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Abstract

When there is a mismatch between the target identity and the
driver identity, face reenactment suffers severe degradation in
the quality of the result, especially in a few-shot setting. The
identity preservation problem, where the model loses the de-
tailed information of the target leading to a defective output,
is the most common failure mode. The problem has several
potential sources such as the identity of the driver leaking due
to the identity mismatch, or dealing with unseen large poses.
To overcome such problems, we introduce components that
address the mentioned problem: image attention block, tar-
get feature alignment, and landmark transformer. Through at-
tending and warping the relevant features, the proposed archi-
tecture, called MarioNETte, produces high-quality reenact-
ments of unseen identities in a few-shot setting. In addition,
the landmark transformer dramatically alleviates the identity
preservation problem by isolating the expression geometry
through landmark disentanglement. Comprehensive experi-
ments are performed to verify that the proposed framework
can generate highly realistic faces, outperforming all other
baselines, even under a significant mismatch of facial charac-
teristics between the target and the driver.

Introduction

Given a target face and a driver face, face reenactment aims
to synthesize a reenacted face which is animated by the
movement of a driver while preserving the identity of the
target.

Many approaches make use of generative adversarial net-
works (GAN) which have demonstrated a great success in
image generation tasks. Xu et al.; Wu et al. (2017; 2018)
achieved high-fidelity face reenactment results by exploit-
ing CycleGAN (Zhu et al. 2017). However, the CycleGAN-
based approaches require at least a few minutes of training
data for each target and can only reenact predefined identi-
ties, which is less attractive in-the-wild where a reenactment
of unseen targets cannot be avoided.

The few-shot face reenactment approaches, therefore, try
to reenact any unseen targets by utilizing operations such
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Figure 1: Examples of identity preservation failures and im-
proved results generated by the proposed method. Each row
shows (a) driver shape interference, (b) losing details of tar-
get identity, and (c) failure of warping at large poses.

as adaptive instance normalization (AdaIN) (Zakharov et al.
2019) or warping module (Wiles, Koepke, and Zisserman
2018; Siarohin et al. 2019). However, current state-of-the-
art methods suffer from the problem we call identity preser-
vation problem: the inability to preserve the identity of the
target leading to defective reenactments. As the identity of
the driver diverges from that of the target, the problem is
exacerbated even further.

Examples of flawed and successful face reenactments,
generated by previous approaches and the proposed model,
respectively, are illustrated in Figure 1. The failures of previ-
ous approaches, for the most part, can be broken down into
three different modes 1:

1. Neglecting the identity mismatch may lead to a identity
of the driver interfere with the face synthesis such that the
generated face resembles the driver (Figure 1a).

1Additional example images and videos can be found at the fol-
lowing URL: http://hyperconnect.github.io/MarioNETte
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Figure 2: The overall architecture of MarioNETte.

2. Insufficient capacity of the compressed vector represen-
tation (e.g., AdaIN layer) to preserve the information of
the target identity may lead the produced face to lose the
detailed characteristics (Figure 1b).

3. Warping operation incurs a defect when dealing with
large poses (Figure 1c).

We propose a framework called MarioNETte, which aims
to reenact the face of unseen targets in a few-shot manner
while preserving the identity without any fine-tuning. We
adopt image attention block and target feature alignment,
which allow MarioNETte to directly inject features from
the target when generating image. In addition, we propose
a novel landmark transformer which further mitigates the
identity preservation problem by adjusting for the identity
mismatch in an unsupervised fashion. Our contributions are
as follows:

• We propose a few-shot face reenactment framework
called MarioNETte, which preserves the target identity
even in situations where the facial characteristics of the
driver differs widely from those of the target. Utilizing im-
age attention block, which allows the model to attend to
relevant positions of the target feature map, together with
target feature alignment, which includes multiple feature-
level warping operations, proposed method improves the
quality of the face reenactment under different identities.

• We introduce a novel method of landmark transformation
which copes with varying facial characteristics of differ-
ent people. The proposed method adapts the landmark of
a driver to that of the target in an unsupervised manner,
thereby mitigating the identity preservation problem with-
out any additional labeled data.

• We compare the state-of-the-art methods when the tar-
get and the driver identities coincide and differ using
VoxCeleb1 (Nagrani, Chung, and Zisserman 2017) and
CelebV (Wu et al. 2018) dataset, respectively. Our ex-
periments including user studies show that the proposed
method outperforms the state-of-the-art methods.

MarioNETte Architecture

Figure 2 illustrates the overall architecture of the proposed
model. A conditional generator G generates the reenacted
face given the driver x and the target images {yi}i=1...K ,
and the discriminator D predicts whether the image is real
or not. The generator consists of following components:

• The preprocessor P utilizes a 3D landmark detector (Bu-
lat and Tzimiropoulos 2017) to extract facial keypoints
and renders them to landmark image, yielding rx = P (x)
and riy = P (yi), corresponding to the driver and the tar-
get input respectively. Note that proposed landmark trans-
former is included in the preprocessor. Since we normal-
ize the scale, translation and rotation of landmarks before
using them in a landmark transformer, we utilize 3D land-
marks instead of 2D ones.

• The driver encoder Ex(rx) extracts pose and expression
information from the driver input and produces driver fea-
ture map zx.

• The target encoder Ey(y, ry) adopts a U-Net architec-
ture to extract style information from the target input and
generates target feature map zy along with the warped tar-
get feature maps Ŝ.

• The blender B(zx, {ziy}i=1...K) receives driver feature
map zx and target feature maps Zy = [z1y, . . . , z

K
y ] to

produce mixed feature map zxy . Proposed image attention
block is basic building block of the blender.

• The decoder Q(zxy, {Ŝi}i=1...K) utilizes warped target
feature maps Ŝ and mixed feature map zxy to synthesize
reenacted image. The decoder improves quality of reen-
acted image exploiting proposed target feature alignment.

For further details, refer to Supplementary Material A1.

Image attention block

To transfer style information of targets to the driver, previous
studies encoded target information as a vector and mixed it
with driver feature by concatenation or AdaIN layers (Liu et
al. 2019; Zakharov et al. 2019). However, encoding targets
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Figure 3: Architecture of the image attention block. Red
boxes conceptually visualize how each position of zx and
Zy are associated. Our attention can attend different posi-
tion of each target feature maps with different importance.

as a spatial-agnostic vector leads to losing spatial informa-
tion of targets. In addition, these methods are absent of in-
nate design for multiple target images, and thus, summary
statistics (e.g. mean or max) are used to deal with multiple
targets which might cause losing details of the target.

We suggest image attention block (Figure 3) to al-
leviate aforementioned problem. The proposed attention
block is inspired by the encoder-decoder attention of trans-
former (Vaswani et al. 2017), where the driver feature map
acts as an attention query and the target feature maps act
as attention memory. The proposed attention block attends
to proper positions of each feature (red boxes in Figure 3)
while handling multiple target feature maps (i.e., Zy).

Given driver feature map zx ∈ R
hx×wx×cx and target fea-

ture maps Zy = [z1y, . . . , z
K
y ] ∈ R

K×hy×wy×cy , the atten-
tion is calculated as follows:

Q = zxWq +PxWqp ∈ R
hx×wx×ca

K = ZyWk +PyWkp ∈ R
K×hy×wy×ca

V = ZyWv ∈ R
K×hy×wy×cx

(1)

A(Q,K,V) = softmax
(
f(Q)f(K)T√

ca

)
f(V), (2)

where f : R
d1×...×dk×c −→ R

(d1×...×dk)×c is a flatten-
ing function, all W are linear projection matrices that map
to proper number of channels at the last dimension, and
Px and Py are sinusoidal positional encodings which en-
code the coordinate of feature maps (further details of sinu-
soidal positional encodings we used are described in Sup-
plementary Material A2). Finally, the output A(Q,K,V) ∈
R

(hx×wx)×cx is reshaped to R
hx×wx×cx .

Instance normalization, residual connection, and convo-
lution layer follow the attention layer to generate output
feature map zxy . The image attention block offers a direct
mechanism of transferring information from multiple target
images to the pose of driver.
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Figure 4: Architecture of target feature alignment.

Target feature alignment

The fine-grained details of the target identity can be pre-
served through the warping of low-level features (Siaro-
hin et al. 2019). Unlike previous approaches that estimate
a warping flow map or an affine transform matrix by com-
puting the difference between keypoints of the target and
the driver (Balakrishnan et al. 2018; Siarohin et al. 2018;
2019), we propose a target feature alignment (Figure 4)
which warps the target feature maps in two stages: (1) target
pose normalization generates pose normalized target feature
maps and (2) driver pose adaptation aligns normalized tar-
get feature maps to the pose of the driver. The two-stage
process allows the model to better handle the structural dis-
parities of different identities. The details are as follows:

1. Target pose normalization. In the target encoder Ey ,
encoded feature maps {Sj}j=1...ny are processed into
Ŝ = {T (S1; fy), . . . , T (Sny ; fy)} by estimated normal-
ization flow map fy of target and warping function T ( 1©
in Figure 4). The following warp-alignment block at de-
coder treats Ŝ in a target pose-agnostic manner.

2. Driver pose adaptation. The warp-alignment block in
the decoder receives {Ŝi}i=1...K and the output u of the
previous block of the decoder. In a few-shot setting, we
average resolution-compatible feature maps from differ-
ent target images (i.e., Ŝj =

∑
i Ŝ

i
j/K). To adapt pose-

normalized feature maps to the pose of the driver, we
generate an estimated flow map of the driver fu using
1 × 1 convolution that takes u as the input. Alignment
by T (Ŝj ; fu) follows ( 2© in Figure 4). Then, the result
is concatenated to u and fed into the following residual
upsampling block.

Landmark Transformer

Large structural differences between two facial landmarks
may lead to severe degradation of the quality of the reen-
actment. The usual approach to such a problem has been to
learn a transformation for every identity (Wu et al. 2018) or
by preparing a paired landmark data with the same expres-
sions (Zhang et al. 2019). However, these methods are un-
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natural in a few-shot setting where we handle unseen identi-
ties, and moreover, the labeled data is hard to be acquired. To
overcome this difficulty, we propose a novel landmark trans-
former which transfers the facial expression of the driver to
an arbitrary target identity. The landmark transformer uti-
lizes multiple videos of unlabeled human faces and is trained
in an unsupervised manner.

Landmark decomposition

Given video footages of different identities, we denote
x(c, t) as the t-th frame of the c-th video, and l(c, t) as a 3D
facial landmark. We first transform every landmark into a
normalized landmark l̄(c, t) by normalizing the scale, trans-
lation, and rotation. Inspired by 3D morphable models of
face (Blanz and Vetter 1999), we assume that normalized
landmarks can be decomposed as follows:

l̄(c, t) = l̄m + l̄id(c) + l̄exp(c, t), (3)
where l̄m is the average facial landmark geometry com-
puted by taking the mean over all landmarks, l̄id(c) de-
notes the landmark geometry of identity c, computed by
l̄id(c) =

∑
t l̄(c, t)/Tc − l̄m where Tc is the number of

frames of c-th video, and l̄exp(c, t) corresponds to the ex-
pression geometry of t-th frame. The decomposition leads
to l̄exp(c, t) = l̄(c, t)− l̄m − l̄id(c).

Given a target landmark l̄(cy, ty) and a driver landmark
l̄(cx, tx) we wish to generate the following landmark:

l̄(cx −→ cy, tx) = l̄m + l̄id(cy) + l̄exp(cx, tx), (4)
i.e., a landmark with the identity of the target and the expres-
sion of the driver. Computing l̄id(cy) and l̄exp is possible if
enough images of cy are given, but in a few-shot setting, it is
difficult to disentangle landmark of unseen identity into two
terms.

Landmark disentanglement

To decouple the identity and the expression geometry in a
few-shot setting, we introduce a neural network to regress
the coefficients for linear bases. Previously, such an ap-
proach has been widely used in modeling complex face ge-
ometries (Blanz and Vetter 1999). We separate expression
landmarks into semantic groups of the face (e.g., mouth,
nose and eyes) and perform PCA on each group to extract
the expression bases from the training data:

l̄exp(c, t) =

nexp∑
k=1

αk(c, t)bexp,k = bT
expα(c, t), (5)

where bexp,k and αk represent the basis and the correspond-
ing coefficient, respectively.

The proposed neural network, a landmark disentangler
M , estimates α(c, t) given an image x(c, t) and a landmark
l̄(c, t). Figure 5 illustrates the architecture of the landmark
disentangler. Once the model is trained, the identity and the
expression geometry can be computed as follows:

α̂(c, t) = M
(
x(c, t), l̄(c, t)

)
l̂exp(c, t) = λexpb

T
expα̂(c, t)

l̂id(c) = l̄(c, t)− l̄m − l̂exp(c, t),

(6)
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Figure 5: Architecture of landmark disentangler. Note that
l̄(c, t) is a set of landmark points but visualized as an image
in the figure.

where λexp is a hyperparameter that controls the intensity of
the predicted expressions from the network. Image feature
extracted by a ResNet-50 and the landmark, l̄(c, t)− l̄m, are
fed into a 2-layer MLP to predict α̂(c, t).

During the inference, the target and the driver landmarks
are processed according to Equation 6. When multiple target
images are given, we take the mean value over all l̂id(cy).
Finally, landmark transformer converts landmark as:

l̂(cx −→ cy, tx) = l̄m + l̂id(cy) + l̂exp(cx, tx). (7)

Denormalization to recover the original scale, translation,
and rotation is followed by the rasterization that generates
a landmark adequate for the generator to consume. Further
details of landmark transformer are described in Supplemen-
tary Material B.

Experimental Setup

Datasets We trained our model and the baselines using
VoxCeleb1 (Nagrani, Chung, and Zisserman 2017), which
contains 256× 256 size videos of 1,251 different identities.
We utilized the test split of VoxCeleb1 and CelebV (Wu et al.
2018) for evaluating self-reenactment and reenactment un-
der a different identity, respectively. We created the test set
by sampling 2,083 image sets from randomly selected 100
videos of VoxCeleb1 test split, and uniformly sampled 2,000
image sets from every identity from CelebV. The CelebV
data includes the videos of five different celebrities of widely
varying characteristics, which we utilize to evaluate the per-
formance of the models reenacting unseen targets, similar to
in-the-wild scenario. Further details of the loss function and
the training method can be found at Supplementary Material
A3 and A4.

Baselines MarioNETte variants, with and without the
landmark transformer (MarioNETte+LT and MarioNETte,
respectively), are compared with state-of-the-art models for
few-shot face reenactment. Details of each baseline are as
follows:

• X2Face (Wiles, Koepke, and Zisserman 2018). X2face
utilizes direct image warping. We used the pre-trained
model provided by the authors, trained on VoxCeleb1.
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Figure 6: Images generated by the proposed method and baselines, reenacting different identity on CelebV in one-shot setting.

• Monkey-Net (Siarohin et al. 2019). Monkey-Net adopts
feature-level warping. We used the implementation pro-
vided by the authors. Due to the structure of the method,
Monkey-Net can only receive a single target image.

• NeuralHead (Zakharov et al. 2019). NeuralHead exploits
AdaIN layers. Since a reference implementation is absent,
we made an honest attempt to reproduce the results. Our
implementation is a feed-forward version of their model
(NeuralHead-FF) where we omit the meta-learning as
well as fine-tuning phase, because we are interested in us-
ing a single model to deal with multiple identities.

Metrics We compare the models based on the following
metrics to evaluate the quality of the generated images.
Structured similarity (SSIM) (Wang et al. 2004) and peak
signal-to-noise ratio (PSNR) evaluate the low-level similar-
ity between the generated image and the ground-truth image.
We also report the masked-SSIM (M-SSIM) and masked-
PSNR (M-PSNR) where the measurements are restricted to
the facial region.

In the absence of the ground truth image where differ-
ent identity drives the target face, the following metrics are
more relevant. Cosine similarity (CSIM) of embedding vec-
tors generated by pre-trained face recognition model (Deng
et al. 2019) is used to evaluate the quality of identity preser-
vation. To inspect the capability of the model to properly
reenact the pose and the expression of the driver, we com-
pute PRMSE, the root mean square error of the head pose
angles, and AUCON, the ratio of identical facial action unit
values, between the generated images and the driving im-
ages. OpenFace (Baltrusaitis et al. 2018) is utilized to com-
pute pose angles and action unit values.

Experimental Results

Models were compared under self-reenactment and reenact-
ment of different identities, including a user study. Ablation
tests were conducted as well. All experiments were con-
ducted under two different settings: one-shot and few-shot,
where one or eight target images were used respectively.

Self-reenactment

Table 1 illustrates the evaluation results of the models un-
der self-reenactment settings on VoxCeleb1. MarioNETte
surpasses other models in every metric under few-shot set-
ting and outperforms other models in every metric except
for PSNR under the one-shot setting. However, MarioNETte
shows the best performance in M-PSNR which implies that
it performs better on facial region compared to baselines.
The low CSIM yielded from NeuralHead-FF is an indirect
evidence of the lack of capacity in AdaIN-based methods.

Reenacting Different Identity

Table 2 displays the evaluation result of reenacting a differ-
ent identity on CelebV, and Figure 6 shows generated images
from proposed method and baselines. MarioNETte and Mar-
ioNETte+LT preserve target identity adequately, thereby
outperforming other models in CSIM. The proposed method
alleviates the identity preservation problem regardless of the
driver being of the same identity or not. While NeuralHead-
FF exhibits slightly better performance in terms of PRMSE
and AUCON compared to MarioNETte, the low CSIM of
NeuralHead-FF portrays the failure to preserve the target
identity. The landmark transformer significantly boosts iden-
tity preservation at the cost of a slight decrease in PRMSE
and AUCON. The decrease may be due to the PCA bases for
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Model (# target) CSIM↑ SSIM↑ M-SSIM↑ PSNR↑ M-PSNR↑ PRMSE↓ AUCON↑
X2face (1) 0.689 0.719 0.941 22.537 31.529 3.26 0.813

Monkey-Net (1) 0.697 0.734 0.934 23.472 30.580 3.46 0.770
NeuralHead-FF (1) 0.229 0.635 0.923 20.818 29.599 3.76 0.791

MarioNETte (1) 0.755 0.744 0.948 23.244 32.380 3.13 0.825

X2face (8) 0.762 0.776 0.956 24.326 33.328 3.21 0.826
NeuralHead-FF (8) 0.239 0.645 0.925 21.362 29.952 3.69 0.795

MarioNETte (8) 0.828 0.786 0.958 24.905 33.645 2.57 0.850

Table 1: Evaluation result of self-reenactment setting on VoxCeleb1. Upward/downward pointing arrows correspond to metrics
that are better when the values are higher/lower.

Model (# target) CSIM↑ PRMSE↓ AUCON↑
X2face (1) 0.450 3.62 0.679

Monkey-Net (1) 0.451 4.81 0.584
NeuralHead-FF (1) 0.108 3.30 0.722

MarioNETte (1) 0.520 3.41 0.710
MarioNETte+LT (1) 0.568 3.70 0.684

X2face (8) 0.484 3.15 0.709
NeuralHead-FF (8) 0.120 3.26 0.723

MarioNETte (8) 0.608 3.26 0.717
MarioNETte+LT (8) 0.661 3.57 0.691

Table 2: Evaluation result of reenacting a different identity
on CelebV. Bold and underlined values correspond to the
best and the second-best value of each metric, respectively.

the expression disentanglement not being diverse enough to
span the whole space of expressions. Moreover, the disen-
tanglement of identity and expression itself is a non-trivial
problem, especially in a one-shot setting.

User Study

Two types of user studies are conducted to assess the perfor-
mance of the proposed model:

• Comparative analysis. Given three example images of
the target and a driver image, we displayed two images
generated by different models and asked human evalua-
tors to select an image with higher quality. The users were
asked to assess the quality of an image in terms of (1)
identity preservation, (2) reenactment of driver’s pose and
expression, and (3) photo-realism. We report the winning
ratio of baseline models compared to our proposed mod-
els. We believe that user reported score better reflects the
quality of different models than other indirect metrics.

• Realism analysis. Similar to the user study protocol of
Zakharov et al. (2019), three images of the same person,
where two of the photos were taken from a video and the
remaining generated by the model, were presented to hu-
man evaluators. Users were instructed to choose an image
that differs from the other two in terms of the identity un-
der a three-second time limit. We report the ratio of de-
ception, which demonstrates the identity preservation and
the photo-realism of each model.

Model (# target) vs.
Ours

vs.
Ours+LT Realism ↑

X2Face (1) 0.07 0.09 0.093
Monkey-Net (1) 0.05 0.09 0.100

NeuralHead-FF (1) 0.17 0.17 0.087
MarioNETte (1) - 0.51 0.140

MarioNETte+LT (1) - - 0.187

X2Face (8) 0.09 0.07 0.047
NeuralHead-FF (8) 0.15 0.16 0.080

MarioNETte (8) - 0.52 0.147
MarioNETte+LT (8) - - 0.280

Table 3: User study results of reenacting different identity on
CelebV. Ours stands for our proposed model, MarioNETte,
and Ours+LT stands for MarioNETte+LT.

For both studies, 150 examples were sampled from CelebV,
which were evenly distributed to 100 different human eval-
uators.

Table 3 illustrates that our models are preferred over ex-
isting methods achieving realism scores with a large mar-
gin. The result demonstrates the capability of MarioNETte
in creating photo-realistic reenactments while preserving the
target identity in terms of human perception. We see a slight
preference of MarioNETte over MarioNETte+LT, which
agrees with the Table 2, as MarioNETte+LT has better iden-
tity preservation capability at the expense of slight degra-
dation in expression transfer. Since the identity preservation
capability of MarioNETte+LT surpasses all other models in
realism score, almost twice the score of even MarioNETte
on few-shot settings, we consider the minor decline in ex-
pression transfer a good compromise.

Ablation Test

We performed ablation test to investigate the effectiveness of
the proposed components. While keeping all other things the
same, we compare the following configurations reenacting
different identities: (1) MarioNETte is the proposed method
where both image attention block and target feature align-
ment are applied. (2) AdaIN corresponds to the same model
as MarioNETte, where the image attention block is replaced
with AdaIN residual block while the target feature alignment
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Model (# target) CSIM↑ PRMSE↓ AUCON↑
AdaIN (1) 0.063 3.47 0.724

+Attention (1) 0.333 3.17 0.729
+Alignment (1) 0.530 3.44 0.700

MarioNETte (1) 0.520 3.41 0.710

AdaIN (8) 0.069 3.40 0.723
+Attention (8) 0.472 3.22 0.727

+Alignment (8) 0.605 3.27 0.709

MarioNETte (8) 0.608 3.26 0.717

Table 4: Comparison of ablation models for reenacting dif-
ferent identity on CelebV.
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Figure 7: (a) Driver and target images overlapped with atten-
tion map. Brightness signifies the intensity of the attention.
(b) Failure case of +Alignment and improved result gener-
ated by MarioNETte.

is omitted. (3) +Attention is a MarioNETte where only the
image attention block is applied. (4) +Alignment only em-
ploys the target feature alignment.

Table 4 shows result of ablation test. For identity preser-
vation (i.e., CSIM), AdaIN has a hard time combining style
features depending solely on AdaIN residual blocks. +Atten-
tion alleviates the problem immensely in both one-shot and
few-shot settings by attending to proper coordinates. While
+Alignment exhibits a higher CSIM compared to +Atten-
tion, it struggles in generating plausible images for unseen
poses and expressions leading to worse PRMSE and AU-
CON. Taking advantage of both attention and target feature
alignment, MarioNETte outperforms +Alignment in every
metric under consideration.

Entirely relying on target feature alignment for reenact-
ment, +Alignment is vulnerable to failures due to large dif-
ferences in pose between target and driver that MarioNETte
can overcome. Given a single driver image along with three
target images (Figure 7a), +Alignment has defects on the
forehead (denoted by arrows in Figure 7b). This is due to
(1) warping low-level features from a large-pose input and
(2) aggregating features from multiple targets with diverse
poses. MarioNETte, on the other hand, gracefully handles
the situation by attending to proper image among several

target images as well as adequate spatial coordinates in the
target image. The attention map, highlighting the area where
the image attention block is focusing on, is illustrated with
white in Figure 7a. Note that MarioNETte attends to the
forehead and adequate target images (Target 2 and 3 in Fig-
ure 7a) which has similar pose with driver.

Related Works

The classical approach to face reenactment commonly
involves the use of explicit 3D modeling of human
faces (Blanz and Vetter 1999) where the 3DMM param-
eters of the driver and the target are computed from a
single image, and blended eventually (Thies et al. 2015;
2016). Image warping is another popular approach where
the target image is modified using the estimated flow ob-
tained form 3D models (Cao et al. 2013) or sparse land-
marks (Averbuch-Elor et al. 2017). Face reenactment studies
have embraced the recent success of neural networks explor-
ing different image-to-image translation architectures (Isola
et al. 2017) such as the works of Xu et al. (2017) and that
of Wu et al. (2018), which combined the cycle consistency
loss (Zhu et al. 2017). A hybrid of two approaches has been
studied as well. Kim et al. (2018) trained an image trans-
lation network which maps reenacted render of a 3D face
model into a photo-realistic output.

Architectures, capable of blending the style information
of the target with the spatial information of the driver, have
been proposed recently. AdaIN (Huang and Belongie 2017;
Huang et al. 2018; Liu et al. 2019) layer, attention mech-
anism (Zhu et al. 2019; Lathuilière et al. 2019; Park and
Lee 2019), deformation operation (Siarohin et al. 2018;
Dong et al. 2018), and GAN-based method (Bao et al. 2018)
have all seen a wide adoption. Similar idea has been ap-
plied to few-shot face reenactment settings such as the use
of image-level (Wiles, Koepke, and Zisserman 2018) and
feature-level (Siarohin et al. 2019) warping, and AdaIN
layer in conjuction with a meta-learning (Zakharov et al.
2019). The identity mismatch problem has been studied
through methods such as CycleGAN-based landmark trans-
formers (Wu et al. 2018) and landmark swappers (Zhang et
al. 2019). While effective, these methods either require an
independent model per person or a dataset with image pairs
that may be hard to acquire.

Conclusions

In this paper, we have proposed a framework for few-shot
face reenactment. Our proposed image attention block and
target feature alignment, together with the landmark trans-
former, allow us to handle the identity mismatch caused by
using the landmarks of a different person. Proposed method
do not need additional fine-tuning phase for identity adap-
tation, which significantly increases the usefulness of the
model when deployed in-the-wild. Our experiments includ-
ing human evaluation suggest the excellence of the proposed
method.

One exciting avenue for future work is to improve the
landmark transformer to better handle the landmark disen-
tanglement to make the reenactment even more convincing.
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