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Abstract

Conditional generative adversarial networks have shown ex-
ceptional generation performance over the past few years.
However, they require large numbers of annotations. To ad-
dress this problem, we propose a novel generative adversarial
network utilizing weak supervision in the form of pairwise
comparisons (PC-GAN) for image attribute editing. In the
light of Bayesian uncertainty estimation and noise-tolerant
adversarial training, PC-GAN can estimate attribute rating ef-
ficiently and demonstrate robust performance in noise resis-
tance. Through extensive experiments, we show both quali-
tatively and quantitatively that PC-GAN performs compara-
bly with fully-supervised methods and outperforms unsuper-
vised baselines. Code and Supplementary can be found on the
project website∗.

Introduction

Generative adversarial networks (GAN) (Goodfellow et al.
2014) have shown great success in producing high-quality
realistic imagery by training a set of networks to gener-
ate images of a target distribution via an adversarial set-
ting between a generator and a discriminator. New architec-
tures have also been developed for adversarial learning such
as conditional GAN (CGAN) (Mirza and Osindero 2014;
Odena, Olah, and Shlens 2016; Han, Murphy, and Ramanan
2018) which feeds a class or an attribute label for a model to
learn to generate images conditioned on that label. The su-
perior performance of CGAN makes it favorable for many
problems in artificial intelligence (AI) such as image at-
tribute editing.

However, this task faces a major challenge from the lack
of massive labeled images with varying attributes. Many re-
cent works attempt to alleviate such problems using semi-
supervised or unsupervised conditional image synthesis (Lu-
cic et al. 2019). These methods mainly focus on condi-
tioning the model on categorical pseudo-labels using self-
supervised image feature clustering. However, attributes are
often continuous-valued, for example, the stroke thickness
of MNIST digits. In such cases, applying unsupervised clus-
tering would be difficult since features are most likely to
be grouped by salient attributes (like identities) rather than

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

∗https://github.com/phymhan/pc-gan

Figure 1: The generative process. Starting from a source im-
age x, our model is able to synthesize a new image x̃′ with
the desired attribute intensity possessed by the target image
x′.

any other attributes of interest. In this work, to disentangle
the target attribute from the rest, we focus on learning from
weak supervisions in the form of pairwise comparisons.
Pairwise comparisons. Collecting human preferences on
pairs of alternatives, rather than evaluating absolute indi-
vidual intensities, is intuitively appealing, and more im-
portantly, supported by evidence from cognitive psychol-
ogy (Fürnkranz and Hüllermeier 2010). As pointed out
by Yan (2016), we consider relative attribute annotation be-
cause they are (1) easier to obtain than total orders, (2) more
accurate than absolute attribute intensities, and (3) more re-
liable in application like crowd-sourcing. For example, it
would be hard for an annotator to accurately quantify the
attractiveness of a person’s look, but much easier to decide
which one is preferred given two candidates. Moreover, at-
tributes in images are often subjective. Different annotators
have different criteria in their mind, which leads to noisy
annotations (Xu et al. 2019).

Thus, instead of assigning an absolute attribute value
to an image, we allow the model to learn to rank and
assign a relative order between two images (Yan 2016;
Fürnkranz and Hüllermeier 2010). This method alleviates
the aforementioned problem of lacking continuously valued
annotations by learning to rank using pairwise comparisons.

Weakly supervised GANs. Our main idea is to substitute
the full supervision with the attribute ratings learned from
weak supervisions, as illustrated in Figure 1. To do so, we
draw inspiration from the Elo rating system (Elo 1978) and
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design a Bayesian Siamese network to learn a rating function
with uncertainty estimations. Then, for image synthesis, mo-
tivated by (Thekumparampil et al. 2018) we use “corrupted”
labels for adversarial training. The proposed framework can
(1) learn from pairwise comparisons, (2) estimate the uncer-
tainty of predicted attribute ratings, and (3) offer quantitative
controls in the presence of a small portion of absolute anno-
tations. Our contributions can be summarized as follows.
• We propose a weakly supervised generative adversarial

network, PC-GAN, from pairwise comparisons for image
attribute manipulation. To the best of our knowledge, this
is the first GAN framework considering relative attribute
orders.

• We use a novel attribute rating network motivated from
the Elo rating system, which models the latent score un-
derlying each item and tracks the uncertainty of the pre-
dicted ratings.

• We extend the robust conditional GAN to continuous-
value setting, and show that the performance can be
boosted by incorporating the predicted uncertainties from
the rating network.

• We analyze the sample complexity which shows that this
weakly supervised approach can save annotation effort.
Experimental results show that PC-GAN is competitive
with fully-supervised models, while surpassing unsuper-
vised methods by a large margin.

Related Work
Learning to rank. Our work focuses on finding “scores”
for each item (e.g. player’s rating) in addition to obtaining a
ranking. The popular Bradley-Terry-Luce (BTL) model pos-
tulates a set of latent scores underlying all items, and the Elo
system corresponds to the logistic variant of the BTL model.
Numerous algorithms have been proposed since then. To
name a few, TrueSkill (Herbrich, Minka, and Graepel 2007)
considers a generalized Elo system in the Bayesian view.
Rank Centrality (Negahban, Oh, and Shah 2016) builds on
spectral ranking and interprets the scores as the stationary
probability under the random walk over comparison graphs.
However, these methods are not designed for amortized in-
ference, i.e. the model should be able to score (or extrapo-
late) an unseen item for which no comparisons are given.
Apart from TrueSkill and Rank Centrality, the most rele-
vant work is the RankNet (Burges et al. 2005). Despite be-
ing amortized, RankNet is homoscedastic and falls short of
a principled justification as well as providing uncertainty es-
timations.
Weakly supervised learning. Weakly-supervised learning
focuses on learning from coarse annotations. It is useful
because acquiring annotations can be very costly. A close
weakly supervised setting to our problem is (Xiao and
Jae Lee 2015) which learns the spatial extent of relative at-
tributes using pairwise comparisons and gives an attribute
intensity estimation. However, most facial attributes like at-
tractiveness and age are not localized features thus cannot
be exploited by local regions. In contrast, our work uses this
relative attribute intensity for attribute transfer and manipu-
lation.

Uncertainty. There are two uncertainty measures one can
model: aleatoric uncertainty and epistemic uncertainty. The
epistemic uncertainty captures the variance of model pre-
dictions caused by lack of sufficient data; the aleatoric
uncertainty represents the inherent noise underlying the
data (Kendall and Gal 2017). In this work, we leverage
Bayesian neural networks (Gal and Ghahramani 2016) as
a powerful tool to model uncertainties in the Elo rating net-
work.
Robust conditional GAN (RCGAN). Conditioning on the
estimated ratings, a normal conditional generative model can
be vulnerable under bad estimations. To this end, recent re-
search introduces noise robustness to GANs. Bora, Price,
and Dimakis (2018) apply a differentiable corruption to the
output of the generator before feeding it into the discrim-
inator. Similarly, RCGAN (Thekumparampil et al. 2018)
proposes to corrupt the categorical label for conditional
GANs and provides theoretical guarantees. Both methods
have shown great denoising performance when noisy ob-
servations are present. To address our problem, we extend
RCGAN to the continuous-value setting and incorporate un-
certainties to guide the image generation.
Image attribute editing. There are many recent GAN-
style architectures focusing on image attribute editing. IPC-
GAN (Wang et al. 2018) proposes an identity preserving
loss for facial attribute editing. Zhu et al. (2017) propose
cycle consistency loss that can learn the unpaired transla-
tion between image and attribute. BiGAN/ALI (Donahue,
Krähenbühl, and Darrell 2016; Dumoulin et al. 2016) learns
an inverse mapping between image-and-attribute pairs.

There exists another line of research that is not GAN-
based. Deep feature interpolation (DFI) (Upchurch et al.
2017) relies on linear interpolation of deep convolutional
features. It is also weakly-supervised in the sense that it
requires two domains of images (e.g. young or old) with
inexact annotations (Zhou 2017). DFI demonstrates high-
fidelity results on facial style transfer. While, the generated
pixels look unnatural when the desired attribute intensity
takes extreme values, we also find that DFI cannot control
the attribute intensity quantitatively. Unlike prior research,
our method uses weak supervision in the form of pairwise
comparisons and leverages uncertainty together with noise-
tolerant adversarial learning to yield a robust performance in
image attribute editing.

Pairwise Comparison GAN

In this section, we introduce the proposed method for pair-
wise weakly-supervised visual attribute editing. Denote an
image collection as I = {x1, · · · , xn} and xi’s underlying
absolute attribute values as Ω (xi). Given a set of pairwise
comparisons C (e.g., Ω (xi) > Ω (xj) or Ω (xi) = Ω (xj),
where i, j ∈ {1, · · · , n}), our goal is to generate a realistic
image quantitatively with a different desired attribute inten-
sity, for example, from 20 years old to 50 years old. The pro-
posed framework consists of an Elo rating network followed
by a noise-robust conditional GAN.
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Figure 2: The Elo rating network. The comparison is per-
formed by feeding into a sigmoid function the difference of
ratings (scalar) of a given image pair. After training, the en-
coder E is used to train the PC-GAN, as illustrated in Fig-
ure 3.

Attribute Rating Network

The designed attribute rating module is motivated by the Elo
rating system (Elo 1978), which is widely used to evalu-
ate the relative levels of skills between players in zero-sum
games. Elo rating from a player is represented as a scalar
value which is adjusted based on the outcome of games. We
apply this idea to image attribute editing by considering each
image as a player and comparison pairs as games with out-
comes. Then we learn a rating function.
Elo rating system. The Elo system assumes the perfor-
mance of each player is normally distributed. For exam-
ple, if Player A has a rating of yA and Player B
has a rating of yB , the probability of Player A winning
the game against Player B can be predicted by PA =

1
1+10(yB−yA)/400 . We use SA to denote the actual score that
Player A obtains after the game, which can be valued as
SA(win) = 1, SA(tie) = 0.5, SA(lose) = 0. After each
game, the player’s rating is updated according to the differ-
ence between the prediction PA and the actual score SA by
y′A = yA +K(SA − PA), where K is a constant.
Image pair rating prediction network. Given an image
pair (xA, xB) and a certain attribute Ω, we propose to use a
neural network for predicting the relative attribute relation-
ship between Ω(xA) and Ω(xB). This design allows amor-
tized inference, that is, the rating prediction network can
provide ratings for both seen and unseen data. The model
structure is illustrated in Figure 2.

The network contains two input branches fed with xA

and xB . For each image x, we propose to learn its rat-
ing value yx by an encoder network E(x). Assuming the
rating value of x follows a normal distribution, that is
yx ∼ N

(
μ(x), σ2(x)

)
, we employ the reparameterization

trick (Kingma and Welling 2013), yx = μ(x)+εσ(x) (where
ε ∼ N (0, I)). After obtaining each image’s latent rating
yA and yB , we formulate the pair-wise attribute compari-
son prediction as PA,y(Ω(xA) > Ω(xB)|xA, xB , yA, yB) =
sigm(yA − yB) where sigm is the sigmoid function. Then,
the predictive probability of xA winning xB is obtained by
integrating out the latent variables yA and yB ,

PA(Ω(xA) > Ω(xB)|xA, xB) =

∫
sigm(yA − yB)dyAdyB ,

(1)

and PB = 1 − PA. The above integration is intractable,
and can be approximated by Monte Carlo, PA ≈ PMC

A =
1
M

∑M
m=1 PA,y . We denote the ground-truth of PA and PB

as SA and SB . The ranking loss Lrank can be formulated
with a logistic-type function, that is

LMC
rank = −ExA,xB∼C

[
SA logPMC

A + SB logPMC
B

]
. (2)

Noticing that LMC
rank is biased, an alternative unbiased upper

bound can be derived as

LUB
rank = −ExA,xB∼C

[
1

M

M∑
m=1

SA logPA,y + SB logPB,y

]
.

(3)

In practice, we find that LUB
rank performs slightly better than

LMC
rank.
We further consider a Bayesian variant of E . The Bayesian

neural network is shown to be able to provide the epistemic
uncertainty of the model by estimating the posterior over
network weights in network parameter training (Kendall
and Gal 2017) . Specifically, let qθ(w) be an approxi-
mation of the true posterior p(w|data) where θ denotes
the parameter of q, we measure the difference between
qθ(w) and p(w|data) with the KL-divergence. The over-
all learning objective is the negative evidence lower bound
(ELBO) (Kingma and Welling 2013; Gal and Ghahramani
2016),

LE = Lrank + DKL(qθ(w)‖p(w|data))︸ ︷︷ ︸
KL

. (4)

Gal and Ghahramani (2016) propose to view dropout to-
gether with weight decay as a Bayesian approximation,
where sampling from qθ is equivalent to performing dropout
and the KL term in Equation 4 becomes L2 regularization
(or weight decay) on θ.

The predictive uncertainty of rating y for image x can be
approximated using:

σ̂2(y) ≈ 1

T

T∑
t=1

μ2
t − (

1

T

T∑
t=1

μt)
2 +

1

T

T∑
t=1

σ2
t (5)

with {μt, σt}Tt=1 a set of T sampled outputs: μt, σt = E(x).
Transitivity. Notice that the transitivity does not hold be-
cause of the stochasticity in y. If we fix σ(·) to be zero
and a non-Bayesian version is used, the Elo rating net-
work becomes a RankNet (Burges et al. 2005), and tran-
sitivity holds. However, one can still maintain transitiv-
ity by avoiding reparameterization and modeling PA =

sigm( μ(xA)−μ(xB)√
σ2(xA)+σ2(xB)

). In practice, we find that reparam-

eterization works better.

Conditional GAN with Noisy Information

We construct a CGAN-based framework for image synthe-
sis conditioned on the learned attribute rating. The overall
training procedure is shown in Figure 3: given a pair of im-
ages x and x′, the generator G is trained to transform x
into x̃′ = G(x, y′), such that x̃′ possesses the same rating
y′ = E(x′) as x′. The predicted ratings can still be noisy,
thus a robust conditional GAN is considered. While RC-
GAN (Thekumparampil et al. 2018) is conditioned on dis-
crete categorical labels that are “corrupted” by a confusion
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Figure 3: Overview of PC-GAN. Image x̃′ is synthesized
from x and y′. y′ is then “corrupted” to ỹ′ by the transition
T , where T is a sampling process ỹ′ ∼ N (y′, σ̂′2). The
reconstruction on attribute rating enforces mutual informa-
tion maximization. The main difference between PC-GAN
and a normal conditional GAN is that the conditioned rating
of the generated sample is corrupted before feeding into the
adversarial discriminator, forcing the generator to produce
samples with clean ratings.

matrix, our model relies on the ratings that are continuous-
valued and realizes the “corruption” via resampling.
Adversarial loss. Given image x, the corresponding rating
y can be obtained from a forward pass of the pre-trained
encoder E . Thus E defines a joint distribution pE(x, y) =
pdata(x)pE(y|x). Importantly, the output x̃′ of G is paired
with a corrupted rating ỹ′ = T (y′), where T is a sampling
process ỹ′ ∼ N (y′, σ̂′2). The adversarial loss is

LCGAN =Ex,y∼p(x,y)log(D(x, y)) + (6)

Ex∼p(x),y′∼p(y′),ỹ′∼T (y′)log(1−D(G(x, y′), ỹ′)).

The discriminator D is discriminating between real data
(x, y) and generated data (G(x, y′), T (y′)). At the same
time, G is trained to fool D by producing images that are
both realistic and consistent with the given attribute rating.
As such, the Bayesian variant of the encoder is required for
considering robust conditional adversarial training.
Mutual information maximization. Besides conditioning
the discriminator, to further encourage the generative pro-
cess to be consistent with ratings and thus learn a disentan-
gled representation (Chen et al. 2016), we add a reconstruc-
tion loss on the predictive ratings:

Ly
rec = Ex∼p(x),y′∼p(y′)

1

2σ̂′2 ‖E(G(x, y
′))− y′‖22 +

1

2
log σ̂′2.

(7)

The above reconstruction loss can be viewed as the condi-
tional entropy between y′ and G(x, y′),

Ly
rec ∝ −Ey′∼p(y′),x̃′∼G(x,y′)[log p(y

′|x̃′)]

= −Ey′∼p(y′),x̃′∼G(x,y′)
[
Ey∼(y|x̃′)[log (y|x̃′)]

]

= H(y′|G(x, y′)). (8)

Following the same logic, the cycle loss can be also viewed
as maximizing the mutual information between x and x̃′.
Full objective. Finally, the full objective can be written as:

L(G,D) = LCGAN + λrecLy
rec + λcycLcyc, (9)

where λs control the relative importance of corresponding
losses. The final objective formulates a minimax problem
where we aim to solve:

G∗ = argmin
G

max
D

L(G,D). (10)

Analysis of loss functions. Goodfellow et al. (2014) show
that the adversarial training results in minimizing the
Jensen-Shannon divergence between the true conditional
and the generated conditional. Here, the approximated con-
ditional will converge to the distribution characterized by the
encoder E . If E is optimal, the approximated conditional will
converge to the true conditional, we defer the proof in Sup-
plementary.
GAN training. In practice, we find that the conditional gen-
erative model trains better if equal-pairs (pairs with approxi-
mately equal attribute intensities) are filtered out and only
different-pairs (pairs with clearly different intensities) are
remained. Comparisons of training CGAN with or without
equal-pairs can be found in Supplementary.
Number of pairs. Suppose there are n images in the dataset,
then the possible number of pairs is upper bounded by n(n−
1)/2. However, if O(n2) pairs are necessary, there is no ben-
efit of choosing pairwise comparisons over absolute label
annotation. Using results from (Radinsky and Ailon 2011;
Wauthier, Jordan, and Jojic 2013), the following proposition
shows that only O(n) comparisons are needed to recover an
approximate ranking. We also provide an empirical study in
the Supplementary.
Proposition 0.1. For a constant d and any 0 < λ < 1,
if we measure dn/λ2 comparisons chosen uniformly with
repetition, the Elo rating network will output a permutation
π̂ of expected risk at most (2/λ)(n(n− 1)/2).

Experiments
In this section, we first present a motivating experiment on
MNIST. Then we evaluate the PC-GAN in two parts: (1)
learning attribute ratings, and (2) conditional image synthe-
sis, both qualitatively and quantitatively.
Dataset. We evaluate PC-GAN on a variety of datasets for
image attribute editing tasks:
• Annotated MNIST (Kim 2017) provides annotations of

stroke thickness for MNIST (LeCun et al. 1998) dataset.
• CACD (Chen, Chen, and Hsu 2014) is a large dataset

collected for cross-age face recognition, which includes
2,000 subjects and 163,446 images. It contains multiple
images for each person which cover different ages.

• UTKFace (Zhang and Qi 2017) is also a large-scale face
dataset with a long age span, ranging from 0 to 116 years.
This dataset contains 23,709 facial images with annota-
tions of age, gender, and ethnicity.

• SCUT-FBP (Xie et al. 2015) is specifically designed for
facial beauty perception. It contains 500 Asian female
portraits with attractiveness ratings (1 to 5) labeled by 75
human raters.

• CelebA (Liu et al. 2015) is a standard large-scale dataset
for facial attribute editing. It consists of over 200k images,
annotated with 40 binary attributes.
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(a) Comparison across baselines.
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Figure 4: Results of facial attribute editing and Annotated MNIST: (left a) results of various baselines on different datasets,
unsupervised baselines cannot effectively change the attribute intensity; (right b-d) results on Annotated MNIST. (b) t-SNE
visualization of raw pixels, shapes correspond to numbers, and colors represent thickness levels. (c) Labels are jittered with
random noise for better visualization.

No Supervision Full Supervision Weak Supervision

Dataset Real CycleGAN BiGAN Disc-CGAN Cont-CGAN DFI PC-GAN
CACD 94.37(train) 49.00(val) 20.52 19.66 46.02 41.62 20.92 48.44
UTK 98.19(train) 76.80(val) 19.46 20.50 71.44 59.16 22.90 63.88
SCUT-FBP 100.00(train) 58.00(val) 19.75 20.38 29.63 46.25 22.69 40.00
Average Rank – 5.67 5.33 2.00 2.33 4.00 1.67

Table 1: Evaluation of classification accuracies on synthesized images, higher is better.

Figure 5: Results on CACD. The target attribute is age. Val-
ues from Attr0 to Attr4 correspond to age of 15, 25, 35,
45 and 55, respectively.

For the MNIST experiment, stroke thickness is the desired
attribute. As illustrated in Figure 4-b, the thickness infor-
mation is still entangled. But in Figure 4-c, the thickness is
correctly disentangled from the rest attributes.

We use CACD and UTK for age progression, SCUT-FBP
and CelebA for attractiveness experiment. Since no true rel-
atively labeled dataset is publically available, pairs are sim-
ulated from “ground-truth” attribute intensity given in the
dataset. The tie margins within which two candidates are
considered equal are 10, 10, and 0.4 for CACD, UTK, and

Figure 6: Results on UTKFace. The target attribute is age.
Values from Attr0 to Attr4 correspond to age of 10, 30,
50, 70 and 90, respectively.

SCUT-FBP, respectively. This also simplifies the quantita-
tive evaluation process since one can directly measure the
prediction error for absolute attribute intensities. Notice that
CelebA only provides binary annotations, from which pair-
wise comparisons are simulated. Interestingly, the Elo rat-
ing network is still able to recover approximate ratings from
those binary labels.

Furthermore, since CACD, UTKFace, SCUT-FBP, and
CelebA are all human face dataset, we add an identity pre-
serving loss term (Wang et al. 2018) to enforce identity
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Figure 7: Results on SCUT-FBP. The target attribute is at-
tractiveness score (1 to 5). Values from Attr0 to Attr4
correspond to score of 1.375, 2.125, 2.875, 3.625 and 4.5,
respectively.

Figure 8: Results on CelebA. The target attribute is attrac-
tiveness. We take the cluster mean of ratings for “attractive”
being -1 and 1 as Attr0 and Attr4 respectively. Attr1
to Attr3 are then linearly sampled. Results show a smooth
transition of visual features, for example, facial hair, aging
related features, smile lines, and shape of eyes.

preservation: Lidt = Ex∼p(x),y∼p(y)‖h(G(x, y))− h(x)‖22.
Here, h(·) denotes a pre-trained convnet.

Learning by Pairwise Comparison

Rating visualization. Figure 9 presents the predicted ratings
learned from CACD, UTKFace, and SCUT-FBP from left to
right. The ratings learned from pairwise comparisons highly
correlate with the ground-truth labels, which indicates that
the rating resembles the attribute intensity well. The uncer-
tainties v.s. ground-truth labels is visualized in Figure 10.
The plots show a general trend that the model is more cer-
tain about instances with extreme attribute values than those
in the middle range, which matches our intuition. Additional
attention-based visualizations are given in Supplementary.
Noise resistance. As mentioned previously, not only does
pairwise comparison require less annotating effort, it tends
to yield more accurate annotations. Consider a simple set-

CACD UTKFace

Model Acc (%) IS FID Acc (%) IS FID
CNN-CGAN 35.04 2.14±0.02 31.08±0.54 40.12 2.69±0.03 26.58±0.51
BNN-CGAN 37.64 2.38±0.04 27.36±0.36 38.54 2.72±0.03 26.56±0.40
BNN-RCGAN 41.02 2.45±0.03 30.22±0.51 43.64 2.84±0.04 25.25±0.39

Table 2: Ablation study of Bayesian uncertainty estimation.
CNN-CGAN is the normal non-Bayesian Elo rating network
without uncertainty estimations; BNN-CGAN uses the av-
erage ratings for a single image; BNN-RCGAN is the full
Bayesian model with a noise-robust CGAN.

Loss CACD UTKFace

CGAN rec cyc idt Acc (%) IS FID Acc (%) IS FID
� � � � 48.08 2.87±0.04 27.90±0.44 62.74 3.50±0.04 21.63±0.52
� � � � 39.50 2.93±0.04 25.68±0.46 56.90 3.38±0.05 24.98±0.88
� � � � 50.86 3.10±0.04 25.93±0.55 60.56 3.39±0.05 23.70±0.65
� � � � 48.60 3.05±0.03 26.81±0.59 63.92 3.60±0.05 27.65±0.75
� � � � 48.98 3.01±0.03 26.90±0.67 66.34 3.65±0.04 25.39±0.86
� � � � 24.28 3.06±0.04 24.01±0.66 50.42 3.02±0.04 48.80±1.70
� � � � 43.86 2.94±0.05 24.27±0.58 62.42 3.54±0.04 32.87±1.47
� � � � 20.08 1.59±0.02 293.03±1.40 34.88 2.16±0.04 187.98±2.17

Table 3: Ablation studies of different loss terms in CGAN
training. CGAN represents LCGAN , rec represents Lrec and
so on.

ting: if all annotators (annotating the absolute attribute
value) exhibit the same random noise with a tie margin M ,
then the corresponding pairwise annotation with the same
tie margin would absorb the noise. We provide an empirical
study in the Supplementary.

Conditional Image Synthesis

Baselines. We consider two unsupervised baselines Cy-
cleGAN and BiGAN, two fully-supervised baselines Disc-
CGAN and Cont-CGAN, and DFI in a similar weakly-
supervised setting.
• CycleGAN (Zhu et al. 2017) learns an encoder (or a “gen-

erator” from images to attributes) and a generator between
images and attributes simultaneously.

• ALI/BiGAN(Donahue, Krähenbühl, and Darrell 2016;
Dumoulin et al. 2016) learns the encoder (an inverse map-
ping) with a single discriminator.

• Disc-CGAN/IPCGAN (Wang et al. 2018) takes dis-
cretized attribute intensities (one-hot embedding) as su-
pervision.

• Cont-CGAN uses the same CGAN framework as PC-
GAN but ratings are replaced by true labels. It is an upper
bound of PC-GAN.

• DFI (Upchurch et al. 2017) can control the intensity of
attribute intensity continuously, however, cannot change
the intensity quantitatively. To transform x into x̃′, we as-
sume φ(x̃′) = φ(x) + αw and compute y′ = w · φ(x′)
(w is the attribute vector), then α is given by α =

(y′ − w · φ(x))/‖w‖22.
Qualitative results. In Figure 4, we compare our results
with all baselines. For each row, we take a source and a
target image as inputs and our goal is to edit the attribute
value of the source image to be equal to that of the target
image. PC-GAN is competitive with fully-supervised base-
lines while all unsupervised methods fail to change attribute
intensities.
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Figure 9: Visualization of learned ratings for different
datasets. rs denotes the Spearman’s rank correlation coef-
ficient.
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Figure 10: Visualization of the predictive uncertainty of
learned ratings for different datasets (best viewed in
color). Aleatoric (data-dependent) and epistemic (model-
dependent) uncertainties are plotted separately.

More results are shown in Figure 5, 7, 6, where the tar-
get rating value is the average of (cluster mean) a batch
of (10 to 50) labeled images. From Figure 5, we see ag-
ing characteristics like receding hairlines and wrinkles are
well learned. Figure 6 shows convincing indications of re-
juvenation and age progression. Figure 7 shows results for
SCUT-FBP, which is inherently challenging because of the
size of the dataset. Compared to datasets such as CACD,
SCUT-FBP is significantly smaller, with only 500 images
in total (from which we take 400 for training). Training on
large datasets, as the CelebA experiment in Figure 8 shows,
our model produces convincing results. We also find that the
model is capable of learning important patterns that corre-
spond to attractiveness, such as in the hairstyle and the shape
of the cheek shown in Figure 7. (The result does not repre-
sent the authors’ opinion of attractiveness, but only reflects
the statistics of the annotations.)

CACD UTKFace

Method Quality (%) Acc (%) Quality (%) Acc (%)
Real 97 36 88 52
PC-GAN 57 33 56 50
Cont-CGAN 60 31 55 37
Disc-CGAN 64 30 54 45

Table 4: AMT user studies. 100 images are sampled uni-
formly for each method with 20 images in each group.

Quantitative results. For quantitative evaluations, we re-
port in Table 1 classification accuracy (Acc) evaluated on
synthesized images. In our experiments, we train classi-
fiers to predict attribute intensities of images into discrete
groups (CACD 11-20, 21-30, up to > 50; UTK 1-20, 21-40,
up to > 80, SCUT-FBP 1-1.75, 1.75-2.5, up to > 4).

PC-GAN demonstrates comparable performance with fully-
supervised baselines and are significantly better than un-
supervised methods. Additional metrics are reported in the
Supplementary.
AMT user studies. We also conduct user study experiments.
Workers from Amazon Mechanical Turk (AMT) are asked
to rate the quality of each face (good or bad) and vote to
which age group a given image belongs. Then we calculate
the percentage of images rated as good and the classification
accuracy. Table 4 shows that PC-GAN is on a par with the
fully-supervised counterparts.

Ablation Studies

Supervision. The comparisons in Table 1 serve as an abla-
tion study of full, no, and weak supervision, where PC-GAN
is on a par with fully-supervised and significantly better than
unsupervised baselines.
Uncertainty. The ablation study of the effectiveness of
adding Bayesian uncertainties to achieve robust conditional
adversarial training is given in Table 2. The three variants
considered in the table differ in how much the Bayesian neu-
ral net is involved in the whole training pipeline: CNN-CGAN
is a non-Bayesian Elo rating network plus a normal CGAN,
BNN-CGAN learns a Bayesian encoder and yields the aver-
age ratings for a given image, and BNN-RCGAN trains a full
Bayesian encoder with a noise-robust CGAN. Results con-
firm that the performance can be boosted by integrating an
uncertainty-aware Elo rating network and an extended ro-
bust conditional GAN.
GAN loss terms. An ablation study of CGAN loss terms
is provided in Table 3. Notice that setting some losses to
zero is a special case of our full objective under different λs.
Although we did not extensively tune λ’s values since it is
not the main focus of this paper, we conclude that Lrec is
the most important term in terms of image qualities.

Conclusion

In this paper, we propose a noise-robust conditional GAN
framework under weak supervision for image attribute edit-
ing. Our method can learn an attribute rating function and
estimate the predictive uncertainties from pairwise compar-
isons, which requires less annotation effort. We show in ex-
tensive experiments that the proposed PC-GAN performs
competitively with the supervised baselines and significantly
outperforms the unsupervised baselines.
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Fürnkranz, J., and Hüllermeier, E. 2010. Preference learning
and ranking by pairwise comparison. In Preference learn-
ing. Springer. 65–82.
Gal, Y., and Ghahramani, Z. 2016. Dropout as a bayesian ap-
proximation: Representing model uncertainty in deep learn-
ing. In international conference on machine learning, 1050–
1059.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In Advances in neural
information processing systems, 2672–2680.
Han, L.; Murphy, R. F.; and Ramanan, D. 2018. Learn-
ing generative models of tissue organization with supervised
gans. In 2018 IEEE Winter Conference on Applications of
Computer Vision (WACV), 682–690. IEEE.
Herbrich, R.; Minka, T.; and Graepel, T. 2007. TrueskillTM:
a bayesian skill rating system. In Advances in neural infor-
mation processing systems, 569–576.
Kendall, A., and Gal, Y. 2017. What uncertainties do we
need in bayesian deep learning for computer vision? In
Advances in neural information processing systems, 5574–
5584.
Kim, B. 2017. Annotated mnist: Thickness and
skew labeler for mnist handwritten digit dataset.
https://github.com/1202kbs/Annotated MNIST.
Kingma, D. P., and Welling, M. 2013. Auto-encoding vari-
ational bayes. arXiv preprint arXiv:1312.6114.
LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P.; et al. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11):2278–2324.
Liu, Z.; Luo, P.; Wang, X.; and Tang, X. 2015. Deep learning
face attributes in the wild. In Proceedings of International
Conference on Computer Vision (ICCV).
Lucic, M.; Tschannen, M.; Ritter, M.; Zhai, X.; Bachem, O.;
and Gelly, S. 2019. High-fidelity image generation with
fewer labels. arXiv preprint arXiv:1903.02271.
Mirza, M., and Osindero, S. 2014. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784.

Negahban, S.; Oh, S.; and Shah, D. 2016. Rank centrality:
Ranking from pairwise comparisons. Operations Research
65(1):266–287.
Odena, A.; Olah, C.; and Shlens, J. 2016. Conditional im-
age synthesis with auxiliary classifier gans. arXiv preprint
arXiv:1610.09585.
Radinsky, K., and Ailon, N. 2011. Ranking from pairs and
triplets: information quality, evaluation methods and query
complexity. In Proceedings of the fourth ACM international
conference on Web search and data mining, 105–114. ACM.
Thekumparampil, K. K.; Khetan, A.; Lin, Z.; and Oh, S.
2018. Robustness of conditional gans to noisy labels. In Ad-
vances in Neural Information Processing Systems, 10271–
10282.
Upchurch, P.; Gardner, J. R.; Pleiss, G.; Pless, R.; Snavely,
N.; Bala, K.; and Weinberger, K. Q. 2017. Deep feature
interpolation for image content changes. In CVPR, 6090–
6099.
Wang, Z.; Tang, X.; Luo, W.; and Gao, S. 2018. Face ag-
ing with identity-preserved conditional generative adversar-
ial networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 7939–7947.
Wauthier, F.; Jordan, M.; and Jojic, N. 2013. Efficient rank-
ing from pairwise comparisons. In International Conference
on Machine Learning, 109–117.
Xiao, F., and Jae Lee, Y. 2015. Discovering the spatial ex-
tent of relative attributes. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, 1458–1466.
Xie, D.; Liang, L.; Jin, L.; Xu, J.; and Li, M. 2015. Scut-
fbp: A benchmark dataset for facial beauty perception. arXiv
preprint arXiv:1511.02459.
Xu, Q.; Yang, Z.; Jiang, Y.; Cao, X.; Huang, Q.; and Yao, Y.
2019. Deep robust subjective visual property prediction in
crowdsourcing. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 8993–9001.
Yan, S. 2016. Passive and active ranking from pairwise
comparisons. Technical report, University of California, San
Diego.
Zhang, Zhifei, S. Y., and Qi, H. 2017. Age progres-
sion/regression by conditional adversarial autoencoder. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). IEEE.
Zhou, Z.-H. 2017. A brief introduction to weakly supervised
learning. National Science Review 5(1):44–53.
Zhu, J.-Y.; Park, T.; Isola, P.; and Efros, A. A. 2017. Un-
paired image-to-image translation using cycle-consistent ad-
versarial networks. In Proceedings of the IEEE international
conference on computer vision, 2223–2232.

10916


