
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Tensor FISTA-Net for Real-Time Snapshot Compressive Imaging

Xiaochen Han,1 Bo Wu,2 Zheng Shou,2 Xiao-Yang Liu,2
∗

Yimeng Zhang,2 Linghe Kong1

1Shanghai Jiao Tong University, China
2Columbia University, USA

{guillermo han97, linghe.kong}@sjtu.edu.cn, {bo.wu, zs2262, xl2427, yz3397}@columbia.edu

Abstract

Snapshot compressive imaging (SCI) cameras capture high-
speed videos by compressing multiple video frames into a
measurement frame. However, reconstructing video frames
from the compressed measurement frame is challenging. The
existing state-of-the-art reconstruction algorithms suffer from
low reconstruction quality or heavy time consumption, mak-
ing them not suitable for real-time applications. In this pa-
per, exploiting the powerful learning ability of deep neural
networks (DNN), we propose a novel Tensor Fast Iterative
Shrinkage-Thresholding Algorithm Net (Tensor FISTA-Net)
as a decoder for SCI video cameras. Tensor FISTA-Net not
only learns the sparsest representation of the video frames
through convolution layers, but also reduces the reconstruc-
tion time significantly through tensor calculations. Experi-
mental results on synthetic datasets show that the proposed
Tensor FISTA-Net achieves average PSNR improvement of
1.63∼3.89dB over the state-of-the-art algorithms. Moreover,
Tensor FISTA-Net takes less than 2 seconds running time and
12MB memory footprint, making it practical for real-time
IoT applications.

Introduction

High-speed cameras are important for sports events, aerial
photography and car crashing tests, etc, because slow-
motion video recording is needed for several scenarios
(Vollmer and Möllmann 2011). Different from conventional
high-speed cameras that suffer from limited memory and
bandwidth (Saha et al. 2015), the snapshot compressive
imaging (SCI) video cameras (Llull et al. 2013), (Gehm et
al. 2007), (Wagadarikar et al. 2008) exploit the compressive
sensing (CS) theory (Donoho 2006), (Candes, Romberg, and
Tao 2006), (Candes and Tao 2006). SCI video cameras adopt
sampling on a set of video frames and compress them into a
single measurement, which reduces memory and bandwidth
cost and enables slow-motion videos and long-time video
recording.

Existing algorithms for SCI reconstruction problems are
not satisfactory due to exhaustive parameters tuning and
heavy time consumption. DeSCI (Liu et al. 2018) is the

∗Corresponding author.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Overview of the Tensor FISTA-Net.

state-of-the-art algorithm but suffers from extremely long
running time due to the non-local patch searching and rank
minimization processes. GAP-TV (Yuan 2016) is fast while
presents low reconstruction quality due to the low Total Vari-
ation (TV) regularizer. Consequently, it is important to de-
sign a new method for SCI reconstruction problems with
high speed and reconstruction quality.

The FISTA algorithm (Beck and Teboulle 2009) poten-
tially can be used to improve the SCI reconstruction because
it can speed up convergence significantly. However, directly
using the FISTA algorithm faces the problems of exhaus-
tive parameters tuning and time-consuming large-scale ma-
trix multiplication. Considering the great learning capability
of deep neural networks (DNN) and the reduction of calcu-
lations in tensor form, in this paper, we propose a novel ap-
proach called Tensor FISTA-Net for the SCI reconstruction
problems. We unfold the FISTA algorithm into a deep neural
network inspired by ISTA-Net (Zhang and Ghanem 2018),
(Wang, Fidler, and Urtasun 2016), (Frerix et al. 2018), (Jiang
et al. 2018) and convert the vector calculations into tensor
calculations. Fig. 1 illustrates the overview of the proposed

10933



Tensor FISTA-Net for the SCI video cameras.
The main contributions are summarized as follows:

• We develop propose a novel Tensor FISTA-Net for the
SCI reconstruction problems by unfolding the FISTA al-
gorithm into a deep neural network.

• We convert the calculations from vector form to tensor
form to reduce time and memory consumption signifi-
cantly. Combining tensors with convolution layers, we ex-
plore the sparsest transformation domain of video frames.

• Experimental results on both synthetic and real datasets
(collected by SCI video cameras) show that the proposed
Tensor FISTA-Net outperforms the state-of-the-art algo-
rithms significantly in terms of both reconstruction accu-
racy and speed. Besides its small model size (12MB), it
is practical for real-time applications of IoT devices with
limited memory.
The remainder of this paper is organized as follows. We

first present the related works for SCI reconstruction prob-
lems, then we introduce the mathematical notations and for-
mulate the reconstruction problem of the SCI cameras, after
that we propose our Tensor FISTA-Net in detail, finally we
show and analyze the experimental results.

Related Works

Several optimization-based algorithms have been proposed
for SCI reconstruction problems. Sparsity based algorithms
(Yuan et al. 2014) has been proposed, (Yang et al. 2014)
and (Yang et al. 2015) exploit the sparsity of patches based
on Gaussian mixture model (GMM) and sparse coding has
been developed in (Wang et al. 2016). Tensor nuclear norm
minimization has been adopted in (Liuqing and Liu 2019).
DeSCI (Liu et al. 2018) and GAP-TV (Yuan 2016) achieve
state-of-the-art performances. However, DeSCI is extremely
time-consuming due to the non-local similar patches search-
ing and rank minimization process. DeSCI provides a low
reconstruction quality when it is difficult to find non-local
patches. GAP-TV is not satisfactory either, it provides re-
construction frames with noise and blur due to the assump-
tion of low total variation.

Neural network-based algorithms include (Iliadis,
Spinoulas, and Katsaggelos 2018), (Kai and Ren 2018)
and Tensor ADMM-Net (Ma et al. 2019). Tensor ADMM-
Net achieves superior performances compared to others.
However, the reconstruction results of Tensor ADMM-Net
still suffer from noise and blur. This is because Tensor
ADMM-Net only learns the linear transformation of video
frames through fully connected layers while our Tensor
FISTA-Net adopts convolution and activation layers to
learn more general non-linear transformation. In addition,
Tensor ADMM-Net still need vector and matrix form
calculations during matrix inversion while calculations in
Tensor FISTA-Net are all based on tensors.

Reconstruction Problem in SCI Cameras

Overview of the SCI Video Cameras

SCI video cameras have been developed to capture high
speed videos in (Hitomi et al. 2011) (Llull et al. 2013) (Yuan

Figure 2: Schema of the SCI video cameras. The mask shifts
automatically and the CCD collects the measurement frame.

et al. 2014). Fig. 2 illustrates the SCI video cameras. The
key implementation of SCI cameras is a temporal variant
mask. During the measurement process, the mask automat-
ically shifts and multiple video frames are compressed into
one measurement frame.

Consider a B-frame video tensor X ∈ R
n×m×B and a

tensor sensing mask M ∈ R
n×m×B , then the measurement

frame Y ∈ R
n×m can be expressed as follows (Llull et al.

2013):

Y =

B∑
b=1

M(b) �X (b), (1)

where M(b) and X (b) denote the b-th frontal slice of M
and X , respectively, and � denotes the Hadamard (element-
wise) product.

Mathematically, (1) is equivalent to the following linear
form:

y = Φx, (2)
where y = Vec(Y ) ∈ R

nm and x =
[Vec(X (1)); ...;Vec(X (B))] ∈ R

nmB are the vector-
ized representation of Y and X , respectively. Different
from traditional CS problem, the mask Φ in (2) is a block
diagonal matrix consisting of B diagonal matrices shaped
as follows:
Φ = [diag(Vec(M(1))), ..., diag(Vec(M(B)))] ∈ R

n×mB .
(3)

Reconstruction Problem of the SCI Cameras

The reconstruction problem (2) can be solved by the follow-
ing LASSO (Tibshirani 1996) optimization problem:

min
x

1

2
‖Φx− y‖22 + λ‖Ψx‖1, (4)

where Ψx denotes the coefficients in transformation do-
main, ‖ · ‖1 denotes the �1-norm that imposes the sparsity
of the coefficients, and λ balances these two terms.

To solve (4), FISTA algorithm uses the following iterative
steps for k ≥ 1:

rk = zk − ρΦT (Φzk − y), (5)

xk = argmin
x

1

2
‖x− rk‖22 + λ‖Ψx‖1, (6)

tk+1 =
1 +

√
1 + 4(tk)2

2
, (7)

zk+1 = xk + (
tk − 1

tk+1
)(xk − xk−1), (8)

10934



Figure 3: The proposed Tensor FISTA-Net. The upper part is the data flow in Tensor FISTA-Net, containing K phases. The
bottom part is the detailed structure of a phase. Gray arrows denote the data flow.

where z1 = x0, t1 = 1, ρ represents the step size, rk is an
auxiliary variable, xk is the output of the k-th iteration and
zk+1 is a new starting point for next iteration.

The Proposed Tensor FISTA-Net
We first describe the framework of Tensor FISTA-Net and
the motivation for a tensor form neural network, then we
elaborate the detailed structure of Tensor FISTA-Net.

Tensor FISTA-Net

The basic idea of Tensor FISTA-Net is to unfold (5)-(8) into
a deep neural network with a fixed number of phases, where
each phase corresponds to one iteration. Fig. 3. illustrates the
framework of the whole Tensor FISTA-Net and the specific
design in a phase. Iterations in (5)-(8) are in vector form,
instead, we are motivated to design a tensor form neural net-
work due to the following three aspects.
• Temporal correlations within video frames. Unlike a sin-

gle image, video frames are similar to each other. By
stacking them into a tensor in third dimension, we are able
to learn the temporal correlations through multi-channel
2D convolution, which better captures the information
than that through 2D single-channel convolution in vec-
tor form.

• Incorrect features extracted in vector form. In vector form,
concatenates one B-frame video into a big image with
size nB × m, convolution kernels may extract incorrect
spatial information at the borders between two frames.
This drawback can be avoided in tensor form.

• Reduction in time and memory consumption through ten-
sor calculations. Due to the special structure of Φ in (3),
updating (5) needs to multiply huge matrices ΦT and Φ.
However, it will save much time and memory if we update
(5) in tensor form (details are shown in Module Rk ).
Specifically, consider Zk, Rk and X k as the tensor form

of zk, rk and xk, respectively. Iterative steps in (5)-(8) are
considered as four modules: tk, Zk, Rk and X k in Tensor
FISTA-Net. Different from the order in (5)-(8), we calculate

tk and Zk before Rk and X k in each phase for simplicity.
To elaborate the Tensor FISTA-Net, we separately introduce
these four modules in the following.

Module tk : (7) gives an update step of tk+1. However,
since deep neural networks have great ability of learning,
we set tk for k ∈ [K] as learnable variables to improve the
flexibility of the proposed Tensor FISTA-Net.

Module Zk : In each phase of Tensor FISTA-Net, we di-
rectly use the updated tk to calculate Zk, thus the tensor
form update step of (8) is as follows:

Z1 = X 0, (9)

Zk = X k−1 + tk(X k−1 −X k−2), for k ≥ 2. (10)

Module Rk : Fig. 4 shows the equivalence transfer of (5)
from vector form to tensor form. Consider a = Φzk − y as
the middle result of (5), A ∈ R

n×m as the matrix form of
a and Vec(A) = a, A ∈ R

n×m×B as the tensor form of a
and A(b) = A for b ∈ [B]. We update Rk as follows:

Rk = Zk − ρM�A. (11)

For sufficient calculation, (11) can be divided into the fol-
lowing two steps:

(i): Calculate A. As illustrated in the first step of Fig 4, A
can be calculated as follows combining (1):

A =
B∑

b=1

M(b) �Zk(b) − Y , (12)

where Zk is in (9) and (10).
(ii): Calculate Rk, where Rk is the tensor form of rk

and rk = zk − ρΦTa. We know from (3) that Φ is a
block diagonal matrix, thus ΦT ∈ R

nmB×nm is also a
block diagonal matrix. Then ΦTa = [diag(Vec(M(1))) ·
a; ...; diag(Vec(M(B))) · a] ∈ R

nmB×nm. Specifically,
since diag(Vec(M(b))) · a = M(b) � A for b ∈ [B], in
order to calculate ΦTa more efficiently in tensor form, we
need to copy A ∈ R

n×m for B times to fold it into a tensor

10935



A ∈ R
n×m×B so that A(b) = A for b ∈ [B]. Then Rk can

be updated in tensor form as (11).
Module X k : (6) uses a sparse transformation as Ψ. How-

ever, we aim to find the sparest transformation domain rather
than using a pre-set one. Inspired by (Wu et al. 2016b) and
(Wu et al. 2016a), we take the temporal correlations into
consideration and design the general transform based on ten-
sor form.

Consider the great representation power of convolution
neural network (CNN) (Dong et al. 2014) and its universal
approximation property (Hornik, Stinchcombe, and White
1989), we use convolution and activation layers to represent
the transformation function denoted by F(·), which is sup-
posed to learn the sparsest representation of video frames.
Specifically, F(·) contains two multi-channel 2D convolu-
tion layers split by one ReLU activation layer, we denote it
as F(X ) = Conv2D(ReLU(Conv2D(X ))).

Replace Ψ with F(·), the tensor form of (6) is as follows:

X k = argmin
X

1

2
‖X −Rk‖2F + λ‖F(X )‖1. (13)

Actually, F(x) is equivalent to perform a matrix multipli-
cation to x, i.e. F(x) = Dx, where D is an orthonormal
matrix consisting of all basis vectors in transformation do-
main.

Theorem 1

‖Da−Db‖2 = ‖a− b‖2, (14)

where D is an orthonormal transformation matrix.

Proof. It is a special case of the Parseval Theorem. D is
orthonormal with spectrum norm ‖D‖ = 1. Therefore,
‖Da − Db‖2 = ‖D(a − b)‖2 = ‖D‖ · ‖a − b‖2 =
‖a− b‖2.

With Theorem 1, ‖x−rk‖22 = ‖Dx−Drk‖22 = ‖F(x)−
F(rk)‖22. Since ‖ · ‖2 denotes the �2-norm, which is the
square root of the sum of the square of all elements, The-
orem 1 also holds when it is extended to tensor form, so we
replace ‖F(x)−F(rk)‖22 by ‖F(X )−F(Rk)‖2F and (13)
becomes :

X k = argmin
X

1

2
‖F(X )−F(Rk)‖2F + λ‖F(X )‖1. (15)

Soft-thresholding operator (Donoho 1995) is an element-
wise operator when applied to a tensor, we adopt it to obtain
a closed-form solution of F(X k):

F(X k) = soft(F(Rk), λ). (16)

To get X k from F(X k), we introduce an inverse transfor-
mation function F̃(·) to inverse the transformation function
F(·). F̃(·) is supposed to have the ability of inversion, i.e.
F̃(F(X )) = X . Therefore, the inverse function F̃(·) is re-
alized by using the symmetric structure of F(·), so it can be
written as F̃(X ) = Conv2D(ReLU(Conv2D(X ))), the only
difference between F(·) and F̃(·) is the convolution kernels.

Then we adopt the inverse transformation function F̃(·)
and obtain the closed-form solution of X k:

X k = F̃(soft(F(Rk), λ)). (17)

Figure 4: Illustration of tensor calculations of Rk. A in the
first step is the middle result of calculation. In the second
step A is copied B times to form tensor A in third dimen-
sion.

Finally, inspired by Residual Network (He et al. 2016), we
add a shortcut structure and the solution of X k is as follows:

X k = Rk + F̃(soft(F(Rk), λ)). (18)

Design of F(·) and F̃(·)
In Tensor FISTA-Net, convolution layers perform the linear
transformation for video frames, and activation layers in-
troduce nonlinearity to the transformation and impose its
sparsity. Specifically, we use two convolution layers split
by ReLU layer to serve as the transformation structure, de-
noted by F(X ) = C2(R(C1(X ))), where C1, and C2 de-
note 2 convolution layers with different convolution kernels,
respectively. Similarly, the inverse transformation function
F̃(·) can be expressed as F̃(X ) = C̃2(R(C̃1(X ))), where
C̃1 and C̃2 denote two convolution layers with different con-
volution kernels, respectively.

Consider the close temporal correlations among the
frontal slices of the video tensors, we use multi-channel 2D
convolution because it extracts information among temporal
sequence and learns sprase representation of the video ten-
sors. For simplicity, we use the same kernel size (3×3×B)
in all convolution layers.

10936



Additionally, in order to improve the representation abil-
ity, we use an extra convolution layer to increase the number
of channels from B to 64 before the transformation function
F(·) and use another convolution layer to reduce the num-
ber of channels from 64 to B after the inverse transformation
function F̃(·). Specifically, we keep the input, output chan-
nels as 64 in F(·) and F̃(·).
Initialization

A proper initialization helps reduce training time signifi-
cantly. Naturally, consider the special structure of the mask
Φ in (2), we initialize each frontal slice of X 0 as the mea-
surement frame divided by the sum of mask in third dimen-
sion. Consider M ∈ R

n×m to be the sum of mask in third
dimension, X 0 ∈ R

n×m×B can be initialized as follows:

M =

B∑
b=1

M(b), (19)

X 0(b) = Y �M , for b ∈ [B], (20)

where � denotes element-wise divide between two matrices.

Loss Function

Three constraints should be taken into consideration in Ten-
sor FISTA-Net:
• The fidelity of the reconstructed frames.
• The Accuracy of the inverse function.
• The sparsity of video frames in the learned domain.

Assume there are K phases in total, X k ∈ R
n×m×B for

k ∈ [K] is the output of the k-th phase, the three constraints
can be expressed as follows:

Lfidelity = ‖XK −X‖2F , (21)

Linversion =
1

K

K∑
k=1

‖F̃(F(X k))−X k‖2F , (22)

Lsparsity =
1

K

K∑
k=1

‖F(X k)‖1. (23)

The loss function is a weighted sum of these three terms:

L = αLfidelity + βLinversion + γLsparsity, (24)

where α, β and γ are coefficients to balance the 3 terms. In
default, we set α = 1, β = 0.01 and γ = 0.001.

Performance Evaluation

Datasets

We evaluate the proposed Tensor FISTA-Net on three differ-
ent synthetic datasets: Kobe (Yang et al. 2014), Park (Ma
et al. 2019) and Vehicle (Ma et al. 2019). Each testing
dataset contains 32 frames of size 256 × 256 and B = 8,
i.e., 4 measurements. We use the same training videos NBA,
Central Park Aerial and Vehicle Crashing Tests in (Ma et al.
2019). We resize the video frames into 256 × 256 through
down sampling and extract the luminance component to

Table 1: Average PSNR (dB) on different datasets.

Algorithm Kobe Park Vehicle

Tensor FISTA-Net 31.41 27.64 26.46
GAP-TV 26.45 24.53 22.85
DeSCI 33.25 24.95 21.16
Tensor ADMM-Net 30.15 26.85 23.62

Table 2: Average SSIM on different datasets.

Algorithm Kobe Park Vehicle

Tensor FISTA-Net 0.92 0.88 0.89
GAP-TV 0.84 0.84 0.77
DeSCI 0.95 0.80 0.70
Tensor ADMM-Net 0.89 0.86 0.78

Table 3: Running time (seconds) on different datasets.
Algorithm Kobe Park Vehicle

Tensor FISTA-Net 1.5 1.8 1.8
GAP-TV 7.9 6.9 7.2
DeSCI 6872.9 6915.8 6823.5
Tensor ADMM-Net 1.9 2.4 2.1

make the training datasets, each training dataset contains
8000 frames, i.e., 1000 measurements.

To compare with previous algorithms, we set B = 8 and
use the same synthetic mask following the settings in (Liu
et al. 2018). Peak Signal to Noise Ratio (PSNR), Structural
Similarity Index (SSIM) (Zhou et al. 2004) and Reconstruc-
tion Time are performance metrics in comparison.

Implementation details

We use TensorFlow to implement our algorithm and do
all the experiments on a server with an NVIDIA Telsa
V100-PCIE GPU (16GB device memory). We set the num-
ber of phases as 10, learning rate as 0.0001 and running
epoch as 500. Adam optimizer (Kingma and Ba 2014) is
used to minimize the training loss. The code is available
at https://github.com/GuillermoHan97/SCI-Tensor-FISTA-
Net.

Comparison with State-of-the-Art Algorithms

GAP-TV (Yuan 2016) adopts the idea of total variance
minimization under the generalized alternating projection
(GAP). It is simple and fast, thus can be used as a baseline
for the experimental results.
DeSCI (Liu et al. 2018) exploits rank minimization for
non-local patches and achieve the best results among
optimization-based algorithms. Tensor ADMM-Net (Ma et
al. 2019) is the state-of-the-art network-based algorithms
unfolding the ADMM algorithm into a DNN.

Performance Comparison. To compare the reconstruc-
tion accuracy of different algorithms, we calculate PSNR

10937



Figure 5: On Kobe dataset (256 × 256, B = 8): Four se-
lected Ground Truth and reconstruction frames.

Figure 6: On Park dataset (256 × 256, B = 8): Four se-
lected Ground Truth and reconstruction frames.

and SSIM of the experimental results. Tables. 1-2 show
the reconstruction accuracy of three synthetic datasets using
Tensor FISTA-Net and other algorithms. On Kobe dataset,
DeSCI provides the best results. Our Tensor FISTA-Net pro-
vides the best results on Park dataset (0.79dB in PSNR and
0.02 in SSIM higher than the state-of-the-art algorithm) and

Figure 7: On Vehicle dataset (256 × 256, B = 8): Four
selected Ground Truth and reconstruction frames.

Vehicle dataset (2.84dB in PSNR and 0.11 in SSIM higher
than the state-of-the-art algorithm).

To validate the reconstruction results, we show the recon-
struction frames of three datasets using different algorithms
in Figs. 5-7. Since the training and testing datasets of Kobe
are not splited from the same video, our Tensor FISTA-Net
do not achieve the best, but it still provide better results
than other algorithms except DeSCI. From the reconstruc-
tion frames of Park and Vehicle datasets, we observe
that DeSCI can not reconstruct the details of the videos, es-
pecially when a small area contains many details like the
branches in Park dataset and edges of cars in Vehicle
dataset (marked by yellow square). Moreover, we notice that
DeSCI suffers from over-smooth and it smooths out tiny de-
tails. This indicates that if similar patches cannot be found
in video frames, the reconstruction quality of DeSCI will be
limited. Tensor ADMM-Net provides better results than De-
SCI in Park and Vehicle datasets, but it still suffers from
blur and noise compared with our Tensor FISTA-Net such as
tower in Park dataset (marked by red square) and edges of
cars in Vehicle dataset (marked by yellow square).

Time Complexity Analysis. For the time complexity
analysis of different algorithms, we record the running time
on three synthetic datasets of different algorithms. Table. 3
shows that the reconstruction speed of Tensor FISTA-Net is
over 4 times faster than GAP-TV and even 4K+ times faster
than DeSCI in average. In fact, Tensor FISTA-Net runs in
less than 2 seconds to reconstruct one measurement, which
is even faster than Tensor ADMM-Net, too.

In addition, the size of our neural network model is less
than 12MB, so it is suitable for IoT devices with small mem-
ory such as drones.

10938



Figure 8: On Wheel dataset (256 × 256, B = 14): Ten
selected real gray SCI measurement reconstruction frames.

Real SCI Datasets

We apply the proposed Tensor FISTA-Net on real SCI
datasets Wheel (gray scale, B = 14) and Hammer (bayer
RGB, B = 22) captured by SCI cameras (Llull et al. 2013).
For colored datasets, the reconstruction can be done by sep-
arately reconstructing RGB channels and then aggregating
them. These two real datasets compress more video frames
into one measurement than synthetic datasets, which is a
greater challenge for us. Fig. 8 and Fig. 9 show ten selected
reconstruction frames of Wheel and Hammer datasets, re-
spectively. From the reconstruction frames we observe that
the proposed Tensor FISTA-Net provides clear edges and
less noise in Wheel dataset. In Hammer dataset, Ten-
sor FISTA-Net provides the reconstruction frames with less
phantom than DeSCI and Tensor ADMM-Net and much less
noise than GAP-TV.

Conclusion

In this paper, we proposed Tensor FISTA-Net by unfold-
ing the FISTA algorithm into a deep neural network for the
SCI reconstruction problem and transferring the calculations
from vector form to tensor form. Experimental results show
that Tensor FISTA-Net provides better reconstruction quality
and runs faster than the state-of-the-art algorithms. In addi-
tion, Tensor FISTA-Net consumes much less memory thus is

Figure 9: On Hammer dataset (512 × 512, B = 22): Ten
selected real bayer RGB SCI measurement reconstruction
frames.

suitable for real-time applications on IoT devices.

Acknowledgement

Linghe Kong is supported by NSFC 61972253, 61672349,
U190820096. This work is done during Xiaochen Han’s
summer research intern in Columbia University.

References

Beck, A., and Teboulle, M. 2009. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM
Journal on Imaging Sciences 2(1):183–202.
Candes, E. J., and Tao, T. 2006. Near-optimal signal recov-
ery from random projections: Universal encoding strategies?
IEEE Transactions on Information Theory 52(12):5406–
5425.
Candes, E. J.; Romberg, J.; and Tao, T. 2006. Robust un-
certainty principles: exact signal reconstruction from highly
incomplete frequency information. IEEE Transactions on
Information Theory 52(2):489–509.
Dong, C.; Loy, C. C.; He, K.; and Tang, X. 2014. Learning
a deep convolutional network for image super-resolution. In
European Conference on Computer Vision, pp. 184–199.
Donoho, D. L. 1995. De-noising by soft-thresholding. IEEE
Transactions on Information Theory 41(3):613–627.

10939



Donoho, D. L. 2006. Compressed sensing. IEEE Transac-
tions on Information Theory 52(4):1289–1306.
Frerix, T.; Möllenhoff, T.; Moeller, M.; and Cremers, D.
2018. Proximal backpropagation. In International Confer-
ence on Learning Representations.
Gehm, M.; John, R.; Brady, D.; Willett, R.; and Schulz, T.
2007. Single-shot compressive spectral imaging with a dual-
disperser architecture. Optics Express 15(21):14013–14027.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In IEEE Conference on
Computer Vision and Pattern Recognition, pp. 770–778.
Hitomi, Y.; Gu, J.; Gupta, M.; Mitsunaga, T.; and Nayar,
S. K. 2011. Video from a single coded exposure photograph
using a learned over-complete dictionary. In International
Conference on Computer Vision, pp. 287–294.
Hornik, K.; Stinchcombe, M.; and White, H. 1989. Mul-
tilayer feedforward networks are universal approximators.
Neural networks 2(5):359–366.
Iliadis, M.; Spinoulas, L.; and Katsaggelos, A. K. 2018.
Deep fully-connected networks for video compressive sens-
ing. Digital Signal Processing 72:9–18.
Jiang, F.; Liu, X.-Y.; Lu, H.; and Shen, R. 2018. Efficient
multi-dimensional tensor sparse coding using t-linear com-
bination. In Thirty-Second AAAI Conference on Artificial
Intelligence.
Kai, X., and Ren, F. 2018. Csvideonet: A real-time end-to-
end learning framework for high-frame-rate video compres-
sive sensing. IEEE Winter Conference on Applications of
Computer Vision pp. 1680–1688.
Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Liu, Y.; Yuan, X.; Suo, J.; Brady, D.; and Dai, Q. 2018. Rank
minimization for snapshot compressive imaging. IEEE
Transactions on Pattern Analysis and Machine Intelligence
pp. 1–1.
Liuqing, Y., and Liu, X.-Y. 2019. Tensor nuclear-norm mini-
mization for snapshot compressive imaging cameras. In MIT
Undergraduate Research Technology Conference,.
Llull, P.; Liao, X.; Yuan, X.; Yang, J.; Kittle, D.; Carin, L.;
Sapiro, G.; and Brady, D. J. 2013. Coded aperture compres-
sive temporal imaging. Opt. Express 21(9):10526–10545.
Ma, J.; Liu, X.-Y.; Shou, Z.; and Yuan, X. 2019. Deep
Tensor ADMM-Net for Snapshot Compressive Imaging. In
The IEEE International Conference on Computer Vision.
Saha, N.; Ifthekhar, M. S.; Le, N. T.; and Jang, Y. M. 2015.
Survey on optical camera communications: challenges and
opportunities. Iet Optoelectronics 9(5):172–183.
Tibshirani, R. 1996. Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society. Series B
(Methodological) 58(1):267–288.
Vollmer, M., and Möllmann, K.-P. 2011. High speed and
slow motion: the technology of modern high speed cameras.
Physics Education 46(2):191.
Wagadarikar, A.; John, R.; Willett, R.; and Brady, D. 2008.

Single disperser design for coded aperture snapshot spectral
imaging. Applied Optics 47(10):B44–B51.
Wang, L.; Xiong, Z.; Shi, G.; Wu, F.; and Zeng, W. 2016.
Adaptive nonlocal sparse representation for dual-camera
compressive hyperspectral imaging. IEEE Transactions on
Pattern Analysis and Machine Intelligence 39(10):2104–
2111.
Wang, S.; Fidler, S.; and Urtasun, R. 2016. Proximal deep
structured models. In Lee, D. D.; Sugiyama, M.; Luxburg,
U. V.; Guyon, I.; and Garnett, R., eds., Advances in Neural
Information Processing Systems 29. Curran Associates, Inc.
865–873.
Wu, B.; Cheng, W.-H.; Zhang, Y.; and Mei, T. 2016a. Time
matters: Multi-scale temporalization of social media popu-
larity. In Proceedings of the 24th ACM international confer-
ence on Multimedia, 1336–1344.
Wu, B.; Mei, T.; Cheng, W.-H.; and Zhang, Y. 2016b. Un-
folding temporal dynamics: Predicting social media popu-
larity using multi-scale temporal decomposition. In Thirti-
eth AAAI Conference on Artificial Intelligence.
Yang, J.; Yuan, X.; Liao, X.; Llull, P.; Brady, D. J.; Sapiro,
G.; and Carin, L. 2014. Video compressive sensing using
gaussian mixture models. IEEE Transactions on Image Pro-
cessing 23(11):4863–4878.
Yang, J.; Liao, X.; Yuan, X.; Llull, P.; Brady, D. J.; Sapiro,
G.; and Carin, L. 2015. Compressive sensing by learning a
gaussian mixture model from measurements. IEEE Trans-
actions on Image Processing 24(1):106–119.
Yuan, X.; Llull, P.; Liao, X.; Yang, J.; Brady, D. J.; Sapiro,
G.; and Carin, L. 2014. Low-cost compressive sensing for
color video and depth. In IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3318–3325.
Yuan, X. 2016. Generalized alternating projection based to-
tal variation minimization for compressive sensing. In IEEE
International Conference on Image Processing, pp. 2539–
2543.
Zhang, J., and Ghanem, B. 2018. ISTA-Net: Interpretable
optimization-inspired deep network for image compressive
sensing. In IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 1828–1837.
Zhou, W.; Bovik, A. C.; Sheikh, H. R.; and Simoncelli, E. P.
2004. Image quality assessment: from error visibility to
structural similarity. IEEE Transactions on Image Process-
ing 13(4):600–612.

10940


