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Abstract

Sampling is a basic operation of modern convolutional neu-
ral networks (CNN) since down-sampling operators are em-
ployed to enlarge the receptive field while up-sampling oper-
ators are adopted to increase resolution. Most existing deep
segmentation networks employ regular grid sampling opera-
tors, which can be suboptimal for semantic segmentation task
due to large shape and scale variance. To address this prob-
lem, this paper proposes a Context Guided Dynamic Sam-
pling (CGDS) module to obtain an effective representation
with rich shape and scale information by adaptively sampling
useful segmentation information in spatial space. Moreover,
we utilize the multi-scale contextual representations to guide
the sampling process. Therefore, our CGDS can adaptively
capture shape and scale information according to not only
the input feature map but also the multi-scale semantic con-
text. CGDS provides a plug-and-play module which can be
easily incorporated in deep segmentation networks. We in-
corporate our proposed CGDS module into Dynamic Sam-
pling Network (DSNet) and perform extensive experiments
on segmentation datasets. Experimental results show that our
CGDS significantly improves semantic segmentation perfor-
mance and achieves state-of-the-art performance on PASCAL
VOC 2012 and ADE20K datasets. Our model achieves 85.2%
mIOU on PASCAL VOC 2012 test set without MS COCO
dataset pre-trained and 46.4% on ADE20K validation set.
The codes will become publicly available after publication.

Introduction
Semantic segmentation is a fundamental and challenging
task in computer vision, which aims at assigning one of pre-
defined categories to each pixel in an image. It is a cen-
tral task for various applications such as autonomous driv-
ing, image generation and robot sensing. In recent years, the
performance has been significantly improved since various
Deep Convolutional Neural Networks (DCNN) based meth-
ods have been developed such as Fully Convolutional Net-
work (FCN) (Long, Shelhamer, and Darrell 2015), DeepLab
(Chen et al. 2018a; 2017; 2018b) and PSPNet (Zhao et al.
2017). The standard philosophy of these models is to mod-
ify several successful classification networks (Krizhevsky,
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Figure 1: The shape and scale variance problem in semantic
segmentation task. In above image, the shape and scale of
plant, chair and table are different. The small convolution
kernel can produce subtle segmentation boundaries for plant
and a fragmentary map for table. While a large convolution
kernel will give an unbroken map for table and a coarse map
for plant.

Sutskever, and Hinton 2012; He et al. 2016; Szegedy et al.
2017) pre-trained on ImageNet dataset (Russakovsky et al.
2015) to produce the segmentation map by replacing fully
connected layers with convolutional layers and adapting sev-
eral up-sampling layers to gradually recover original res-
olution of the input image. Although this straight-forward
approach has obtained impressive performance on semantic
segmentation task, the inherent difference between classifi-
cation and segmentation tasks limits further improvement of
segmentation performance. Since the holistic representation
with large receptive field is essential for classification prob-
lem, the classification network employs convolutional and
down-sampling layers to extract global information into a
feature vector and then pass it to a classification sub-network
to estimate class label. However, semantic segmentation task
requires the model to assign category labels for every pixel
in input image, thus both global information and local details
are important for this task. Following this guidance, sev-
eral approaches have been adopted to enlarge context field
while preserve high resolution. For example, atron convo-
lution (Chen et al. 2018a) introduces ’dilation’ into convo-
lution operator which can enlarge the receptive field with-
out extra parameters. Although this approach can effectively
enlarge receptive fields, the inherent limitation of CNN ar-
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chitecture hinders the further development of segmentation
performance due to the large shape and scale variance of dif-
ferent objects.

The performance of DCNN heavily depends on the net-
work architectures and their corresponding parameters. In
most previous works, the network architectures are prede-
fined and the parameters are optimized through back propa-
gation (BP) algorithm with training data. In other words, the
connections between different neurons are fixed given par-
ticular network architecture and only the corresponding pa-
rameters are updated by fitting the network to specific task.
However, this can be a suboptimal solution for segmentation
task. As shown in Figure 1, the dense connections in a small
region are beneficial for segmenting plant and chair with
subtle boundary, while large-scale sparse connections are
helpful for segmenting table with larger context. Therefore,
the dynamic connections are preferable to adaptively incor-
porate useful information into segmentation feature maps.
Inspired by this observation, this paper proposes Dynamic
Sampling Convolution (DSC) by re-interpreting convolu-
tion operator from a dynamic sampling perspective. Then
we propose a Context Guided Dynamic Sampling (CGDS)
module to obtain an effective representation with rich shape
and scale information by adaptively sampling useful seg-
mentation information in spatial space. Since multi-scale
contextual information is significant for segmentation task,
we employ the high level feature as a prior to guide our sam-
pling process. Finally, we incorporate our CGDS module
into Dynamic Sampling Network (DSNet) and perform ex-
tensive experiments on PASCAL VOC 2012 (Everingham et
al. 2010), ADE20K (Zhou et al. 2017) and PASCAL Context
(Mottaghi et al. 2014) datasets. Experimental results demon-
strate the effectiveness of our proposed methods. The main
contributions of this paper are as follows:

• We introduce Context Guided Dynamic Sampling mod-
ule to obtain an effective representation with rich shape
and scale information by adaptively sampling segmenta-
tion information in spatial space. Moreover, we employ
high level semantic information as a prior to guide the dy-
namic sampling process.

• CGDS provides a plug-and-play module which can be
easily incorporated into any segmentation networks and
be trained in an end-to-end way.

• Our DSNet achieves state-of-the-art performance on PAS-
CAL VOC 2012 and ADE20K datasets. For PASCAL
VOC 2012 test set, our DSNet achieves new record 85.2%
without MS COCO dataset (Lin et al. 2014) pre-trained.
Moreover, our model achieves 46.4% on ADE20K vali-
dation set.

Related Work

Multi-scale Contextual Information

Convolutional Neural Network (CNN) based methods have
made great progress on semantic segmentation task. Fully
Convolutional Network (FCN) (Long, Shelhamer, and Dar-
rell 2015) first converting classification network to gener-
ate segmentation map by replacing fully connected layers

with convolutional layers. People witness the context infor-
mation is important for segmentation task and thus various
models are developed to enhance multi-scale contextual in-
formation for segmentation task. RefineNet (Lin et al. 2017)
collect context information from all earlier stages by em-
ploying a multi-path refinement network. Several methods
employ a probability model, conditional random field (CRF)
(Krähenbühl and Koltun 2011), to output a structure predi-
cation for each pixels by using dense connected structure to
capture long range dependencies such as (Chen et al. 2018a;
Zheng et al. 2015). The DeepLab (Chen et al. 2018a; 2017;
2018b) adopt atrous spatial pyramid pooling (ASPP) module
to enhance multi-scale contextual information by employ-
ing different dilated convolutions in a parallel fashion. Since
the global average pooling operation will bring a significant
enhancement for context information, PSPNet (Zhao et al.
2017) develops a pyramid pooling module to collect useful
global information. EncNet (Zhang et al. 2018) employs a
encoding layer to learn an inherent dictionary of the seman-
tic context information. CFNet (Zhang et al. 2019) intro-
duces a co-occurrent feature model to capture co-occurrent
contextual information in a given image. APCNet (He et al.
2019) adaptively constructs multi-scale contextual represen-
tations under the guidance of the global information. OCNet
(Yuan and Wang 2018) and DANet (Fu et al. 2018) adap-
tively collect local features under the guidance of long range
dependencies between different positions. Moreover, DM-
Net (He, Deng, and Qiao 2019) extract multi-scale context
information by utilizing dynamic filter (Jia et al. 2016).

Spatial Adaptive for Shape and Scale Variations

The basic operations such as convolution, pooling and bi-
linear interpolation operations employ the regular grid sam-
pling approach on input feature map. This brings a serious
problem in classification and segmentation tasks since there
are large shape and scale variations of different objects. To
address this issue, several works have been developed along
two different directions. The first direction employs spatial
transformation to warp the feature map into the same scale.
This approach is first put forward by Spatial Transformer
Networks (Jaderberg et al. 2015) which uses a sub-network
to learning a set of global parameters for spatial transfor-
mation. Although this scaling method achieves appealing
improvement in various tasks, it is inherent inefficient to
collect complex boundary information of different objects.
The second direction solves shape and scale problem by de-
signing novel convolution operations. The active convolu-
tion (Jeon and Kim 2017) and deformable convolution (Dai
et al. 2017) generate a set of offsets by a convolutional layer
and use them to generate sampling points for convolution
operation. Moreover, several convolution methods such as
Scale-Adaptive Convolutions (Zhang et al. 2017) and Dy-
namic Gaussian Filter (Shelhamer, Wang, and Darrell 2019)
have been developed with different sampling philosophies.

Different from above methods, we develop a new sam-
pling method for semantic segmentation task which can
efficiently collect local information under the guidance of
multi-scale contextual information.
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Method

In this section, we will present the proposed method in
details. We firstly formulate dynamic sampling convolu-
tion and then introduce Context Guided Dynamic Sampling
(CGDS) module for semantic segmentation task. Finally, we
incorporate our CGDS module into Dynamic Sampling Net-
work (DSNet).

Dynamic Sampling Convolution

The convolution operation (LeCun et al. 1989) with a k × k
kernel on feature map I can be expressed as:

S(i, j) =
∑
m

∑
n

I(i+m, j + n) K(m,n), (1)

with m,n ∈
[
− (k−1)

2 , (k−1)
2

]
. To introduce the sampling

process, we modify convolution operation into the form

S(i, j) =
∑
m

∑
n

I(i+ pm, j + pn) K(m,n), (2)

and the corresponding sampling process can be defined as

Z = samp (X) , (3)

where the tied weights K(pm, pn) = K(m,n) have been
used to reduce parameters of kernel function K; pm, pn ∈ Z
are sampling points which can be generated by different
sampling methods and the notation ’samp’ stands for the
sampling method. The regular grid sampling method is used
in tradition convolution operation.

From Eq. (1), we can find that the connections of dif-
ferent neurons between two adjacent layers are sparse con-
nected within a predefined k×k region. Compared with Eq.
(1), the network connections in Eq. (2) are governed by the
sampling process since the neurons in current layer are con-
nected by the sampled neurons in former layer. Therefore,
the network behaviours are determined by sampling process.
The network will show ’static’ behaviours under regular grid
sampling approach while show ’dynamic’ behaviours under
dynamic sampling process. We regard the convolution oper-
ation in Eq. (2) as dynamic sampling convolution since dif-
ferent neurons are dynamically connected with each other.

In the following section, we will focus on the selection of
sampling methods for dynamic sampling convolution.

Context Guided Dynamic Sampling Module

In this section, we give a detailed analysis of various sam-
pling strategies and propose Context Guided Dynamic Sam-
pling (CGDS) module for semantic segmentation task. The
formulation in Eq. (3) indicates that two key factors have
influence on sampling process.

The first factor is the input feature X to be sampled.
Inspired by attention mechanism (Vaswani et al. 2017;
Wang et al. 2018), we sort different sampling methods into
two categories according to the input feature map, self-
sampling method and general-sampling method. The input
feature for sampling and for dynamic sampling convolution
are the same in self-sampling method while are different in
general-sampling method. By this definition, the deformable

Figure 2: Architecture of Context Guided Dynamic Sam-
pling module. The notation ’C’ represents concatenate op-
erator and k is kernel size of dynamic sampling convolution.
This module employs a pair of feature maps as the input fea-
ture. It employs multi-scale contextual information to gener-
ate sampling points for low level feature map. The dynamic
sampling convolution is adopt to collect context information
on low level feature map.

convolution (Dai et al. 2017; Zhu et al. 2019) and active
convolution (Jeon and Kim 2017) both belong to the self-
sampling method. However, the self-sampling method has
several drawbacks for classification and segmentation tasks,
since these methods only exploit cues on the current fea-
ture map. It does not take full advantage of useful knowl-
edge provided in other layers. Moreover, this method in-
troduces high order correlations into neural networks and
these high order correlations may make the optimization
procedure unstable since the gradient vanishing or explo-
sion will become a serious problem in training procedure.
These disadvantages motivate us to explore more powerful
and helpful features for sampling process. Unlike classifica-
tion task, the low level information and high level informa-
tion are both useful for segmentation task. The low level fea-
tures contain rich shape, color, texture and boundary infor-
mation while high level features contain semantic category
and multi-scale contextual information. Since the semantic
category and large-scale contextual information can provide
useful and robust cues to guide dynamic sampling convolu-
tion of low level feature maps, our CGDS module employs
high level context feature to dynamically generate sampling
positions and sample features on low level feature map.

The second factor is how to estimate sampling positions
for input feature maps. Two different approaches can be em-
ployed as the sampling operation for our CGDS module.
The first approach employs a convolutional layer to estimate
sampling positions while the second approach uses a sub-
network to extract it. In our sampling model, we choose the
first approach to generate sampling points since the complex
structure will make the framework difficult to be optimized.

In summary, as shown in Figure 2, our CGDS module
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Figure 3: Architecture of our Dynamic Sampling Network. The notation ’C’ represents concatenate operator and k is kernel
size of dynamic sampling convolution. We employs ImageNet pre-trained ResNet as our backbone. The low level feature maps
X(i) are extracted from the ith stage of ResNet. The modification module is employed to adaptively adjust low level feature
to reduce the difference with high level contextual feature. We employ ASPP module to further extract multi-scale contextual
information and pass the resulting feature map to our Context Guided Dynamic Sampling module.

employs a low level/high level feature map pair as the in-
put. The sampling operation determines sampling positions
according to multi-scale contextual high level feature map
and then generates a set of sampling points. These sampling
points are employed to extract the corresponding informa-
tion on low level feature map.

Dynamic Sampling Network

In this section, we incorporate the proposed CGDS module
into semantic segmentation framework.

The architecture of our semantic segmentation framework
is shown in Figure 3. Let I ∈ RH×W×3 be the input im-
age for semantic segmentation. We employ ResNet-50 or
ResNet-101 (He et al. 2016) as our backbone, and change
the output stride from stride 32 to stride 16 following (Long,
Shelhamer, and Darrell 2015; Chen et al. 2018a). A series of
feature maps X(i) are extracted from this backbone where
the notation X(i) denotes the feature map generated at the
ith stage of ResNet. In order to obtain high level feature with
rich semantic information, the Atrous Spatial Pyramid Pool-
ing (ASPP) module (Chen et al. 2018b) has been employed
to incorporate multi-scale and global contextual information
into the resulting feature map X(ASPP ). We employ this
feature map as the high level guidance of our CGDS module.
Meanwhile, the feature maps X(i) at early stages of ResNet
contain rich shape, boundary and texture information. Adap-
tively sampling on these feature maps under the semantic
prior will collect useful shape and texture information into
the final segmentation feature map. However, directly sam-

pling on low level feature maps X(i) is problematic since
there are huge differences between high level information
and low level information. To settle this issue, a modified
low level feature map X(M) is generated by employing
a convolutional layer as the feature modification module
to adaptively adjust low level feature map. Therefore, our
CGDS module uses high level information X(ASPP ) as
the semantic prior to generate sampling points Z and em-
ploys dynamic sampling convolution in Eq.(2) to collect
shape and texture cues according to the generated sampling
points. Specifically, we first up-sample X(ASPP ) to the
same spatial size with X(M) (if necessary) and then em-
ploy a convolution layer to generate sampling points from
X(ASPP ) for each position in X(M). For a specific po-
sition, the sampling points are expressed by a 2 × k × k
vector which includes k × k sampling points with x and y
coordinate. Then we perform Dynamic Sampling Convolu-
tion on feature map X(M). Since coordinates of sampling
points maybe not integer, we use bilinear interpolation to
obtain feature vector for each sampling points. Finally, we
obtain segmentation feature maps X(F ) by concatenating
the modified feature X(M), the sampled feature X(S) with
X(ASPP ), and then pass them to pixel-wise classification
sub-network.

Relation to Other Approaches

In this subsection, we offer a comparison between our Dy-
namic Sampling Network and other similar approaches.
Dynamic Filter Network (Jia et al. 2016) employs a sub-
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network to dynamically generate parameters for convolu-
tion kernel while our approach generates sampling points.
Deformable Convolutional Network (Dai et al. 2017; Zhu
et al. 2019) employs self-sampling method and incorpo-
rates deformable convolution into segmentation framework
by replacing traditional convolution operation in last stage
of ResNet backbone. Although this approach achieves great
improvement in classification task, it cannot obtain appeal-
ing state-of-the-art performance in semantic segmentation
task. Our DSNet considers the characteristic of segmenta-
tion task and designs CGDS module to solve this problem.
Moreover, our model achieves state-of-the-art performance
on segmentation task.

Experiments

In this section, we provide extensive experiments to demon-
strate the effectiveness of our framework on three chal-
lenging semantic segmentation datasets, including PASCAL
VOC 2012 (Everingham et al. 2010), ADE20K (Zhou et
al. 2017) and PASCAL Context (Mottaghi et al. 2014).
Experimental results demonstrate that our proposed model
achieves state-of-the-art performance on PASCAL VOC
2012 and ADE20K datasets. In the following, we will in-
troduce implementation details of our model and then per-
form several ablation experiments on PASCAL VOC 2012
dataset. Finally, the experimental results on three datasets
will be given.

Implementation Details

We use ImageNet (Russakovsky et al. 2015) pre-trained
ResNet (He et al. 2016) as our backbone. Following (Long,
Shelhamer, and Darrell 2015; Chen et al. 2018a), we modify
ResNet structure to a FCN-liked structure with atrous convo-
lutions. Specifically, the stride of last stages is removed and
the atrous convolution is employed to enlarge receptive field
by setting dilation as 2, thus the output size of ResNet has
been enlarged from 1/32 to 1/16 compared with the origin
image. The ASPP (Chen et al. 2018b) module has been em-
ployed to extract multi-scale contextual information on top
of backbone. We employ this context feature as high level
feature while the feature of stage three as low level feature
for our proposed CGDS module. All experiments are per-
formed on the Pytorch (Paszke et al. 2017) platform. During
the training process, we employ the poly learning rate pol-
icy lr = initial lr × (

1− iter
total iter

)0.9
(Chen et al. 2017;

Zhang et al. 2018) for the ResNet backbone of our DSNet
where the initial learning rate is 0.01 for PASCAL VOC
2012 and ADE20K datasets, 0.005 for PASCAL Context
dataset. While the learning rate for the remaining parts of
our DSNet have been setted as 0.1 × lr. The network is op-
timized by stochastic gradient descent (SGD) (Bottou 2010)
for 80 epochs on PASCAL VOC 2012 and PASCAL Context
datasets, for 150 epochs on ADE20K dataset with momen-
tum 0.9 and weight decay 0.0001. We set the batch size as
32 for PASCAL VOC 2012 and PASCAL Context datasets,
24 for ADE20K dataset. The Cross-GPU Batch Normaliza-
tion developed by Zhang (Zhang et al. 2018) has been im-
plemented in our framework. At training stage, random hor-

LLF LLF OS HLF HLF OS mIoU%

X(3) 8 X(5) 16 77.4
X(3) 8 X(ASPP ) 16 79.0
X(4) 16 X(ASPP ) 16 76.7
X(5) 16 X(ASPP ) 16 78.1

Table 1: Comparison between different selections of low
level/high level pairs for our Context Guided Dynamic Sam-
pling Module on PASCAL VOC 2012 validation set with
ImageNet pretrained ResNet-50 backbone. We denote the
feature map at ith stage of ResNet backbone as X(i). LLF
represents low level feature map while HLF represents high
level feature map for our CGDS Module. OS represents out-
put stride of the corresponding feature map compared with
input image.

izontally flipping and image scaling in range 0.5 to 2.0 are
used as data augmentation, and then a fixed rectangle re-
gion is random cropped form it. The crop size of input im-
ages is chosen as 512 × 512 for PASCAL VOC 2012 and
PASCAL Context datasets, 576× 576 for ADE20K dataset.
When evaluating our model, horizontally flipping and multi-
scale resizing are used to further boost segmentation perfor-
mance.

PASCAL VOC 2012

The PASCAL VOC 2012 is a widely used benchmark (Ev-
eringham et al. 2010) for semantic segmentation, including
20 foreground object classes and one background class. The
original dataset contains 1, 464 images for training, 1, 449
for validation, and 1, 456 for test. The training set has been
augmented to 10, 582 images by extra annotations from
(Hariharan et al. 2015) and thus we use this augmented train-
ing set in our experiments. In the following, we first conduct
ablation experiments on this dataset and then show state-of-
the-art performance of our DSNet.

Ablation Study for Context Guided Dynamic Sampling
Module We implement our CGDS module on top of the
dilated backbone as shown in Figure 3. As we have dis-
cussed in last section, the input feature for sampling process
and the sampling operation for generating sampling points
are both important for our CGDS module. In this subsec-
tion, we conduct several ablation experiments with differ-
ent settings to demonstrate the effectiveness of our proposed
model.

We first perform ablation experiments on the selection of
input feature map pairs for our proposed module. Specifi-
cally, we employ a convolutional layer as the sampling op-
eration and explore the different low level/high level fea-
ture map pairs for our CGDS module. Experimental results
have been shown in Table 1. From this table, we can ob-
tain the following conclusions: (1). The multi-scale contex-
tual information offers a useful guidance on sampling points
generating process which is important for our CGDS mod-
ule, since employing feature map X(5) as high level fea-
ture gives poor performance on validation set. (2). Employ-
ing feature map in early stage of ResNet backbone (X(3))
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Figure 4: Visualization of segmentation results of DSNet.

as the input for CGDS module significantly improves seg-
mentation performance. Our proposed model can enhance
segmentation feature by dynamically collect shape and tex-
ture information under multi-scale contextual guidance. (3).
The detailed shape and texture information is lost in high
level features, therefore employing low level feature to re-
cover object details is important for semantic segmentation
task. Experimental results in Table 1. demonstrate the ef-
fectiveness of our CGDS module. In the following exper-
iment, we take feature maps X(3) and X(ASPP ) as our
low level/high level pairs for CGDS module.

We conduct experiments on the selection of sampling op-
erations in our CGDS Module. Apart from employing a sin-
gle convolutional layer to calculate sampling points, we em-
ploy non-local structure (Wang et al. 2018) as a sub-network
to generate sampling points. Experiment shows that the pro-
posed non-local sub-network only achieves 76.6% mIOU
with ResNet-50 backbone. We think the reason for this poor
performance is that the sub-network structure is more diffi-
cult to optimize than a single convolutional layer. Therefore,
we employ a convolutional layer as our sampling operation
in the following experiment.

Comparing with Related Works

Since our work is similar with deformable convolution (Dai
et al. 2017; Zhu et al. 2019) and dynamic filter (Jia et al.
2016), we conduct extensive experiments to compare our
DSNet with Deformable Convolution v2 (DCv2) and Dy-
namic Filter (DF). We implement DCv2 and DF on top of
ASPP module with ResNet50 backbone. For DCv2, we em-
ploy a convolution layer to generate offsets and masks. For
DF, we employ Conv (followed with BN and ReLU), Adap-
tive Average Pooling and Conv layers to generate kernel
weight. The performance for DCv2 and DF are 75.4% and
74.6%, respectively, which demonstrate the effectiveness of
our DSNet.

Ablation Study for Training and Evaluation Strategies
The performance will be further improved by employing
some training and evaluation strategies. Following (Chen et
al. 2018b; Zhang et al. 2018; He et al. 2019), we adopt sev-
eral widely-used strategies: (1). Flip: horizontally flip input
image in evaluation stage; (2). MS: average the score map

Method DS Flip MS FT Mean IoU%

Baseline � 80.06
DSNet � 80.98
DSNet � � 81.63
DSNet � � � 82.53
DSNet � � � � 83.74

Table 2: Comparison between different training and evalu-
ation strategies on PASCAL VOC 2012 validation set with
ImageNet pre-trained ResNet-101 backbone. DS represents
deep supervision (Zhao et al. 2017), Flip represents hori-
zontally flipping in evaluation stage, MS represents multi-
scale inputs during inference and FT represents fine tune
the trained model on PASCAL VOC 2012 original training
set.

from multi-scale images {0.75, 1.0, 1.25, 1.5, 1.75, 2.0} in
evaluation stage; (3). FT: fine tune the trained model on
PASCAL VOC 2012 original training set.

Experimental results have been presented in Table 2 and
several conclusions can be drawn from this table. The hori-
zontally flipping is useful and it will bring 0.65% improve-
ment in our experiment. The multi-scale input will improve
performance about 0.90%, since the correct segmentation
information will be enhanced by different scales. Finally,
fine tune the model on the original training set boosts the
result to 83.74% mIOU on validation set due to the differ-
ent distributions between the original dataset and augmented
training set. Moreover, it is worthy to mention that, com-
pare to Deeplab v3+ (Chen et al. 2018b), our CGDS module
brings 1.14% improvement on mIOU which is a significant
achievement in semantic segmentation task.

Visualization of Segmentation Results We further anal-
yse our DSNet by visualizing the segmentation map in Fig-
ure 4. Compared with baseline model, for large-scale ob-
jects, our DSNet can obtain a intact and unbroken segmen-
tation map; for small object, subtle boundaries can be re-
covered by our DSNet. Therefore, the multi-scale contextual
guidance offers a strong prior for collecting shape and tex-
ture information of different objects which can significantly
remove mistake segmentation information.

Comparing with State-of-the-art In this section, we
demonstrate the effectiveness of our proposed model on
PASCAL VOC 2012 testing set. We adopt deep super-
vise (Zhao et al. 2017) as additional supervision signal
and train our model on augmented training set. We com-
bine the training set and validation set of original PAS-
CAL VOC 2012 dataset as the trainval set, and fine tune
our model on this trainval set for 80 epoches. The best
model on validation set is selected as the final model. At
testing stage, we horizontally flip and crop the test image
into {0.75, 1.0, 1.25, 1.5, 1.75, 2.0} scales. Average fusion
on prediction map are used to obtain final result. We submit
our test result to the official evaluation server. Evaluation
results are shown in Table 3. Our model achieves 85.2%
mIOU without MS COCO (Lin et al. 2014) pre-trained and
outperforms existing approaches with a significant improve-
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FCN (Long et al. 2015) 62.2 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1
DeepLabv2(Chen et al. 2018a) 71.6 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7
CRF-RNN(Zheng et al. 2015) 72.0 87.5 39.0 79.7 64.2 68.3 87.6 80.8 84.4 30.4 78.2 60.4 80.5 77.8 83.1 80.6 59.5 82.8 47.8 78.3 67.1
PSPNet(Zhao et al. 2017) 82.6 91.8 71.9 94.7 71.2 75.8 95.2 89.9 95.9 39.3 90.7 71.7 90.5 94.5 88.8 89.6 72.8 89.6 64.0 85.1 76.3
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CFNet(Zhang et al. 2019) 84.2 95.7 71.9 95.0 76.3 82.8 94.8 90.0 95.9 37.1 92.6 73.0 93.4 94.6 89.6 88.4 74.9 95.2 63.2 89.7 78.2
DMNet (He et at. 2019) 84.4 96.1 77.3 94.1 72.8 78.1 97.1 92.7 96.4 39.8 91.4 75.5 92.7 95.8 91.0 90.3 76.6 94.1 62.1 85.5 77.6
Ours(DSNet) 85.2 96.4 79.5 86.7 74.6 81.0 96.5 92.1 96.5 47.6 92.6 75.1 92.0 94.6 92.4 90.4 75.2 92.5 66.8 87.4 82.3

Table 3: Experimental results on PASCAL VOC 2012 testing set. DSNet outperforms all existing approaches and achieves
85.2% in Mean IoU without MS COCO (Lin et al. 2014) pre-trained.

Method Backbone mIoU (%)
CascadeNet(Zhou et al. 2017) 34.90
RefineNet(Lin et al. 2017) ResNet152 40.70
PSPNet(Zhao et al. 2017) ResNet296 44.94
EncNet(Zhang et al. 2018) ResNet101 44.65
OCNet(Yuan and Wang 2018) ResNet101 45.08
APCNet(He et al. 2019) ResNet101 45.38
CFNet(Zhang et al. 2019) ResNet101 44.89
Ours ResNet101 46.37

Table 4: Experimental results on ADE20K validation set.
Our DSNet achieves state-of-the-art performance on this
dataset.

ment.

ADE20K

The ADE20K dataset (Zhou et al. 2017) is a challenging
large-scale dataset released by ImageNet Large Scale Vi-
sual Recognition Challenge 2016 (ILSVRC2016). It con-
tains 150 semantic classes for scene parsing, with 20, 210
images for training, 2, 000 images for validation and 3, 351
images for testing. This dataset is more challenging due to
two factors. The first factor is the high diverse range of se-
mantic categories which the segmentation boundaries in fea-
ture space are difficult to separate well. The second factor is
the large image size of this dataset, since it is more diffi-
cult to achieve the balance between global information and
spatial details.

We conduct experiment on ADE20K dataset, and the per-
formance is presented on Table 4. Our DSNet achieves new
state-of-the-art segmentation performance 46.4% mIOU on
this dataset which is the first record above 46% mIOU.

PASCAL Context

The PASCAL Context (Mottaghi et al. 2014) contains 60 se-
mantic classes (59 most frequent categories and setting other
categories as background) with 4, 998 images in the training
set and 5, 105 images in the validation set. We implement
our DSNet on this dataset and the performance is presented
in Table 5. Our model achieves 54.2% mIOU which is a
comparable result to state-of-the-art performance.

Conclusion

In this paper, we discuss the weakness of convolutional neu-
ral network for semantic segmentation task and propose Dy-

Method Backbone mIoU (%)
CRF-RNN(Zheng et al. 2015) 39.3
DeepLabv2(Chen et al. 2018a) ResNet101 45.7
RefineNet(Lin et al. 2017) ResNet152 47.3
EncNet(Zhang et al. 2018) ResNet101 51.7
DANet(Fu et al. 2018) ResNet101 52.6
APCNet(He et al. 2019) ResNet101 54.7

Ours ResNet101 54.2

Table 5: Experimental results on PASCAL Context dataset.

namic Sampling Network to introduce dynamic connections
in segmentation framework. The texture and shape informa-
tion are adaptively selected to strengthen segmentation fea-
ture maps under the guidance of multi-scale contextual in-
formation. Experimental results demonstrate that our DSNet
can recover more details of segmentation boundaries and ob-
tain precision segmentation maps of the objects with differ-
ent scales. Furthermore, the effectiveness of our proposed
framework is demonstrated by state-of-the-art performance
on PASCAL VOC 2012 and ADE20K datasets.
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