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Abstract

Talking face synthesis has been widely studied in either
appearance-based or warping-based methods. Previous works
mostly utilize single face image as a source, and generate
novel facial animations by merging other person’s facial fea-
tures. However, some facial regions like eyes or teeth, which
may be hidden in the source image, can not be synthesized
faithfully and stably. In this paper, We present a landmark
driven two-stream network to generate faithful talking facial
animation, in which more facial details are created, preserved
and transferred from multiple source images instead of a sin-
gle one. Specifically, we propose a network consisting of a
learning and fetching stream. The fetching sub-net directly
learns to attentively warp and merge facial regions from five
source images of distinctive landmarks, while the learning
pipeline renders facial organs from the training face space
to compensate. Compared to baseline algorithms, extensive
experiments demonstrate that the proposed method achieves
a higher performance both quantitatively and qualitatively.
Codes are at https://github.com/kgu3/FLNet AAAI2020.

Introduction

Facial animation generation has been an active research for
decades. Being able to generate realistic talking facial ani-
mation is a crucial step in human computer interaction. Stud-
ies (Azevedo et al. 2018) show that for healthcare services,
a face-to-face chat setting actually helps promote the effec-
tiveness of communication and leads to better patient out-
comes. A robust talking face synthetic system can also ben-
efit video compression and transmission for teleconference
systems or electronic healthcare systems. It also has wide
applications in entertainment and animation industry.

Traditional methods (Xie and Liu 2007; Blanz et al. 2003;
Yu, Garrod, and Schyns 2012; Blanz and Vetter 1999)
mainly focus on either building a statistical face represen-
tation using techniques like principal component analysis
(PCA), or constructing a 3D face model with textures from
an example image. Due to limited representation and gener-
alization ability, few of them can achieve robust and satis-
factory performance.
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The recent advancements in generative adversarial net-
works (GANs) (Goodfellow et al. 2014) enable researchers
to generate much more realistic facial animations (Pham,
Wang, and Pavlovic 2018; Pumarola et al. 2018; Geng et al.
2018; Song et al. 2018; Zhou and Shi 2017). Such methods
utilize large-scale training data and high capacity neural net-
works to directly generate facial images from different input
modalities, such as audio, video, facial landmark or seman-
tic labels like Facial Action Units (AUs). However, the gen-
erated result often suffers from artifacts such as blurriness,
missing or mismatching of facial details. Some facial char-
acteristics of the subjects like tooth, eyeballs, lip shape, or
wrinkles are synthesized inaccurately with pure appearance-
based or geometric-based methods.

To render more faithful facial details which are consis-
tent with the source subject, one intuitive idea is to utilize
more face images of the person. It is feasible because of two
aspects. First, obtaining or collecting multiple instances of
a subject is not a hard task in practical applications. Sec-
ond, for the task of synthesizing talking faces, no extreme
head motions or expression changes are required to model
or present, while great efforts should be focused on gener-
ating faithful facial details like eyes and mouth where hu-
mans are especially sensitive with. Therefore, in this work,
we propose to combine the warping-based and appearance-
based methods and infer through multiple source images of
the subject.

Specifically, we decouple the synthesis network into
two streams: warping-based fetching and appearance-based
learning. In the fetching stream, we select specific facial re-
gions from the source image bank, and warp then merge
them to form the target face. In the learning stream, a pure
appearance-based method is applied to learn the facial ap-
pearance feature space from the training dataset. Finally, we
merge the two streams’ outputs to obtain the final result.
These two streams will complement each other. Fetching
stream extracts useful facial characteristics from the input
source images to warp, and learning stream compensates to
generate other unseen appearance features which does not
exist on the source images. By combining the advantages
of the appearance-based learning and warping-based fetch-
ing streams, our method generates a smooth animation with
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highly preserved speaker identity and facial details.
In summary, the main contributions of the paper follow,

• We propose an end-to-end system combining appearance-
based and warping-based methods for talking facial ani-
mation generation. The final result does not require any
post-processing.

• Instead of using single image as the source, we utilize an
image bank with five source images of distinctive facial
landmarks from the same subject. We claim that, due to
the easy accessibility of the data, the method is efficient
to synthesize faithful and realistic facial details which are
consistent with the target subject.

Related Works

Facial Action Units (AUs) Based Methods One approach
is to synthesize facial animation based on action unit (AU).
Pham et al. (Pham, Wang, and Pavlovic 2018) used an en-
coder to extract identity information, which is concatenated
with AU and fed into decoder to generate target face im-
age. A discriminator along with a identity classifier are used
to get better image quality while at the same time preserve
face identity. In addition, an AU estimator is used as addi-
tional loss to make sure the decoder generates face image
with desired expressions.

Similarly, (Pumarola et al. 2018) used AU based ap-
proach. Instead of generating the face image, they gener-
ate the color change between input image and target im-
age as well as a merging mask. The color change and in-
put image are weighted by the merging mask and merged
together to get the final output. Compared to (Pham, Wang,
and Pavlovic 2018), this approach utilizes the vast amount
of information already available in the input image, such
that the generator can focus on the difference between in-
put and output, which is similar to residual learning applied
on a whole network level. Since the generator does not need
to learn to generate the whole face, it can focus on the im-
portant part of face where most changes happen. As a result,
the generated image is both sharp and realistic. Despite the
fact that AU is intuitive to use, it is a high-level face descrip-
tor and cannot fully model the fine detailed changes in facial
geometry. In addition, their method did not use any warp-
ing when generating the target face image, which limits their
generation capability. In the case where the target and source
faces are not aligned, their method failed to generate sharp
image.

Landmark Driven Methods Landmark guided approach
has been studied by various researchers. (Song et al. 2018)
used landmark heatmap as input to replace AU, which can
better guide the facial structure generation process with
more detail. Their network takes a U-Net structure, with
heatmap and identity face image as input and target image as
output. Still, their approach did not use any warping method
and did not address the hidden region problem.

On the other hand, (Geng et al. 2018) used warping-based
method, which transfers the expression from a source face
image to the target identity image by a sequential process,
involving 3D face mesh estimation, landmark re-targeting,

coarse warping, GAN refinement and tooth region halluci-
nation. Their approach was able to generate highly realis-
tic target image, but the generation process is lengthy and
requires many steps. In addition, the tooth region is halluci-
nated, meaning that there is no guarantee the generated tooth
region will match the actual tooth of the person, which will
lead to lower authenticity. X2Face (Wiles, Sophia Koepke,
and Zisserman 2018) also used a warping based approach,
which starts by mapping multiple input face images to an
embedded face image (essentially a frontalized face image),
then use a driving image to generate a dense pixel-wise
warp field, which will be used to warp the embedded face
to get the target face. Their approach was able to take ad-
vantage of the information in the source image, but since
the embedded face image is only just one image, it lacks
variation in lip shape and tooth region, which will have a
negative impact on generating unseen tooth region. Simi-
lar to landmark heatmap, facial edge has also been used to
guide the generation process. Specifically, (Zakharov et al.
2019) used face edge map and adaptive instance normaliza-
tion(AdaIN)(Huang and Belongie 2017) during the genera-
tion process, where the parameters of AdaIN was regressed
from face image embedding. (Wang et al. 2018) used land-
mark connected lines to generate high resolution talking face
videos in a sequential frame-by-frame approach. Addition-
ally, works on facial video retargeting (Bansal et al. 2018)
and facial appearance transfer (Zhao et al. 2019) have been
studied and remarkable results have been achieved.

Our work combines the advantages of appearance-based
and warping-based methods. However simply stitching
those two together would not solve the problem of hidden
regions like tooth or eyelid. In order to get a high-quality
output image, the strength of each method needs to be com-
bined with a mechanism where more visual information can
be extracted and coherently combined. We achieved this by
using automatically learned attention masks to extract facial
features from different source images such that the network
can generate novel output images with highly preserved de-
tails.

Method

Network Structure

The network structure is illustrated in Figure 1. The model
mainly consists of a warping-based fetching stream and an-
other appearance-based learning stream. Then the outputs of
the two streams will be merged together by a learned selec-
tion mask. The inputs of the network will first go through a
shared master network E following the structure of GANi-
mation (Pumarola et al. 2018), and then split into different
branches Ea, Ewm, Eww and EV which are all single-layer
2D Convolution to be introduced later.

Network Inputs The inputs of the network consist of a
source image bank Is, and the facial landmark difference
ΔFs between target and source faces.

For the source image bank Is, we form it by automatically
selecting N face images based on the mouse openness. The
images are selected from the videos or frames which are dif-
ferent from the ones we use to extract the target landmark
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Figure 1: Network structure. The model mainly consists of a warping-based fetching stream and another appearance-based
learning stream. Then the outputs of the two streams, Iw and Ia, will be merged together by a learned selection mask V . The
inputs of the network will first go through a shared master network E following the structure of GANimation (Pumarola et al.
2018), and then split into different branches Ea, Ewm, Eww and EV which are all single-layer 2D Convolution.

sequence. We sort all the frames in a sequence such that the
first image has closed mouth and the last one has opened
mouth. Then we uniformly select N frames in order from
them. To measure the mouse openness, we use the distance
between outer middle lip landmarks (index 52 & 58 for Dlib
(King 2009) landmark staring from 1) as criteria for selec-
tion. We then crop the face region and place it in the center
of the image.

Different from common approaches, we did not perform
heavy alignment on the face image for two reasons. First,
the aligned face images often show zoom-in, zoom-out ef-
fect and instability outside the face region, which would
make the warping step later much more difficult. Second,
we would like the network to learn the spontaneous head
movement during talking, so that the network will be able
to generate such movement, which makes the generated an-
imation much more vivid and realistic.

Given N input images in the source bank Is = {xi}
where xi ∈ R

W×H×3, i = 1, ..., N and W,H is the
width and height of the image, we extract the correspond-
ing 68 facial landmarks for each image xi as Si = {sj}
where sj ∈ R

2 and j = 1, ..., 68. Given the target facial
landmark tj ∈ R

2, j = 1, ..., 68, we compute the target-
source difference coordinate sets as ΔSi = {tj − sj} for
each xi. Then we represent the facial landmark difference
ΔFs = {fi} where fi ∈ RW×H×2 as spatial field maps by
filling the positions indicated by Si with values in ΔSi and
elsewhere zero. Then we concatenate the tensor Is of size
(W,H,N × 3) with ΔFs of dimension (W,H,N × 2) to
form the input tensor of dimension (W,H,N × 3+N × 2).
The master encoder-decoder network E will generate the
shared feature If by,

If = E(Is,ΔFs; θ), (1)
where θ is the network parameters. Compared with other
landmark encoding methods like spatially expanding the
landmark locations and channel-wisely concatenating with

input images, our encoding method yields less blur gen-
erated image and a smaller input tensor. Compared with
heatmap encoding (Song et al. 2018; Dong et al. 2018;
Siarohin et al. 2018; Fragkiadaki et al. 2015; Jackson et al.
2017), our proposed method requires less computation.

Warping-based Fetching Stream The warping-based
fetching stream is deployed to fully reuse the appearance
features in the source image bank Is from the same subject
by warping and merging them. The stream outputs the se-
lection mask set Mw = {mi} where mi ∈ R

W×H×1, and
the warping field set Ww = {wi} where wi ∈ R

W×H×2

and i = 1, ..., N . The dimension number 2 stands for hori-
zontal and vertical distances of the warping field. Here we
represent Mw and Ww in tensors of size (W,H,N) and
(W,H,N × 2), then

Mw = softmax(Ewm(If ; θwm)) (2)
Ww = Eww(If ; θww) (3)

For the selection mask, mi takes values in range [0, 1] af-
ter softmax so

∑N
i=1 mi = JW,H where J is the all-ones

matrix. The intensity of mi will be higher if the landmarks
of xi better match the target landmarks. For the warping field
wi, instead of directly generating the warping field in terms
of pixel unit, we generate the warping field in range [−1, 1]
to specify the limits of warping distance by [−M,M ] either
horizontally or vertically. M is a pre-defined constant warp-
ing margin set as 40. This allows for flexible control during
the generation process, where we can change M value to
control the strength of warping and the amount of motion in
the generated images.

Then the warped output Iw will be,

Icw =

N∑

i=1

mi � φ(xc
i , wi), (4)

where φ(·) is the bi-linear warping function, and � is the
element-wise product and c is the RGB channel index.
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Appearance-based Learning Stream The appearance-
based learning stream is trained to model the facial feature
space, and complement the unseen facial textures not ex-
isting in the source image bank Is. Although multiple im-
ages are fed as input, some features and pixels may be still
missing for warping, and requires additional synthesis from
external resources. For example, when blinking, the upper
eyelid region, which is very unlikely to be captured in the in-
put image, will be synthesized in the learning stream output.
There are some other cases like the wrinkle around mouth
region, the color change between teeth (depending on mouth
openness) as well as the shadow under jaw when the mouth
is opened. Similar to residual learning, the appearance-based
branch forces the network to learn the difference between
input and output image, allowing it to focus on the impor-
tant task of generating unseen pixels. The appearance-based
branch takes the feature If from the master network E and
pass them through a single layer 2D Convolution layer Ea

to generate an RGB image,

Ia = Ea(If ; θa). (5)

Final Result Merging To merge Ia and Iw generated by
the above two streams, the network will first learn another
single-channel merging mask V ∈ R

W×H×1,

V = σ(EV (If ; θv)). (6)

Here σ is the sigmoid operation. Each pixel in V ranges
[0, 1], where 0 means the pixel in the final output image Io
is selected from Ia, and 1 means the pixel in the final output
image is selected from the warped image Iw.

The final output image Io ∈ R
W×H×3 is then simply gen-

erated by,

Ico = (JW,H − V )� Ica + V � Icw. (7)

Objective Functions

Following (Pumarola et al. 2018), we impose a sparsity loss
LSV

to the merging mask V to encourage the network to
take some information from the appearance branch.

LSV
= ‖V ‖1 (8)

We do not apply the same loss to Mw because in an extreme
case, if the input image is perfectly matched to the target
landmark, then the network can simply choose that input im-
age as a trivial solution, in which case the mask can be all
ones and not sparse.

We further introduce the total variation loss to V , Mw

and Ww to enhance the smoothness of the learned maps.
Specifically,

LTVV
= ‖�hV ‖22 + ‖�vV ‖22 (9)

LTVwm = ‖�hMw‖22 + ‖�vMw‖22 (10)

LTVww
= ‖�hWw‖22 + ‖�vWw‖22 (11)

To achieve a better reconstruction performance, we intro-
duce a weighted L1 loss to Iw and Io. We impose L1 loss on
Iw in order to mitigate the effect of errors from warped result
on other parts of the network by direct supervision. Without

L1 loss on Iw, the warped result was blur and the network
tended to rectify that through the appearance branch. The
overall result is then over smoothed. The weight matrix K
is basically a heatmap where regions around landmarks have
higher weights while regions far from landmark have lower
weights. K = γB where B ∈ R

W×H is the matrix record-
ing the distance between each pixel and the nearest landmark
of the target face It. γ is empirically set to 0.95. Finally we
lower bound the values in heatmap to 0.3 so that the network
can take into account the backgrounds as well.

Lrecw =

3∑

c=1

‖K � (Icw − Ict )‖1 , (12)

Lreco =

3∑

c=1

‖K � (Ico − Ict )‖1 . (13)

The total reconstruction loss will be,

Lrec = Lrecw + Lreco . (14)

We also use perceptual loss (Johnson, Alahi, and Fei-Fei
2016) on Io to preserve fine details.

Lp = ‖V GG(Io)− V GG(It)‖22 , (15)

where V GG is the VGG16 network which is same as (John-
son, Alahi, and Fei-Fei 2016). We take relu1 2, relu2 2,
relu3 3 and relu4 3 layers to extract high-level features.

We also apply adversarial loss as in (Pumarola et al. 2018)
and PatchGAN (Isola et al. 2017) to improve the quality of
the final output image. We use hinged version of Spectral
Normalization(SN) (Takeru Miyato 2018) which was shown
to improve the generation quality. In addition, we follow the
approach in (Shrivastava et al. 2017) to update the discrim-
inator D, following the same structure as (Pumarola et al.
2018) except for the SN layer, using a history of generated
fake images, which improved the training stability signifi-
cantly. The adversarial loss is defined as,

Ladv = Ex∼Preal
[max (0, 1−D(x))]

+ E(Is,ΔFs)∼Pin
[max (0, 1 +D(G(Is,ΔFs; θall)))]

(16)

where Preal is the ground truth data distribution and Pin

represents the data distribution of the input space. G is the
overall generator structure and θall is the combined trainable
parameters.

Finally, the full loss is a weighted sum of each individual
loss:

L = λSLSV

+ λTV (LTVV
+ LTVww

+ 0.1× LTVwm
)

+ λrecLrec + λpLp + λadvLadv

(17)

Experiment

Dataset

We use TCD-TIMIT (Gillen 2014) and FaceForensics
(Rössler et al. 2018) datasets.
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TCD-TIMIT. TCD-TIMIT contains 62 speakers with to-
tally 6913 videos. We choose this dataset because all the
videos are in high resolution that capture the fine details of
human faces including the mouth region and tooth. It enables
us to better evaluate the details and identity preservation ca-
pability. We use the suggested train/test split provided by the
dataset, where training and testing speakers are disjoint.

FaceForensics. The FaceForensics contains 1004 facial
region videos acquired from YouTube. Although this dataset
has lower resolution on face region compared to TCD-
TIMIT, it has much larger color, illumination, expression
and background diversity. We only use the real videos in this
dataset in our experiment. The train/test was split randomly
into 75% and 25% without overlapping.

To prepare the training and testing data, we first detect
landmarks in each frame using Dlib (King 2009). For TCD-
TIMIT, we crop the face region and resize to 224×224 with
nose tip placed at the center. No further alignment was per-
formed. For FaceForensics, the nose center landmark was
less stable than TCD-TIMIT due to its lower resolution. As
a result, we center the face images using the two outer eye
corners, which is more robust and the cropped face region is
more stable.

During training, for TCD-TIMIT dataset we randomly se-
lect 16 frames from 4 videos as target images. The Is was
randomly selected from other videos of the same person dif-
ferent from the ones used to get target images. For Face-
Forensics dataset, Is was selected from the same video since
each identity in this dataset has only one video, but we make
sure that the target images are different from source images
Is.

During testing, we extract the Is and target landmarks t
using the same protocol as the training phase. Then we gen-
erate the output face images frame by frame. Finally, we
simply accumulate the generated image sequence to obtain
the video. No any form of post processing was performed.

Implementation

We implemented the system using PyTorch. Our shared
master network E follows the structure in (Pumarola et al.
2018). It consists of three convolutional layers which reduce
the input spatial dimension by a factor of 4 while increasing
the number of channels to 256. Six residual blocks are used
to further process the features on the bottleneck. Then two
convolution layers bring the feature back to original spatial
resolution while reducing channel from 256 to 64. After that,
the network branches into 4 sub-networks, where each sub
network contains only one layer of convolution layer before
generating the corresponding outputs. We use instance nor-
malization in the generator and spectral normalization (SN)
(Takeru Miyato 2018) after each convolution layer. The ac-
tivation function is ReLU. The whole network is fully con-
volutional, so it can handle different input sizes.

The discriminator has four convolutional layers which re-
duce the input spatial dimension by a factor of 24. We used
spectral normalization after each convolution layer. The out-

put of the last convolution layer is used as patchGAN output.
No instance or batch normalization is used in discriminator.

For every 5 iterations of discriminator update, we train
once the generator. We used Adam with (β1, β2) =
(0.5, 0.999) and learning rate 1e−4 for both the generator
and the discriminator. The coefficients for the total loss are
(λSV

, λTV , λrec, λp, λadv) = (1.0, 1e−5, 250, 1.0, 1.0),
which are selected empirically.

Baseline Methods

We choose two baseline algorithms to evaluate and compare
our approach: an appearance-based GANimation (Pumarola
et al. 2018) and a warping-based X2Face (Wiles,
Sophia Koepke, and Zisserman 2018).

GANimation. The original GANimation used action units
(AU) as conditional input for facial expression editing,
which was not able to model fine changes around the mouth
region, or head rotations. Landmarks contain much richer in-
formation of facial actions than AUs. As a result, we slightly
modify it by replacing AU label with target landmarks as the
conditional input, while everything else are kept unchanged.
It would make a fair comparison between modified GANi-
mation and our method. We used the code provided by the
author and trained it on TCD-TIMIT dataset and FaceForen-
sics separately. During testing, we extracted the target land-
marks from the ground truth driving images along with an
identity image and fed into GANimation to get the synthe-
sized image.

X2Face. For fair comparison, We used the provided code
and trained it on the same two datasets. During testing, since
X2Face can use multiple identities to get the embedded face
image, we use 5 images containing different mouth shapes as
in our method. This ensures a fair comparison by supplying
both methods the same amount of information as input.

We follow the original training protocols in each models
to obtain the best performance of the two models.

Qualitative evaluation

Figure 2 demonstrates our generated images, compared with
the ground truth. Note that our method is able to preserve
fine details that closely match the ground truth person iden-
tity, especially the mouth region and tooth shape. In addition,
the temporal consistency is well addressed without any post
processing involved.

Figure 3 compares our method with GANimation and
X2Face. GANimation is not able to authentically, faithfully,
and consistently reconstruct the mouth region, especially for
opened mouth where tooth becomes visible. That’s because
only one image was used as identity input to present the
similar visual cues. It yields blur results by sampling from
other training samples. Compared to GANimation, X2Face
was able to use multiple images to construct the embedded
face image, which contains more information than the single
image input method that GANimation used. However, the
embedded face is still just one image, which can only pro-
vide limited facial detail and variation. Note that the X2Face
result better preserved mouth region and facial detail than
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Figure 2: Synthesis result on both datasets. Upper row: ground truth. Bottom row: synthesized result.

Figure 3: Comparisons with GANimation and X2Face on FaceForensics(left) and TCD-TIMIT(right). Note that X2Face was not
able to generate closed eye image. GANimation was able to generate hidden region like eyelid and tooth from its color change
branch, but struggled at generating regions with very fine details like lips and tooth. Our method combines the advantages of
the two models by preserving fine details of the face and compensating more details not existing in the source bank images.

GANimation while still suffers from blurring effect. It also
fails when some other cues like closing eyes do not exist in
the source image bank. In comparison, our method is able to
generate face images visually much better with fine details
that are closely matched to the ground truth image. That is
because we combine the advantages of the warping-based
and appearance-based methods, by both fully using the fa-
cial features in the source banks, and compensating other un-
seen features using adversarial appearance-based learning.

Quantitative evaluation

We evaluated our model quantitatively using L1 loss and
FID score (Heusel et al. 2017). The L1 loss measures the
absolute pixel value error, which is good at quantifying the
absolute distance between reconstructed face image and the
ground truth. FID score, on the other hand, measures the
perceived error and quality of generated image, compared to
ground truth image, which better mimics human perception.

The quantitative result is shown in Table 1. As we can see
that our proposed method achieved a better result in both
FID score and L1 loss. Our method was able to get the best
score due to the combined advantage of combined appear-
ance and warping streams.

Ablation study

While it has been shown in GANimation that the attention
mask and color change improved the generation quality, the
effectiveness and necessity of warping mechanism for high

TIMIT FaceForensics
L1 FID L1 FID

GANimation(2018) 10.86 59.65 16.19 47.99
X2Face(2018) 8.31 30.50 11.05 23.98
Ours 7.99 17.07 10.20 20.62

Table 1: Quantitative comparison. Both L1 and FID score
are lower the better. Our method achieved the best perfor-
mance in both FID score and L1 loss on both datasets.

fidelity facial image generation remains unanswered. To ad-
dress this question, we preformed ablation study by remov-
ing the warping or appearance stream respectively. In addi-
tion, we study the impact of the variation in the source im-
ages bank Is on the generation quality. Specifically, the first
1, 3 or all 5 images are put in the source image bank Is to
evaluate the synthesis performance.

As we can see in Figure 4, single image as input source
cannot faithfully generate the details on the face especially
for the hidden region. The same problem is observed on the
other two comparison methods as well (see Figure 3). The
three images version yields better result, but still lacks detail.
The appearance-based stream only network generates plau-
sible results, but the details like hair, tooth and wrinkles are
blurred out. The warping-based stream only variation suf-
fers from the same hidden region problem. The full model
is able to generate detailed facial image that closely matches
the ground truth.
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Figure 4: Ablation study. Single image as input source can-
not faithfully generate the details. The three images version
yields better result. The appearance-based stream only net-
work generates plausible results, but the details are blurred
out. The warping-based stream only variant suffers from the
same hidden region problem. The full model is able to gen-
erate detailed facial image that closely matches the ground
truth. GT: ground truth image. 1B:one image as source,
3B:three images as source, 5B:all five images as source,
A:appearance-based stream only, W:warping-based stream
only, A+W:(full model). The red square in each image shows
the zoomed mouth region.

Visualizations of Selection Masks

As shown in Figure 5, we also visualize the bank images
selection mask Mw to show that the network is able to syn-
thesize facial images by using different parts from the in-
put images, thus can generate new facial geometry. Sup-
pose the target landmark is open mouse with closed eyes
like the third row in Figure 5, whereas all the input images
have opened eyes except for the first one, which has closed
eyes and closed mouth. In this case, the network will select
the eye region from the first image and the mouth region
from other matching images. This approach gives the net-
work great flexibility, which allows it to synthesize unseen
facial geometry by automatically selecting and warping the
best matching regions in the input bank images.

Failure Cases

Due to the nature of landmark-driven methods, we found
that our model fails to generate faithful mouth of Interdental
Consonant in Figure 6. That’s because Interdental Conso-
nant has a quite similar mouth shape (or landmark relative
positions) to other commonly-seen opening mouth. To ad-
dress the issues, a multi-modal system involving audio will
greatly help the system. This will be left for future work. Our
model also suffers from wrapped background if the poses are
too extreme.

Figure 5: Example of bank images selection mask Mw. Blue
box: ground truth. Red box: synthesized image. Upper row
right of blue box: input bank images. Lower row right of red
box: Mask for bank images. Note that the tooth region in the
5th bank image was chosen, which was warped and used to
generate the synthesized image. Same for the closed eye lid
region in first image of the second example.

Figure 6: Failure cases: ambiguity of tooth and tongue.
Left: fail to synthesize Interdental Consonant Mouth. Mid-
dle: synthesize incorrect Interdental mouth. Right: wrapped
background.

Conclusion

In this paper, we propose a landmark driven talking facial
animation synthesis system by combining appearance-based
and warping-based streams. Instead of taking single source
image as input, we introduce a source image bank consisting
of five images with distinct landmarks. Then our warping-
based fetching stream learns to select the most related facial
features from the source bank to warp and merge them, and
the appearance-based learning stream further compensates
other unseen features from the training face feature space.
The ultimately merged faces, which are highly consistent
with the target faces, demonstrate more faithful synthesis
performance than other baseline algorithms qualitatively and
quantitatively. The advantages of our method are obvious on
synthesizing tooth, eyes, or other unseen facial detailed re-
gions.
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