||ul| — b%,0)—-
O
where b is a parameter that can be learned.

'This c-dim space is defined by the span of right singular vec-
tors of W.
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Figure 2: a) In the generator, the latent representation z is projected onto 10 capsule sbspaces with dimension ¢ = 16 in the first
layer. The capsule with largest vector is selected and reshaped to a cube of 25 x 2 x 2, then up-sampled to double the spatial
resolution to 4 x 4. This cube goes through 2 layers of sc-conv with 8 capsule types of 16 and 8 capsule dimensions, respectively,
each followed by upsampling operation to get to the resolution of 16 x 16. The final sc-conv layer has 8 subspace capsule types
each with 8 dimension. The output of this layer is fed to a transposed convolution layer to generate the final image. b) The
SCN architecture of discriminator component of GAN for SVHN dataset. Features are extracted using 6 convolutional layers,
followed by 3 subspace capsule convolution (SC-conv) layers each with 64 subspace capsule types, one subspace capsule mean
pool(SC-mean pool) layer and final subspace capsule fully connected (SC-Fc) layer with 10 capsule types.

Intuitively, the proposed activation function tries to in-
crease the capsule certainty, if « is related to the entity mod-
eled by capsule subspace S, or completely turn the capsule
off if the length of it is below the threshold b2. We initialize
b2 = 0.25 in our experiments and update it along with net-
work parameters through the training process using stochas-
tic gradient decent method.

Another possibility is to relate the probability of the pres-
ence of an entity modeled by a capsule subspace by the
length of the output capsule. For that, we follow (Sabour,
Frosst, and Hinton 2017) and use squashing function defined
as

ol w
Lt [l [[u]

We found sparking function is more effective in discrim-
inative tasks, i.e., in our (semi-)supervised classification of
images; since it outputs sparse feature maps by turning off
noisy capsules which leads to faster convergence. Noisy cap-
sules in each layer are those capsules represent the proper-
ties that are not related to the input image and would have
a small activity vector. While in generative models, having
small but non-zero values by applying squashing activation
function on capsules leads to the higher quality of generated
samples.

6)

Subspace Capsule Convolution

SCN can also benefit from the idea of weight sharing of
CNNss by using the same subspace capsule types in all spa-
tial locations of an image.
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In subspace capsule convolution, if the input « has ¢ fea-
ture maps, and we want to create a ¢ dimensional subspace
capsule convolution kernel with receptive field of &, we need
to build the transformation matrix P, as defined in Equa-
tion (3b), based on a weight matrix W € R(XFxk)xc e
can treat each row of the projection matrix P, as one con-
volution kernel of size (i X k x k), that convolves over in-
put feature maps and generates a single element of output
capsule. So if P, gets reorganized into a 4-dimensional ten-
sor with the shape of (¢ x i X k X k), then it can be used
as the kernel of regular convolution operation and the cap-
sule corresponds to each spatial location would be placed
along the output feature maps. Now, if we want to have n
subspace capsule types, we can create a group of projection
matrices { P, ..., P, }, after reorganizing each of them to
a 4-dimensional tensor, and then concatenate them to create
a kernel of shape (nc x i X k x k). From now on, we repre-
sent the kernel of a Subspace capsule convolution layer with
atuple of (n, ¢, k, k).

Subspace Capsule Mean Pooling

The idea of mean pooling comes naturally after subspace
capsule convolutions. In subspace capsule convolution, cap-
sules of the same type represent the same visual property
regardless of spatial positions. So it is a safe assumption that
capsules of the same type in a small receptive field of k& x k
have similar orientation and a single capsule with mean of
those capsule vectors can represent all of them.



Gradient Analysis

Subspace capsule networks are trained based on the stochas-
tic gradient descent methods. So analyzing the gradient that
is used to update W in each step clarifies how SCN learns
capsule subspaces.

Assume we have a loss function L and we want to dif-
ferentiate it with respect to the weight matrix W, the basis
of subspace S, through the projection onto subspace (Equa-
tion 3b). For the sake of simplicity we first assume a
1—dimensional capsule subspace, i.e, c = 1. Using the chain
rule the gradient is given by:

VwL

I1—-P)Vp,L, @

Wi
where V p_L is the gradient with respect to the projection
matrix P, and it is computed the same way as the gradient
with respect to the kernel of a convolution operation. The
term (I — P) is the projection matrix onto the orthogonal
complement of subspace S. This shows that the basis of cap-
sule subspace S spanned by the columns of W only updated
along the orthogonal complement of S up to the scale W

The orthogonal complement of S can contain those novel
features from @ that are not yet captured by S.

This nice property of gradient can extend to higher di-
mensional subspaces. Using the chain rule and derivative of
inverse of a matrix (Petersen et al. ) the gradient is as fol-
lows:

Vi L = (W'W)~2s],

)

(I-P)VpL, (8

where s;; is a single non-zero entry matrix corresponding
to the gradient of W with respect to one of its elements in
position (4, ). The general case also supports our conclu-

sion from the special case since (WTW)771 only stretch

the space along the basis of subspace by the scale factor of

eigenvalues of (W' W)~ 3.

4 SubSpace Capsule Networks for GANs

So far we have defined all the building blocks of a subspace
capsule network. Next, we want to discuss how SCN can
be effective in enhancing the performance of GANs. When
GAN models are used in semi-supervised learning tasks, like
image classification, the discriminator can benefit from SCN
ability by modeling the possible variations of visual proper-
ties; for instance texture, pose, color corresponding to an en-
tity using a group of capsule subspaces through a sequence
of subspace capsule layers. By creating the capsule using
projection of input feature vector onto these capsule sub-
spaces, and considering the length of capsules as confidence
about the presence of those properties that are modeled by
subspaces, the discriminator can be made invariant with re-
spect to the possible deformations of each visual property.
GAN models can also leverage the ability of subspace cap-
sule layer in the generator network. A subspace capsule gen-
erator consists of multiple subspace capsule layers and each
layer has multiple subspace capsule types. When trained,
each subspace capsule type models all the possible varia-
tion of a visual entity. Now the goal of the generator in each
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layer is to find the related properties and features that need
to be added to the generated image so far. In addition us-
ing SCN as generator leads to more diverse generated sam-
ples since in each layer, properties are sampled from sub-
spaces that ensure the disentanglement of variation along
their basis. In other word, each dimension of a subspace cap-
sule has unique effect on the generated samples. Figure (1)
showcases this property of SCN. Each row represents one
feature like rotation, thickness of stroke, scale of generated
digits and samples are generated by tweaking one dimen-
sion of capsules of the first layer of generator in the range
of [—2.5,2.5]. The generated samples in each row are di-
verse, and we can move over the appearance manifold of
each digit by changing the value of capsule dimension. Fig-
ure 2(a) shows the architecture of SCN generator with de-
tailed training process explained in Section 6.

5 Projection Matrix Implementation

The projection matrix P, as defined in Equation (3b) in-
volves taking the inverse of the square root of matrix
WTW , two very computationally expensive operations. If
not being properly implemented, these operations can hin-
der the training process. In this work, we use an stable ex-
tension of Denman-Beavers iterative method (Denman and
Beavers Jr 1976). It is known that for any symmetric pos-
itive (semi-)definite matrix A, there exists a unique sym-
metric positive (semi-)definite square root matrix. Higham
et al. proposed in (Higham 1997) an iterative process that
converges to the square root of such matrices. This iterative
process is presented below: Initialize Yy = A and Zp = I.
Fork=0,1,2,...

1
Yiy1 = §Yk(31 - ZiYk),
1 ©)
Zpy1 = 5(31 — ZkYK)Z,

where k is iteration number. It has been shown that Y}, and
Z}, converge to Az and A2, respectively. This process only
requires matrix multiplication, which fits the best for paral-
lel computation on GPUs. Further, it computes the inverse of
square root of matrix W7 W simultaneously. In all of our
experiments we set the number of iterations as & = 20. This
iterative process increases the training time negligibly com-
pared to the total training time. For instance, in our training
of SCN for large resolution images that all layers of genera-
tor are replaced by SCN convolution layers, the training time
is increased to 0.0529 sec/img compared to 0.047 sec/img
for the baseline.

It is worth noting that when training process completes,
the capsule projection matrix P, is fixed and there is no time
overhead for this iterative process.

6 Experimental Results

In this section, we demonstrate the superiority of SCNs on
three tasks?: Supervised classification of image data, semi-
supervised classification of image data and generating high-

2Code:http://github.com/MarziEd/SubSpace-Capsule-Network



CIFARIO SVIN
Methods N;= 4000 N, =1000

Tmproved GAN || 18.63 £2.32 | 811 £1.3
ALI 1799 +1.60 | 7.42 +0.65
LSAL 16.22 +0.31 | 5.46+0.24
VAT 14.87 £0.13 | 6.83+0.24
SCN 14.32 1021 | 4.58 +0.18

Table 1: Classification errors on CIFAR-10 and SVHN
datasets compared with the state-of-the-art methods. The er-
ror rates with N; = 4000 and N; = 1000 labeled training
examples are reported.

quality images on multiple datasets. Datasets: We use CI-
FAR10 (Krizhevsky and Hinton 2009), Street View House
Number (SVHN) (Netzer et al. 2011), ImageNet (Deng et
al. 2009), CelebA (Liu et al. 2015), and 3 categories of Lsun
dataset, namely bedroom, cat and horse, throughout our ex-
periments.

SCNss for Classification

Semi-supervised classification: For semi-supervised clas-
sification, we evaluate the performance of the SCN model
on two benchmark datasets of CIFAR10 and SVHN through
the GAN framework. To have a fair comparison with the
state-of-the-art methods, we use the same network architec-
ture and loss functions for generator and discriminator as the
model proposed by (Salimans et al. 2016)

SVHN: In semi-supervised classification of the SVHN
dataset, we replace the last 4 layers of the discriminator with
subspace capsule layers. Figure 2(b) shows the architecture
of SCN discriminator. An input image passes through 6 con-
volutional layers that produce 128 feature maps of size 8 x 8.
These feature maps go through three subspace capsule con-
volution layers, each layer has 64 different capsule types of
2-dimensional subspace. The first subspace capsule convo-
lution layer has the kernel size of 3 x 3 and the last two have
kernel size of 1 x 1. We apply the sparking function on all
three layers. We feed the capsules of the last subspace cap-
sule convolution layer to a subspace capsule mean pooling
layer, with receptive field of 6 x 6, that results in 64 cap-
sule types of size 2, followed by the final subspace capsule
fully connected layer with 10, 4-dimensional subspace cap-
sule types. The input image belongs to the class with the
largest norm of the output capsule.

CIFARI10: For the CIFAR10 dataset, the architecture of
discriminator is similar to that of SVHN, except the sub-
space capsule convolution layers have 96 capsule types of
size 2. The generator architecture for both datasets are the
same as baseline architecture (Salimans et al. 2016).

We train the network using Adam optimizer with initial
learning rate of 0.0003 with 5; = 0.5 and 85 = 0.99. We
hold out a set of 5000 training samples as our validation set
for subspace capsule dimension selection, and fine tune the
whole model on all training samples afterward.

Table 1 compares the performance of SCN model
on semi-supervised image classification of CIFAR10 and
SVHN for 4000 and 1000 labeled samples, respectively.
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Model | Depth | SC-Fc | SC-Conv | Topl | Top5
Resent 34 - - 27.13 | 8.84
SCN 34 (1000,4) | (256,2) | 25.64 | 8.17
SCN 34 (1000,4) | (128.4) | 25.96 | 8.35

Table 2: Single crop, Topl and Top 5 error rate of ImageNet
classification with Resnet backbone model. In SC-Fc and
SC-Conv columns, in a tuple (n, ¢) , n is the number of cap-
sule types and c is the subspace capsule dimension.

Method CelebA | Bedroom | Horse Cat
ProgGAN(Karras et al. 2017) 9.67* 21.1* 16.11 | 37.52
SCN 6.23 9.94 12.83 | 29.20

Table 3: Comparison of FID score of SCN with our baseline
model. Entries with * are our rerun of the baseline.

Supervised classification: We evaluate the scalability of
SCN on large datasets like ImageNet. We also compare
the performance of SCN with capsule network proposed by
Sabour et al. . on CIFAR10 dataset.

ImageNet: For ImageNet dataset, the last 4 layers of the
Resnet model with depth of 34 have been replaced with
SCN layers, batch normalization layers in the final block
and also the final residual connection are removed. Mean
pooling is replaced by the SCN mean pooling. The model
was trained using SGD with momentum rate of 0.9 for 100
epochs. The learning rate is initialized as 0.1 and decayed
every 30 epochs with the rate of 0.1. Table 2 shows that SCN
outperforms the baseline model and reduces the relative top-
1 classification error of Resnet by 5%.

CIFAR10: For supervised classification of CIFAR10, we
also update the convolution layers of the last bottleneck
block of Resnet model with 110 layers to SCN convolution
layers. Each of them has 32 capsule types with subspace cap-
sule dimension ¢ = 2. Batch normalization layers and resid-
ual connection of this block has been removed. Mean pool-
ing is replaced by SCN mean pooling and the final fully con-
nected layer is replaced by SCN fully connected layer with
10 capsule types with subspace capsule dimension ¢ = 4.
This model archives 5.15% error rate that significantly out-
performs capsule network model (Sabour, Frosst, and Hin-
ton 2017) with 10.6% error rate. It also improved the relative
error rate of the Resent model by 19.6% by reducing it from
6.41% to 5.15%

SCNs for Image Generation

We evaluate the effectiveness of subspace capsule networks
on the image generation task using the GAN framework for
various size of images and datasets. In all of our experi-
ments, we build the generator based on subspace capsule
networks and the discriminator based on CNNs.

MNIST: The SCN architecture of generator is shown in
Figure 2(a). The first layer has 10 subspace capsule types.
Each of them is a 16—dimesional capsule subspace. The out-
put of the first layer is 10 subspace capsules. The capsule
with the largest output vector is selected and reshaped to a
(2 x 2 x 25) tensor. This tensor goes through a bilinearly
upsampling layer to double the spatial size and a subspace
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Figure 3: Generated samples for various datasets. (a) CelebA (128 x 128), (b) Bedroom (128 x 128), (c) Horse (256 x 256).

(d) Cat (256 x 256).

capsule convolution layer with kernel size of (8,16, 3, 3).
The third layer has the same structure of upsampleing and
subspace capsule convolution layer as the second layer ex-
cept that it has the kernel size of (8, 8, 3, 3). This is followed
by the last subspace capsule convolution layer with kernel
size of (8,8,3,3). The final layer is a transposed convolu-
tion layer with the receptive field of (5 x 5) with stride of 2
followed by sigmoid activation function. All subspace cap-
sule convolution layers have stride 1 and squashing activa-
tion function. The discriminator architecture is composed of
4 convolution layers with receptive field of (5 x 5) and stride
of 2. We apply batch normalization to all convolutional lay-
ers and the activation function is leaky Relu with slope of
0.2. This is followed by a global mean pooling and a fully
connected layer to 10 output classes.

We follow AC-GAN (Odena, Olah, and Shlens 2017), and
add an auxiliary classification loss to ensure that each cap-
sule subspace in the first layer of generator captures the vari-
ation of a single class. To this end, we use the index of the
capsule with the maximum length in the first layer as the
ground truth label for the generated sample. We train this
model using Adam optimizer with initial learning rate of
0.0002 for 25 epochs.

High-Resolution Images: We also apply SCN for gen-
erating high-resolution images of size 1282 and 2562 for
CelebA and 3 classes of LSUN datasets. To have a fair com-
parison with the state-of-the-art models, we build SCN gen-
erative model based on the model proposed by (Karras et
al. 2017). Karras et al. suggest to use progressive growing
of generator and discriminator models for generating high
resolution images. The training starts from a low resolution
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LR CelebA, bedroom cat, horse
FR=128 FR=256
4 4,128, 3,3) (8,64, 3,3)
8 (4,128, 3, 3) (8,64, 3,3)
16 4,64, 3,3) (8,64, 3,3)
32 (2,64, 3,3) (8,64, 3,3)
64 - (8,32, 3,3)
128 - 4,32, 3,3)
256 - (2,32,3,3)

Table 4: Configuration of subspace capsule convolution lay-
ers for the generator networks. “LR” and “FR” stand for the
layer resolution and final image resolution respectively.

of 4 x 4 and gradually a new block for higher resolution is
added to the both generator and discriminator models. This
process continues until the networks get to the final reso-
Iution of images. Each block in this model consists of an
up-sampling step and a convolutionl layer.

For CelebA and LSUN bedroom datasets we generate
samples with resolution of 1282, In the generator model, we
update all the convolutional layers from resolution 4 to res-
olution 64 to SCN convolution, and Relu activation function
is replaced by squashing activation function. The higher res-
olution blocks of 64 and 128 are remained intact. For LSUN
cat and LSUN horse datasets, we generate samples of size
2562. In the generator network, we replace all convolutional
layers for all resolutions with SCN convolution layers fol-
lowed by squashing activation function. Table 4 presents the
configuration of subspace convolutional layers for all exper-
iments. We use the tuple notation of (n, ¢, k, k) to denote a
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Figure 4: In each row, the first and last samples in the red boxes are generated using two independent noise vectors. The
intermediate samples are generated by walking through the linear interpolant of those two noise vectors.

subspace capsule convolution layer with n capsule types, c-
dimensional capsule subspaces and a receptive field of k x k.

To stabilize training process we adopt Wasserestien loss
with gradient penalty. We also benefit from progressive
growing through training process. For all of the experiments,
the discriminator network is the same as the baseline archi-
tecture.

We compare the generated samples quantitatively with
the state-of-the-art model using Fréchet Inception Distance
(FID). We believe the FID metric is the closest one to the hu-
man judgment, since it compares the statistic of features ex-
tracted; using Inception model; from generated samples with
real samples. Comparison of numerical values of this metric
for all datasets are presented in Table 3. In all 4 datasets,
SCN consistently improved the relative FID score of gener-
ated samples by at least 20%. Figure (3) shows generated
samples for these datasets.

Interpolation of Latent Representation: To verify that
SCN generator does not merely memorize training samples,
we also walk through the manifold space. To this end we
choose two random latent representation z; and 25, then we
use SCN generator to generate samples for z s on the linear
interpolant of z; and z,. Figure (4) shows the interpolated
samples for LSUN-horse and LSUN-cat datasets. As it can
be seen the transition between pairs of latent representations
are smooth and meaningful.

Ablation Study

In this section we analyze the effect of subspace capsule size
and also position in the network on performance.

Table 5 reports the semi-supervised classification error
rate of SVHN dataset with 1000 labeled training samples,
when we update the last fully-connected or convolution lay-
ers with various size capsules. Configuration 0 demonstrates
the result of the baseline model (Salimans et al. 2016), the
first three rows after that correspond to the settings when
subspace capsules are only applied on the last layer with
various capsule sizes of 2,4 and 8. The configurations [4-6]
correspond to the settings when the last 3 convolution layers
are replaced in the discriminator with subspace capsule con-
volution layers. We conclude the following results from this
analysis. 1- Subspace capsule layers are effective in improv-
ing the overall performance even if we use them only in one

10752

config SC-Fc | SC-Conv | Error rate
0 (Salimans et al. 2016) - - 8.11
1 (10,2) - 5.8
2 (10,4) - 5.12
3 (10,8) - 5.2
4 - (64,2) 5.26
5 - (32,4) 5.49
6 - (16,8) 5.37
7 (10,4) (64,2) 4.58

Table 5: Error rate of semi-supervised classification for
SVHN dataset for 1000 labeled samples for various size and
type of subspace capsule and. SC-Fc stands for subspace
capsule fully connected layer. In a tuple (n,c), n is the num-
ber of capsule types and c is the subspace capsule dimension.

layer of the discriminator network. 2- The proper combina-
tion of capsule types and the capsule dimension plays a key
role in achieving the best performance.

7 Conclusion

In this paper, we proposed SubSpace Capsule Networks, re-
ferred to as SCN's, which offer a general capsule model with
no computational overhead compared to CNNs. SCN learns
a group of capsule subspaces to model the variations in the
properties of an entity through the sequence of layers. We
successfully applied SCN on the GAN framework, both on
generator and discriminator networks leading to the state-
of-the-art performance in semi-supervised classification on
CIFAR10 and SVHN and significantly improving the qual-
ity of generated samples.

8 Acknowledgments

This research is based upon work supported in parts by the
National Science Foundation under Grants No. 1741431 and
Office of the Director of National Intelligence (ODNI), In-
telligence Advanced Research Projects Activity (IARPA),
via TARPA R&D Contract No. D17PC00345. The views,
findings, opinions, and conclusions or recommendations
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the NSF,



ODNI, TARPA, or the U.S. Government. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright an-
notation thereon. We also would like to thank Dr. Jun Wang
for generously providing us access to the CASS GPU clus-
ter supported in parts by the US Army/DURIP program
WOTINF-17-1-0208.

References

Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein
gan. arXiv preprint arXiv:1701.07875.

Bahadori, M. T. 2018. Spectral capsule networks.

Bass, C.; Dai, T.; Billot, B.; Arulkumaran, K.; Creswell, A.;
Clopath, C.; De Paola, V.; and Bharath, A. A. 2019. Image
synthesis with a convolutional capsule generative adversar-
ial network. In International Conference on Medical Imag-
ing with Deep Learning, 39-62.

Brock, A.; Donahue, J.; and Simonyan, K. 2018. Large scale
gan training for high fidelity natural image synthesis. arXiv
preprint arXiv:1809.11096.

Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-

Fei, L. 2009. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPRO09.

Denman, E. D., and Beavers Jr, A. N. 1976. The matrix sign
function and computations in systems. Applied mathematics
and Computation 2(1):63-94.

Dong, H.-W.; Hsiao, W.-Y.; Yang, L.-C.; and Yang, Y.-H.
2018. Musegan: Multi-track sequential generative adver-
sarial networks for symbolic music generation and accom-
paniment. In Thirty-Second AAAI Conference on Artificial
Intelligence.

Duarte, K.; Rawat, Y.; and Shah, M. 2018. Videocapsulenet:
A simplified network for action detection. In Advances in
Neural Information Processing Systems, 7621-7630.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In Advances in neural
information processing systems, 2672-2680.

Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; and
Courville, A. C. 2017. Improved training of wasserstein

gans. In Advances in Neural Information Processing Sys-
tems, 5767-57717.

Han, X.; Wu, Z.; Jiang, Y.-G.; and Davis, L. S. 2017. Learn-
ing fashion compatibility with bidirectional Istms. In Pro-
ceedings of the 25th ACM international conference on Mul-
timedia, 1078-1086. ACM.

Higham, N. J. 1997. Stable iterations for the matrix square
root. Numerical Algorithms 15(2):227-242.

Hinton, G. E.; Krizhevsky, A.; and Wang, S. D. 2011. Trans-
forming auto-encoders. In International Conference on Ar-
tificial Neural Networks, 44-51. Springer.

Hinton, G. E.; Sabour, S.; and Frosst, N. 2018. Matrix cap-
sules with em routing.

Jaiswal, A.; AbdAlmageed, W.; Wu, Y.; and Natarajan, P.
2018. Capsulegan: Generative adversarial capsule network.

10753

In European Conference on Computer Vision, 526-535.
Springer.

Karras, T.; Aila, T.; Laine, S.; and Lehtinen, J. 2017. Pro-
gressive growing of gans for improved quality, stability, and
variation. arXiv preprint arXiv:1710.10196.

Krizhevsky, A., and Hinton, G. 2009. Learning multiple lay-
ers of features from tiny images. Technical report, Citeseer.

LalLonde, R., and Bagci, U. 2018. Capsules for object seg-
mentation. arXiv preprint arXiv:1804.04241.

Liu, Z.; Luo, P.; Wang, X.; and Tang, X. 2015. Deep learning
face attributes in the wild. In Proceedings of International
Conference on Computer Vision (ICCV).

Mazaheri, A., and Shah, M. 2018. Visual text correction.
In Proceedings of the European Conference on Computer
Vision (ECCV), 155-171.

Miyato, T.; Kataoka, T.; Koyama, M.; and Yoshida, Y. 2018.
Spectral normalization for generative adversarial networks.
arXiv preprint arXiv:1802.05957.

Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; and
Ng, A. Y. 2011. Reading digits in natural images with un-
supervised feature learning.

Odena, A.; Olah, C.; and Shlens, J. 2017. Conditional im-
age synthesis with auxiliary classifier gans. In Proceedings
of the 34th International Conference on Machine Learning-
Volume 70, 2642-2651. JMLR. org.

Sabour, S.; Frosst, N.; and Hinton, G. E. 2017. Dynamic
routing between capsules. In Advances in Neural Informa-
tion Processing Systems, 3856-3866.

Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Rad-
ford, A.; Chen, X.; and Chen, X. 2016. Improved techniques
for training gans. In Lee, D. D.; Sugiyama, M.; Luxburg,
U. V.; Guyon, L.; and Garnett, R., eds., Advances in Neural
Information Processing Systems 29. Curran Associates, Inc.
2234-2242.

Singh, M.; Nagpal, S.; Singh, R.; and Vatsa, M. 2019.
Dual directed capsule network for very low resolution im-
age recognition. In Proceedings of the IEEE International
Conference on Computer Vision, 340-349.

Zhang, L.; Edraki, M.; and Qi, G.-J. 2018. Cappronet: Deep
feature learning via orthogonal projections onto capsule sub-
spaces. In Advances in Neural Information Processing Sys-
tems, 5819-5828.

Zhao, W.; Ye, J.; Yang, M.; Lei, Z.; Zhang, S.; and Zhao, Z.
2018. Investigating capsule networks with dynamic routing
for text classification. arXiv preprint arXiv: 1804.00538.



