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Abstract

Object detectors trained on fully-annotated data currently
yield state of the art performance but require expensive man-
ual annotations. On the other hand, weakly-supervised de-
tectors have much lower performance and cannot be used
reliably in a realistic setting. In this paper, we study the
hybrid-supervised object detection problem, aiming to train
a high quality detector with only a limited amount of fully-
annotated data and fully exploiting cheap data with image-
level labels. State of the art methods typically propose an iter-
ative approach, alternating between generating pseudo-labels
and updating a detector. This paradigm requires careful man-
ual hyper-parameter tuning for mining good pseudo labels at
each round and is quite time-consuming. To address these is-
sues, we present EHSOD, an end-to-end hybrid-supervised
object detection system which can be trained in one shot
on both fully and weakly-annotated data. Specifically, based
on a two-stage detector, we proposed two modules to fully
utilize the information from both kinds of labels: 1) CAM-
RPN module aims at finding foreground proposals guided
by a class activation heat-map; 2) hybrid-supervised cascade
module further refines the bounding-box position and classi-
fication with the help of an auxiliary head compatible with
image-level data. Extensive experiments demonstrate the ef-
fectiveness of the proposed method and it achieves compa-
rable results on multiple object detection benchmarks with
only 30% fully-annotated data, e.g. 37.5% mAP on COCO.
We will release the code and the trained models.

Introduction
Recent advances of object detectors trained on large-scale
datasets with instance-level annotations have shown promis-
ing results which predict both the class labels and the lo-
cations of objects in an image ( Lin et al.; Redmon and
Farhadi; Li et al.; Wang et al. 2017a; 2017; 2018; 2019).
Those detectors are typically trained under full supervision
which requires huge manual annotations of the objects’ lo-
cations and categories for a large number of training im-
ages. However, it is expensive and time-consuming to re-
cruit annotators for labeling the images. This becomes more
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Figure 1: An illustration of our hybrid-supervised object
detection task. Hybrid-supervised object detection problem
focuses on training a good detector with a) limited fully-
annotated data with bounding-box labels; b) fully utiliz-
ing cheap data with image-level labels. The conventional
weakly-supervised methods usually require alternating iter-
ative strategy while we aim to design an end-to-end hybrid-
supervised object detection which can fully utilize both
kinds of data.

severe when the number of categories is large. Thus, train-
ing a customized good object detector with a limited bud-
get becomes a crucial problem in community. On the other
hand, image-level labels that indicate the presence of an ob-
ject can be acquired cheaply even in large amounts as such
labels can be collected easily using an Internet crawler in
an image search engine. Unfortunately, training solely with
weakly-supervised methods yields models of subpar perfor-
mance that cannot be reliably used in real life scenarios. As
a result, we study the Hybrid Supervised Object Detection
(HSOD) problem focusing on training a good detector with
some fully-annotated data with bounding-box labels while
fully utilizing weakly-annotated data with image-level la-
bels. Note that this task is different from semi-supervised
detection settings which usually focus on training with some
existing categories with annotated labels and infering on
some new categories.

The current state-of-the-art weakly-supervised/few-shot
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object detection methods usually require generating pseudo
labels and updating the detector iteratively. Most of the pre-
vious methods follow the Multiple Instance Learning (MIL)
pipelines ( Cinbis, Verbeek, and Schmid; Li et al.; Jie et
al. 2016; 2016; 2017): images are decomposed into object
proposals and the learning process iteratively alternates be-
tween re-localizing objects given the current detector and
re-training the detector given the current object locations.
During re-localization, different kinds of scoring systems
are adopted to select the best proposal for an object class in
each image. The recently proposed end-to-end PCL method
requires mining instance labels for online instance classifier
refinement ( Tang et al.; Tang et al. 2017; 2018). Although
some promising results have been obtained for Weakly Su-
pervised Object Detector (WSOD) ( Zhang et al.; Wan et
al.; Wei et al.; Wan et al.; Li et al.; Kosugi, Yamasaki, and
Aizawa 2018b; 2018; 2018; 2019; 2019; 2019), they are not
comparable to those of fully supervised ones to meet the
standard of deployment on the product.

Moreover, this kind of iterative training paradigm can eas-
ily get stuck in a local minimum, and are therefore unstable,
which means it requires careful hyper-parameter tuning in
mining good pseudo labels for each round of training. The
weakly-supervised detector will easily fail when bad pro-
posals are adding into training. When using a new dataset,
many human efforts are further required to find a new set of
good hyper-parameters. This situation is more severe when
the number of categories and the dataset is large which hin-
ders their usage in industry. To solve these issues, we seek
to find a useful end-to-end object detection system which
can be trained only once on both kinds of data, which nearly
increase no extra hyper-parameters compared to the fully-
supervised counterpart.

In this work, we present EHSOD for designing an end-
to-end hybrid-supervised object detection network. The pro-
posed method incorporates end-to-end joint training with
both kinds of data and fully utilizes relevant information
of the image-level labeled data to reach better performance.
Specifically, based on a standard two-stage detector ( Ren et
al. 2015a), we proposed two modules to upgrade the existing
system and manage to learn from both kinds of data. Stacked
on an ImageNet pretrained ResNet, a CAM-RPN is pro-
posed to localize the foreground proposals guided by a class
activation heat-map (CAM) ( Zhou et al. 2016). The CAM
is jointly trained by the image-level labels and bounding-
box annotations within the feature hierarchy of FPN ( Lin
et al. 2017a) and provides further information for Region
Proposal Network (RPN) to select proposals. Furthermore,
we design a hybrid-supervised cascade module to progres-
sively refine the bounding-box position and improve clas-
sification accuracy. This module is a sequence of cascaded
hybrid-supervised heads that contains a regular RCNN head
as in Lin et al. and an auxiliary Multiple Instance Detection
(MID) head as in Bilen and Vedaldi. The hybrid-supervised
head is compatible with both kinds of data and can use
image-level data to enhance the learning of classification.

The training of the resulting detection network follows a
standard procedure of two-stage detection ( He, Girshick,
and Dollár 2018). The final detection system is greatly en-

hanced by abundant relevant image-level information and
the performance is then boosted by sharing and distilling es-
sential information across weakly/fully-supervised data.

Extensive experiments are conducted on the widely used
detection benchmarks, including Pascal VOC ( Everingham
et al. 2015) and MS-COCO ( Lin et al. 2014). The pro-
posed method outperforms current state-of-the-art HSOD
and WSOD methods, e.g. PCL ( Tang et al. 2018) and BAOD
( Pardo et al. 2019). We observe consistent performance
gains on the base detection network FPN ( Lin et al. 2017a)
training with fully-annotated data. In particular, our method
achieves comparable results with fully-supervised meth-
ods on multiple object detection benchmarks, e.g. 37.5%
mAP on MS-COCO using only 30% fully-annotated data
and 40.0% mAP with 50% MS-COCO fully-annotated data
(compared to 37.2% with FPN trained with whole data).

To sum up, we make the following contributions:
• We are among the first to investigate the hybrid-

supervised object detection problem focusing on training
on a limited amount of fully-annotated images and a large
amount of weakly labeled data.

• By fully exploiting the potential of both kinds information
flow with different kinds of label, we develop EHSOD, a
CAM-guided end-to-end hybrid-supervised object detec-
tion system with cascade refinement which can be trained
in an one shot fashion.

• Extensive experiments demonstrate the effectiveness of
the proposed method and achieve reliable results on mul-
tiple object detection benchmarks by only 30% fully-
annotated data.

Related Work

Fully Supervised Object Detection (FSOD). Object de-
tection is a core problem in computer vision. Significant
progress has been made in recent years on FSOD task us-
ing CNN. Modern CNN based FSOD methods may be cate-
gorized in two groups: one-stage detection methods such as
SSD and YOLO ( Liu et al.; Redmon et al. 2016a; 2016)
and two-stage detection methods such as Faster R-CNN
and R-FCN ( Dai et al.; Ren et al.; Xu et al.; Xu et al.
2016; 2015a; 2019b; 2019a). Although these methods have
achieved satisfactoring detection results, the requirement of
large-scale bounding-box annotations may hinder their us-
age in some budget-aware scenarios.

Weakly Supervised Object Detection (WSOD). WSOD
aims at training a detector with only image-level labels, and
received extensive attention from both academia and indus-
try. Some classical methods formulate WSOD as a MIL
problem ( Cinbis, Verbeek, and Schmid; Li et al.; Jie et
al.; Zhang et al. 2016; 2016; 2017; 2018a), which treats each
training image as a bag of candidate instances and work in
an iterative way to find the positive proposals and train a
detector. In contrast to those interative MIL methods, some
works try to construct end-to-end MIL models for WSOD
( Tang et al.; Tang et al.; Bilen and Vedaldi; Diba et al.
2017; 2018; 2016; 2017). Another kind of methods mine
pseudo labels from the location information obtained by the
WSOD approaches to learn a supervised detector ( Zhang

10779



…

CAM-RPN Module

RPN Branch CAM Branch

Proposal Features

ROI Align

BBox Regression

Softmax Over Proposals

Softmax Over Classes

Hybrid Supervised Box Head 1

Hybrid Supervised Box Head 2

Refined Proposal Features

Data flow for images with instance-level labels 

Data flow for images with image-level labels

Data flow for both kinds of images

BBox offset

.

.

.

.

.

.

.

.

....

.

.

.

. 

category scores

Hybrid Supervised Cascade Module

Figure 2: An overview of our EHSOD: a hybrid-supervised object detection framework trained by both image-level labels and
instance-level labels. Stacked on an ImageNet pretrained backbone, we first proposed a CAM-RPN module to generate the
foreground proposals guided by a class activation heat-map (CAM). The CAM branch is trained by both kinds of data jointly
and provides enhanced objectness score for RPN to select proposals. Then a sequence of cascaded hybridsupervised heads
further refines the bounding box position and improve classification accuracy. Within each head, image-level information is
effectively incorporated to enhance the learning of classifiers. Both the bounding-box labels and the image-level labels are used
to improve the performance of both classification and localization in an end-to-end manner.

et al.; Zhang et al.; Shen et al. 2018b; 2018a; 2018). These
approaches easily fail without heavy hyper-parameter tun-
ing and hardly achieve the performance requirement of most
real-life applications.

Hybrid Supervised Object Detection (HSOD). HSOD
aims at using a small number of fully-supervised data and
a large number of weakly-supervised data to train a high-
performan detector. Yan et al. developed an Expectation-
Maximization (EM) based method for both WSOD and
HSOD. Pardo et al. used teacher-student learning method
to solve the HSOD problem. These methods work in an
multi-step way, which heavily relys on hyperparameter tun-
ing for mining high-quality pseudo object labels. We aims
to solve this issue by construcing an end-to-end HSOD
model that adds some weakly-supervised branches to the
standard FSOD models without changing its structure. The
whole model can be trained in an one shot fashion jointly on
both kinds of data nearly without extra hyper-parameter tun-
ing. It should be noted that our work differents from previ-
ous semi-supervised detection works that transfer knowlege
from fully-supervised categories to weakly-supervised cate-
gories ( Tang et al.; Uijlings, Popov, and Ferrari 2016; 2018).
Our work focus on the setting where both instance-level la-
bels and image-level labels are in the same categories.

The Proposed Approach

Overview. In this paper, we introduce EHSOD: a hybrid-
supervised object detection framework to develop a gen-
eral detection model to incorporate both image-level and
bounding-box information. An overview of our EHSOD can
be found in Figure 2. The proposed EHSOD is stacked on an
ImageNet pretrained backbone to extract feature. A CAM-
RPN is used to propose the foreground proposals guided
by a class activation heat-map (CAM). The CAM is gen-

erated by two convolutional layers trained by the image-
level labels and provide further information for RPN to
select proposals. To generate classification score and lo-
cation offset for each proposal, a sequential of cascaded
hybrid-supervised heads progressively refines the bounding
box position and improves classification accuracy. Within
each hybrid-supervised head, image-level information is in-
corporated to enhance the learning of classifiers. Both the
bounding-box labels and the image-level labels are used to
improve the performance of both classification and localiza-
tion in an end-to-end manner.

CAM-RPN Module

Conventional RPN in two-stage detection framework gener-
ates proposals based on predefined anchors. It has one clas-
sification layer to outputs the foreground scores and a re-
gression layer to produce bounding-box offsets which is ef-
fective on fully-annotated data. We further improve the RPN
module to utilize the image-level information.

Inspired from some works on WSOD and segmentation (
Zhou et al.; Diba et al. 2016; 2017), class activation heat-
map (CAM) presents the activated area in the feature map
of an CNN and can help to locate the object. To enable
end-to-end training and improve the usage of both kinds
of data, we make following modifications on CAM. Let
f = {fl}4l=1, fl ∈ R

Wl×Hl×D be the four different fea-
ture maps with different resolutions in the FPN hierarchy
extracted from the output of each stage of the ResNet back-
bone network. We use the same design of RPN (3x3 conv
and 1x1 conv) to transform the fl to a class activation heat-
map Al with C channels (C is the number of the cate-
gories). By adopting global average pooling over Al and
then performing the softmax operation, we obtain a vector
yCAM = [y1, ..., yC ] presenting the predicted probability of
each category in an image. Thus, we can construct a multi-
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label classification loss over the ground truth of image-level
information:

LCAM−cls = −
∑

c

{y∗c logyc + (1− y∗c )log(1− yc)} ,

where LCAM−cls is the binary cross-entropy loss and y∗c ∈
{0, 1} is the label of the presence or absence of class c.

Note that the conventional CAM is purely learned from
image-level information. To better reflect the position of
objects of the generated CAM, we fully make use of the
ground truth bounding-box. We first generate a ground truth
heat-map for each Al from the annotated bounding-boxes.
Given an object instance of category c and its bounding-
box coordinates b = (x, y, w, h), we map it to the cor-
responding feature map scale s for generating the ground
truth map of As(c) (the cth channel of As). The mapped
box coordinates is denoted as bm = (xs, ys, ws, hs). For
the ground truth map of As(c), we define the positive region
bpm = (xs, ys, σws, σhs) as the proportional region of bm by
a constant scale factor σ, the remaining region of bm as the
ignoring region bim = bm\bpm, and the whole map excluding
the bm as the negative region. According to the ground truth
heat-map A∗ = {A∗

l }4l=1, we add a pixel-level segmentation
loss between the generated CAM:

LCAM−seg

= −α
∑

l

∑

c

∑

i,j

{A∗
l (c, i, j)(1−Al(c, i, j))

γ logAl(c, i, j)

+ (1−A∗
l (c, i, j))(Al(c, i, j))

γ log(1−Al(c, i, j))},

where LCAM−seg is the pixel-level focal loss, Al(c, i, j)
is the predicted probability on pixel (i, j) of cth chan-
nel of Alobtained by performing an element-wise sigmoid
function on the CAM, and A∗

l (c, i, j) is the corresponding
ground truth on pixel (i, j). For each proposal, we can cal-
culate a objectness score from the CAM by performing a
softmax operation over channels on the matched Al and cal-
culate the mean value over the proposal’s region on the ob-
tained single-channel CAM. The summation of the CAM
objectness score and the confidence score from the RPN
classification layer is used to perform non-maximum sup-
pression (NMS) to select the best proposals for the next stage
of hybrid-supervised cascade module.

To fully incorporate both kinds of data, the loss function
of CAM-RPN is formulated as the weighted summation of
the following four loss items:

LCAM−RPN =α1LCAM−cls + α2LCAM−seg

+ α3LRPN−cls + α4LRPN−reg,

Where theLRPN−cls and LRPN−reg are the regular
RPN losses for predicting foreground confidence score and
bounding-box offets as in (Ren et al. 2015b). During train-
ing, the LCAM−cls and LCAM−seg are calculated from both
kinds of data, while the LRPN−cls and LRPN−reg are only
gererated by fully-supervised data. The detailed computa-
tional flowchart is shown in Figure 3.

CAM Branch

RPN Branch

Global Avg Pooling

Max Pooling

Over Channel

Selected 

Proposals

NMS

Al

fl

*

lA

Figure 3: Detailed flowchart of the CAM-RPN Module. The
whole module includes: a CAM branch trained by both kinds
of data; a RPN branch trained only by fully-supervised data.
The CAM branch is supervised by a image-level classifica-
tion loss and a pixel-level bounding-box segmentation loss.
The RPN branch generates a set of proposals and their con-
fidence scores. Then another enhanced objectness score of
each proposal is calculated by averaging the corresponding
region on the CAM. The summation of these two scores is
used as the final foreground score for each proposal, which
is used to select the best proposals for the next stage.

Hybrid Supervised Cascade Module

In the conventional two-stage detection, RCNN head per-
forms fine-grained classification and bounding-box refine-
ment. The main purpose of this module is to exploit the
weakly-labeled data to enhance the performance of the clas-
sifier and refine bounding-boxes.

Given the ROI feature X = {x1,x2, ...xn} and xi ∈
R

D from the n proposals by the previous CAM-RPN mod-
ule, like conventional RCNN head for fully-supervised de-
tector, we use one regression branch to predict the offset
of bounding-box and one classification branch to predict
the classification score sic for proposal i and categories
c. Inspired by the network proposed in WSDNN ( Bilen
and Vedaldi 2016), we further add another new proposal-
confidence branch to calculate the confidence score for each
proposal. A fully connected layer takes X as input and out-
puts confidence score pic for proposal i on category c. Dif-
ferent from the classification branch, the softmax operation
is taken over the proposals. Thus p:c is a term that ranks all
the proposals with the probability of containing category c
while si are the probability of proposal i belongs to each cat-
egory. Thus, for each image, the probability of containing an
object with category c can be calculated as:

gc =
∑

i

picsic,

which can be also written as an elementary-wise matrix
product p � s and sum on all the proposals. Softmax is not
performed at this step as images are allowed to contain more
than one object class. Note that the sic is only calculated
by softmax operation over the logits of foreground object
classes at this step.

From the image-level labels (both from weakly-
supervised data and fully-supervised data), we can train the
classification branch and proposal-confidence branch jointly
by a multiple instance detection (MID) loss:
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Figure 4: Qualitative examples of our EHSOD trained on 30% fully-supervised COCO data. EHSOD can detect tiny and
occusion objects due to the help of image-level information.

LHEAD−MID = −
∑

c

{ycloggc + (1− yc)log(1− gc)} ,

where LHEAD−MID is the binary cross-entropy loss and
gc is the predicted score of c category. Furthermore, for
each image with bounding-box annotations, we can learn
the proposal-confidence branch with supervision. After as-
signing category labels to all proposals, we set the ground
truthp∗ij as 0 for proposal i assigned with background class
and set the ground truth p∗ij as 1/Nj for proposal i as-
signed with category j (Nj is the total number of propos-
als assigned with category j). The resulting p∗

:j is set as
the ground truth of p:j . Thus, we can train the proposal-
confidence branch by a cross-entropy loss:

LHEAD−proposals =− 1

R

∑

j

∑

i

p∗ij logpij ,

Where R is total number of region proposals. To fully
utilize both kinds of data, the loss function of a hybrid-
supervised head is formulated as the weighted summation
of the following four loss items:

LHS−head =β1LHEAD−MID + β2LHEAD−proposals

+ β3LHEAD−cls + β4LHEAD−reg,

Where the LHEAD−cls and LHEAD−reg are the regular
bounding-box losses as in (Ren et al. 2015b). During traing,
the LHEAD−MID is calculated from both kinds of data,
while the LHEAD−proposals, LHEAD−cls, and LHEAD−reg

are only gererated by fully-supervised data. The detail com-
putational flowchart is shown in Figure 2.

Note that the performance of the bounding-box regres-
sion branch is very weak since we have little data to train
it. To further refine the bounding-box position, we adopt
the cascade-structure with increasing IoU threshold. Empir-
ically, we found that a sequence of three cascade works very
well and can boost the localization performance of the de-
tector.

Training EHSOD

Having discussed the EHSOD architecture in the previous
section, here we explain how the model is trained. The pr-
posed EHSOD framework is optimized in an end-to-end
fashion using a multi-task loss. Apart from the conven-
tional loss of cascade detection network (Cai and Vascon-
celos 2018), we also introduce two losses LCAM−cls and
LCAM−seg for CAM learning and two losses LHEAD−MID

and LHEAD−proposals for hybrid-supervised head learning.
They are jointly optimized by the following weighted sum-
mation of all losses:

L = λ0LCAM−rpn +
∑

i

λiLHS−head−i .

Where LHS−head−i is the loss for the ith head. In prac-
tice, we found that the convergence of the model is very fast
and we can train the model with the default setting of a two-
stage detection network such as FPN ( Lin et al. 2017b).

Experiments
Datasets and Evaluations. We evaluate the performance of
our proposed EHSOD method on two common detection
benchmarks: the PASCAL VOC 2007 ( Everingham et al.
2015), and the MS-COCO 2017 dataset ( Lin et al. 2014).
The PASCAL VOC 2007 has 9,962 images with 20 cate-
gories. For PASCAL VOC 2007 , we choose trainval set
(5,011 images) for training and choose the test set (4,952
images) for testing. The MS-COCO dataset has 80 object
classes, which is divided into train set (118K images), val set
(5K images) and test set (20K unannotated images). We train
our model on the MS-COCO train set and test our model on
the val set.

For the hybrid-supervised setting, we select a propor-
tion of training images randomly as the fully-supervised
training data, the remaining training images are used as
weakly-supervised training data. We employ the standard
mean Average Precision (mAP) metric with IoU=0.5 to eval-
uate our method on the PASCAL VOC dataset and employ
mAP@[.5, .95] on the MS-COCO dataset.

Implementation Details. We use the popular FPN ( Lin
et al. 2017b) as our baseline detector and implement the
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Method Backbone AP AP50

SSD ( Liu et al. 2016b) VGG16 26.8 46.5
RetinaNet ( Lin et al. 2017c) Res50 35.6 54.7

Faster R-CNN ( Ren et al. 2015b) Res50 32.6 53.1
FPN ( Lin et al. 2017b) Res50 35.9 56.9

FSAF ( Zhu, He, and Savvides 2019) Res50 37.2 57.2
AlignDet ( Chen et al. 2019) Res50 37.9 57.7

EHSOD w 30%Fully supervised img Res50 35.3 54.2
EHSOD w 50%Fully supervised img Res50 37.8 56.5

SSD ( Liu et al. 2016b) Res101 31.2 50.4
RetinaNet ( Lin et al. 2017c) Res101 37.7 57.2

Faster R-CNN ( Ren et al. 2015b) Res101 34.9 55.7
FPN ( Lin et al. 2017b) Res101 37.2 59.1

FSAF ( Zhu, He, and Savvides 2019) Res101 39.3 59.2
AlignDet ( Chen et al. 2019) Res101 39.8 60.0

EHSOD w 30%Fully supervised img Res101 37.5 56.8
EHSOD w 50%Fully supervised img Res101 40.0 59.4

Table 1: Comparison with Fully Supervised Object De-
tection methods on MS-COCO. The competing methods
are trained with full data (1x schedule and no multi-scale
training/testing). EHSOD trained with only 30%/50% fully-
supervised images can reach comparable performance with
fully-supervised object detection methods.

EHSOD network based on it. ImageNet pretained backbone
is used as the backbone network. We use a sequence of
three cascaded heads with increasing IoU threshold in the
hybrid-supervised cascade module. Thus, our EHSOD net-
work have four stages in total, one CAM-RPN for generat-
ing proposals and three heads for detection with IoU thresh-
old {0.5, 0.6, 0.7}. We set the loss weights α1and α2 in
LCAM−RPN to 0.1 and 0.2 respectively, set the loss weights
λ1, λ2 and λ3 for three hybrid-supervised heads to 1, 0.5.
0.25 respectively, and set all the other loss weights to 1.
The scale factor σ for generating the positive region of the
ground truth CAM is set to 0.8. The hyper-parameters α and
γ for focal loss in the LCAM−seg are set to 0.25 and 2 re-
spectively. No data augmentation was used except standard
horizontal image flipping.

During both training and testing, we resize the input im-
age such that the shorter side has 600 pixels and 800 pixels
for the PASCAL VOC dataset and the MS-COCO dataset re-
spectively. All experiments are conducted on a single server
with 8 Tesla V100 GPUs by using the Pytorch framework.
For training, SGD with weight decay of 0.0001 and momen-
tum of 0.9 is adopted to optimize all models. For the PAS-
CAL VOC dataset, the batch size is set to be 8 with 4 im-
ages on each GPU, the initial learning rate is 0.005, reduce
by 0.1 at epoch 9 during the training process. For the MS-
COCO dataset, the batch size is set to be 16 with 2 images on
each GPU, the initial learning rate is 0.01, reduce by 0.1 at
epoch 8 and 11 during the training process. We only train 12
epochs for all models in an end-to-end manner. Multi-scale
training/testing is not used for all the models.

Comparison with Fully Supervised Object Detection
methods. To show the effectiveness our method in us-
ing low-cost annotating (e.g., weakly-supervised) data to
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Figure 5: Comparison between our EHSOD (Orange) and
its fully-supervised version (FSOD: Blue) on different por-
tions of data of PASCAL VOC07. The blue line is its
fully-supervised object detection counterpart. Note that the
image-level information of the fully-supervised data is still
used in the blue line model. The backbone is ResNet-50.

boost the detection performance, we compare the over-
all performance of our EHSOD method with its fully-
supervised object detection counterpart. Specifically, we
train the same proposed model without the data-flow of
the weakly-supervised data. Note that the image-level in-
formation of the fully-supervised data will still be used
in the model to train the CAM module and the classifi-
cation branch/proposal-confidence branch in Hybrid Super-
vised Cascade Module. The backbone is ResNet-50. Figure
5 shows comparison between EHSOD (Red) and its fully-
supervised version (Blue) on different portions of data. It can
be found that our model can boost the performance mostly in
10% fully-supervised data. On Pascal VOC07, EHSOD can
significantly increase the performance of mAP from 35% to
55% under only 10% of fully-supervised data.

In Table 1, we further compared our method with fully ob-
ject detection training with 100% data on MS-COCO. The
competing methods are trained with full data. The reported
results use 1x schedule ( He, Girshick, and Dollár 2018) and
no multi-scale training/testing, which is under the same set-
ting with us. It can be found that our method trained with
30% data has comparable performance with fully-trained de-
tector such as Faster-RCNN ( Ren et al. 2015a), FPN ( Lin
et al. 2017a), RetinaNet ( Lin et al. 2017c) and SSD ( Liu et
al. 2016a). Note that our model with backbone Resnet-101
can reached mAP of 40% with only 50% fully-supervised
data. Figure 4 further shows some quantitative results for our
EHSOD trained with 30% fully-supervised data on COCO.
Our method has a very high accuracy and can detect very
small items such as birds and traffic lights.

Comparison with Hybrid Supervised Object Detection
method. Despite of the limited research works on hybrid-
supervised detection network, we can compare the perfor-
mance with BAOD ( Pardo et al. 2019) with same setting of
experiments. BAOD considered an iterative training scheme
by an optimal image/annotation selection and retraining the
detector. Table 2 compares the mAP50 under different set-
ting of fully supervised data proportion from 10% to 100%
on Pascal VOC07. Both methods are under same setting of
experiments. Our method is trained once with 12 epochs
while BAOD has several rounds of training.

From Table 2, it can be found that our method consistently
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data Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

10% BAOD ( Pardo et al. 2019) 51.6 50.7 52.6 41.7 36.0 52.9 63.7 69.7 34.4 65.4 22.1 66.1 63.9 53.5 59.8 24.5 60.2 43.3 59.7 46.0 50.9
Our EHSOD 60.6 65.2 55.0 35.4 32.8 66.1 71.3 75.3 38.4 54.1 26.5 71.7 65.0 67.8 63.0 27.7 52.6 48.6 70.9 57.3 55.3

20% BAOD ( Pardo et al. 2019) 57.0 62.2 60.0 46.6 46.7 60.0 70.8 74.4 40.5 71.9 30.2 72.7 73.8 64.7 69.8 37.2 62.9 48.4 64.1 59.1 58.6
Our EHSOD 65.5 72.3 66.7 45.6 50.8 72.2 77.8 82.2 44.3 73.1 44.8 79.3 76.0 73.0 73.8 35.5 63.0 62.1 74.0 65.5 64.9

40% BAOD ( Pardo et al. 2019) 68.6 71.3 66.6 52.5 53.1 69.6 77.7 77.2 45.7 72.7 54.0 74.4 74.6 74.7 74.4 42.4 66.2 56.8 71.7 65.4 65.5
Our EHSOD 75.8 78.4 72.9 56.7 55.2 76.1 81.3 83.9 51.2 76.2 60.0 83.3 81.5 77.9 79.3 41.2 68.0 64.4 75.2 68.8 70.4

50% BAOD ( Pardo et al. 2019) 70.1 73.1 70.4 52.0 57.0 73.1 79.4 77.1 47.4 77.5 54.0 76.6 73.5 74.6 77.1 43.8 68.5 61.3 73.7 69.1 67.5
Our EHSOD 73.4 77.8 72.9 57.5 57.2 79.5 81.6 83.5 53.7 79.0 60.4 83.5 81.9 76.6 79.7 45.4 69.1 67.3 77.9 71.9 71.5

60% BAOD ( Pardo et al. 2019) 73.5 75.3 72.4 52.5 53.3 76.5 81.1 81.0 51.0 76.7 57.9 76.8 79.2 77.0 79.0 45.4 69.3 63.0 75.3 67.2 69.2
Our EHSOD 74.4 81.3 72.7 58.1 58.9 82.3 83.9 82.9 54.2 77.6 63.5 82.6 82.1 79.6 80.5 46.8 71.2 71.8 80.0 69.9 72.7

80% BAOD ( Pardo et al. 2019) 76.7 76.4 74.0 56.8 62.0 81.4 82.1 84.8 57.3 78.2 61.2 81.9 79.3 78.1 80.6 46.8 73.0 67.6 76.9 71.7 72.3
Our EHSOD 83.1 82.9 77.0 60.6 63.4 81.5 85.2 86.1 56.2 80.5 65.9 84.2 83.1 79.1 82.5 47.8 73.8 71.7 79.7 72.4 74.8

100% Our EHSOD 82.5 82.7 75.4 63.3 63.2 82.1 85.8 86.3 57.6 79.5 67.5 84.1 82.6 80.2 82.8 51.5 73.6 73.5 82.7 74.3 75.5

Table 2: Comparison of Hybrid Supervised Object Detection methods on VOC07. Both methods are trained with same settings
of hybrid-supervised data. Our method is trained once with 12 epochs while BAOD has several rounds of training (each with
10 epochs). It can be found that our method consistently outperforms the BAOD especially under lower proportions of fully-
supervised data.

VOC 2007 AP50 MS-COCO AP50

PCL 48.8 PCL 19.6
Our EHSOD 55.3+6.5 Our EHSOD 46.8+27.2

Table 3: Comparison of the weakly-supervised method PCL
and our method on VOC07 and MS-COCO. The EHSOD
method is trained with 10% of fully-supervised data. In MS-
COCO, our method outperforms PCL method by a large
margin of 27.2% in terms of AP50.

outperforms the competitor BAOD. Note that our method is
significantly better than BAOD by around 5% of mAP under
10%-40% settings. This demonstrates the effectiveness of
our method in utilizing weakly-supervised data. By observ-
ing the performance gain compared to the baseline method,
it can be found that our method can successfully detect dif-
ficult categories such as aero, bike, bird, bottle and plant.
These categories usually suffer from the problems of tiny-
size and occlusion. Our method can alleviate these problems
by the refinement of the hybrid-supervised heads.

Comparison with Weakly Supervised Object De-
tection methods. We further compare our approach
with weakly-supervised object detection methods. Current
WSOD methods mainly focus on easy detection datasets
such as Pascal VOC, and only PCL ( Tang et al. 2018) is
tested on a much harder dataset: MSCOCO. Table 3 shows
the comparison between PCL and our method on VOC07
and MS-COCO. The EHSOD method is trained with 10%
of supervised data. Although PCL performs well in Pascal
VOC, its mAP50 in MS-COCO is only 19.4. Our method
significantly outperforms PCL by 27.2%, which implies that
our method is superior in harder tasks.

Ablative Analysis. We conduct ablation analysis of the
proposed method EHSOD, including the influence of adding
CAM branch in RPN, using hybrid-supervised branches in
the head and the effect of adding LHEAD−proposals . For the
hybrid-supervised head, it can be found that it can boost the
performance by 9.1% mAP which demonstrates the impor-
tance of utilizing the image-level labels in heads. Adding
LHEAD−proposals can further improve the mAP by 6.3%.

Training with 10% Cascade CAM Head adds Head adds mAP50fully-supervised data Heads BranchLHEAD−MID LHEAD−proposals� � 35.4� � � 44.5+9.1

� � � � 50.8+6.3

� � � � � 55.3+4.5

Table 4: Ablative Analysis of EHSOD on VOC07. We com-
pare the influence of adding CAM branch in RPN, us-
ing hybrid-supervised branches and the effect of adding
LHEAD−proposals in the head.

# Cascaded modules mAP50 Speed/fps
1 67.8 22.5
2 70.3+2.5 20.1
3 71.5+3.7 18.6
4 71.6+3.8 17.1

Table 5: Results on the different number of proposed Hybrid
Supervised Cascade Modules. All models are trained with
50% of fully-supervised data and 50% of weakly-supervised
data. All the inference time is tested on a single V100 GPU.
“3” is the default setting of our model.

Our CAM branch in RPN achieves 4.5% improvements.
Impact of Different Number of Cascaded Modules.

We evaluate the performance of the different number of
cascaded modules of the proposed Hybrid Supervised Cas-
cade Module. The comparison results are shown in Table
5. “Three cascaded modules” is the default setting of our
model. It can be seen that our hybrid supervised cascade
module with three cascaded modules can significantly im-
prove the performance by 3.7% of mAP while only having
a runtime overhead with 3.9fps out of 22.5fps comparing to
the single module. It can be also found that adding too many
cascaded modules (say more than 3) will not help much.

Conclusion

We study the hybrid-supervised object detection problem
and present EHSOD, an end-to-end hybrid-supervised ob-
ject detection system which can be trained jointly on both
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fully-annotated data and image-level data. The performance
of the proposed method is comparable to fully-supervised
detection models with only a limited amount of fully
annotated-samples, e.g. 37.5 mAP on COCO with 30% of
fully-annotated data.
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Chen, L. 2016. Large scale semi-supervised object detection using
visual and semantic knowledge transfer. In CVPR, 2119–2128.
Tang, P.; Wang, X.; Bai, X.; and Liu, W. 2017. Multiple instance
detection network with online instance classifier refinement. In
CVPR, 2843–2851.
Tang, P.; Wang, X.; Bai, S.; Shen, W.; Bai, X.; Liu, W.; and Yuille,
A. L. 2018. Pcl: Proposal cluster learning for weakly supervised
object detection. IEEE transactions on pattern analysis and ma-
chine intelligence.
Uijlings, J.; Popov, S.; and Ferrari, V. 2018. Revisiting knowledge
transfer for training object class detectors. In CVPR, 1101–1110.
Wan, F.; Wei, P.; Jiao, J.; Han, Z.; and Ye, Q. 2018. Min-entropy
latent model for weakly supervised object detection. In CVPR,
1297–1306.
Wan, F.; Liu, C.; Ke, W.; Ji, X.; Jiao, J.; and Ye, Q. 2019. C-
mil: Continuation multiple instance learning for weakly supervised
object detection. In CVPR, 2199–2208.
Wang, J.; Chen, K.; Yang, S.; Loy, C. C.; and Lin, D. 2019. Region
proposal by guided anchoring. In CVPR, 2965–2974.
Wei, Y.; Shen, Z.; Cheng, B.; Shi, H.; Xiong, J.; Feng, J.; and
Huang, T. 2018. Ts2c: Tight box mining with surrounding segmen-
tation context for weakly supervised object detection. In ECCV,
434–450.
Xu, H.; Jiang, C.; Liang, X.; and Li, Z. 2019a. Spatial-aware graph
relation network for large-scale object detection. In CVPR.
Xu, H.; Jiang, C.; Liang, X.; Lin, L.; and Li, Z. 2019b. Reasoning-
rcnn: Unifying adaptive global reasoning into large-scale object de-
tection. In CVPR.
Yan, Z.; Liang, J.; Pan, W.; Li, J.; and Zhang, C. 2017. Weakly-and
semi-supervised object detection with expectation-maximization
algorithm. arXiv preprint arXiv:1702.08740.
Zhang, X.; Feng, J.; Xiong, H.; and Tian, Q. 2018a. Zigzag learn-
ing for weakly supervised object detection. In CVPR, 4262–4270.
Zhang, Y.; Bai, Y.; Ding, M.; Li, Y.; and Ghanem, B. 2018b. W2f:
A weakly-supervised to fully-supervised framework for object de-
tection. In CVPR, 928–936.
Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; and Torralba, A.
2016. Learning deep features for discriminative localization. In
CVPR, 2921–2929.
Zhu, C.; He, Y.; and Savvides, M. 2019. Feature selective
anchor-free module for single-shot object detection. arXiv preprint
arXiv:1903.00621.

10785


