
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Softmax Dissection: Towards Understanding
Intra- and Inter-Class Objective for Embedding Learning

Lanqing He,* Zhongdao Wang,∗ Yali Li, Shengjin Wang
Department of Electronic Engineering, Tsinghua University

{hlq17, wcd17}@mails.tsinghua.edu.cn, liyali13@mail.tsinghua.edu.cn, wgsgj@tsinghua.edu.cn

Abstract

The softmax loss and its variants are widely used as objec-
tives for embedding learning applications like face recogni-
tion. However, the intra- and inter-class objectives in Softmax
are entangled, therefore a well-optimized inter-class objective
leads to relaxation on the intra-class objective, and vice versa.
In this paper, we propose to dissect Softmax into independent
intra- and inter-class objective (D-Softmax) with a clear un-
derstanding. It is straightforward to tune each part to the best
state with D-Softmax as objective.Furthermore, we find the
computation of the inter-class part is redundant and propose
sampling-based variants of D-Softmax to reduce the com-
putation cost. The face recognition experiments on regular-
scale data show D-Softmax is favorably comparable to exist-
ing losses such as SphereFace and ArcFace. Experiments on
massive-scale data show the fast variants significantly accel-
erates the training process (such as 64×) with only a minor
sacrifice in performance, outperforming existing acceleration
methods of Softmax in terms of both performance and effi-
ciency.

1 introduction
Recent years have witnessed the prosperous development
of deep learning and its applications. Among them, em-
bedding learning (Liu et al. 2017; Wang et al. 2018; Deng
et al. 2018; Schroff, Kalenichenko, and Philbin 2015) (or
deep metric learning (Oh Song et al. 2016; Sohn 2016;
Wang et al. 2017b)) is one of the most challenging prob-
lems that attracts wide attention, and corresponding re-
search findings are supporting many applications like face
recognition and person re-identification (Fan et al. 2019;
Xiang et al. 2018).

The objective of embedding learning is to learn a map-
ping function f(·;θ) : X → Rn so that in the embedding
space Rn the distance between similar data is close while the
distance between dissimilar data is far. The most straightfor-
ward choice is to formulate the embedding learning problem
as a classification problem by employing the softmax loss as

*Equal contribution
Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

0.5
0.0

0.5

0.5

0.0

0.5

0.5

0.0

0.5

(a) Softmax with 5 classes

0.5
0.0

0.5

0.5

0.0

0.5

0.5

0.0

0.5

(b) Softmax with 10 classes

0.5
0.0

0.5

0.5

0.0

0.5

0.5

0.0

0.5

(c) D-Softmax with 5 classes

0.5
0.0

0.5

0.5

0.0

0.5

0.5

0.0

0.5

(d) D-Softmax with 10 classes

Figure 1: (a),(b): How intra- and inter-class objectives are
entangled in Softmax. The inter-class distance in 5-class
case is larger than that in 10-class case, therefore the con-
straint of intra-class objective is relaxed. (c),(d): The intra-
and inter-class objectives are disentangled in D-Softmax.
The intra-class distance is almost the same in both case.

the objective. For instance, in face recognition, faces of dif-
ferent persons are considered as different classes and a large
Softmax is used for learning the face embedding.

However, there exist two major drawbacks in the softmax
loss. First, the intra- and inter-class objectives are entangled.
Such entanglement is visualized in Fig. 1 (a),(b). We select
5 and 10 identities respectively in the MS-Celeb-1M (Guo et
al. 2016) dataset with the most samples, set the embedding
dimension to 3 and plot the features. One can observe that
with large inter-class distance the intra-class distance is also
large. As we will show in Sec. 3, the reason is that the Soft-
max will gradually relax the intra-class objective along with
the increase of inter-class distance, and vice versa. To our

10957

knowledge, we are the first to discuss such entanglement,
while existing works mostly address the insufficient discrim-
ination issue by introducing additional supervision (Schroff,
Kalenichenko, and Philbin 2015; Sun et al. 2014) or adding
angular margin to the softmax loss (Liu et al. 2017; Wang et
al. 2018; Deng et al. 2018).

Another shortage should be mentioned is time and mem-
ory cost. The softmax loss, as well as its variants, needs
to compute class activations over all the classes. This leads
to linear time and memory complexity w.r.t. the number of
classes. In practice, the number of classes may be exces-
sively large, say 106 or even beyond. The excessive memory
demand makes it difficult to load all the class weights into
the limited GPU memory, and the dramatically increased
time cost is also not acceptable. Contrastive loss and triplet
loss are possible alternatives that do not require much mem-
ory, but in terms of accuracy they significantly underperform
the softmax family.

In this paper, we propose to dissect the softmax loss
into intra- and inter-class objective. The intra-class objective
pulls the feature close with the positive class-weight until a
pre-defined criterion is satisfied, and the inter-class objective
maintains the class weights to be widely separated in the em-
bedding space. With the dissected softmax (D-Softmax) loss
as the optimization objective, the intra- and inter-class objec-
tives are disentangled, so that even the inter-class objective
is well-optimized, the constraint on the intra-class objective
is still rigorous (Fig. 1 (c),(d)).

Moreover, D-Softmax also dissects the computation com-
plexity of Softmax into two independent parts. The intra-
class objective only involves the sample and one positive
class-weight, in contrast, the inter-class objective needs to
compute activations over all negative classes. We find that
such massive computation for the inter-class objective is
somehow redundant. To facilitate the computation, we pro-
posed to sample a subset of negative classes in one train-
ing pass. According to the difference in sampling strategies,
we term the lightened D-Softmax as D-Softmax-B and D-
Softmax-K respectively. Experiments show both strategies
significant accelerate the training process with only a minor
sacrifice in performance.

Our major contribution can be summarized as follows:
(1)We propose D-Softmax that dissects the intra- and

inter-class objective of the softmax loss. The dissected intra-
class objective is always rigorous, independent of how well
the inter-class objective is optimized, and vice versa. Exper-
iments show D-Softmax is favorably comparable with exist-
ing methods such as ArcFace on face recognition task.

(2)We make an important conclusion that the computa-
tion of inter-class objective is redundant and propose two
sampling-based variants to facilitate the computation of D-
Softmax. Training with massive classes (757K), our meth-
ods significantly accelerate the training process with only a
minor sacrifice in performance.

2 Related Work
Softmax and its variants for face recognition. It is a
widely adopted approach to formulate the face recognition

as a multi-class classification problem. DeepFace (Taigman
et al. 2014) and DeepID series (Sun, Wang, and Tang 2014;
Sun et al. 2014; Sun, Wang, and Tang 2016) employ the con-
ventional softmax loss in which the class activation is mod-
eled as the inner product between vectors. Such loss is not
effective enough, and some recent works address this prob-
lem by normalizing the embedding (Ranjan, Castillo, and
Chellappa 2017) or the class-weights (Salimans and Kingma
2016). NormFace (Wang et al. 2017a) employs to normalize
the both, which is equivalent to optimize the cosine distance.
This inspired a series of works on softmax variants that op-
timize the angular distances between classes by introduc-
ing the angular margin (Liu et al. 2017; Wang et al. 2018;
Deng et al. 2018). However, all aforementioned losses focus
on strengthening the constraint but overlook a fact, that the
insufficiency of Softmax is essentially caused by the entan-
glement of the intra- and inter-class objective.

Acceleration for Softmax. The acceleration of Softmax
is an extensively studied problem typically in natural lan-
guage processing, where large vocabularies need to be deal
with. Existing methods mainly re-organize the structure
of Softmax by the hierarchy of words (Goodman 2001),
or the imbalanced frequency of classes (Schwenk 2007;
Le et al. 2011; Chen, Grangier, and Auli 2015; Grave et al.
2017). However, these methods do not apply to real-world
applications like face recognition, because the data are not
hierarchical-structured nor substantially imbalanced on im-
portance. HF-Softmax (Zhang et al. 2018) is a relatively re-
lated work to ours. It dynamically selects a subset of the
training classes, by constructing a random forest in the em-
bedding space and retrieving the approximate nearest neigh-
bors. The time cost of loss computation is indeed reduced,
but the update of the random forest still cost too much time.
In this work, the light version D-Softmax do not require any
extra computation besides the loss itself, so the computation
is much faster. Moreover, the dissected intra-class objective
is always rigorous, thus the performance is also superior.

3 Softmax Dissection
3.1 Preliminary Knowledge
The softmax Cross-Entropy loss is fomulated as,

Ls = − log(
eszy∑K
i=1 e

szk
) = log(1 +

∑K
k 6=y e

szk

eszy
) (1)

where s is a scale parameter, zk indicates the activation of
the k-th class, k ∈ {1, 2, ...,K} and K is the number of
classes. We denote the activation of the ground-truth class
as zy . In conventional Softmax, zk = wT

k x, wherewk is the
class weight and x is the feature of the last fully connected
layer. In recent arts e.g. NormFace (Wang et al. 2017a),
the activation is usually modified as zk = cos (θwk,x). We
adopt this cosine formulation for its good performance and
intuitive geometric interpretation. Here we also list several
variants of Softmax, i.e., SphereFace (Liu et al. 2017), Arc-
Face (Deng et al. 2018) and CosFace (Wang et al. 2018),

Lsphere = log(1 +

∑K
k 6=y e

szk

es cos (m1 arccos zy)
) (2)

10958

0.00 0.25 0.50 0.75 1.00
zy

0

5

10

15

20

25

30

L
os

s

(a) Softmax

0.00 0.25 0.50 0.75 1.00
zy

0

10

20

30

40

50

60

L
os

s

(b) SphereFace

0.00 0.25 0.50 0.75 1.00
zy

0

10

20

30

40

L
os

s

(c) CosFace

0.00 0.25 0.50 0.75 1.00
zy

0

10

20

30

40

L
os

s

(d) ArcFace

M = 105

M = 106

M = 107

M = 108

M = 109

M = 1010

M = 1011

Figure 2: How the loss value varies with fixed inter-class similarity M against varying ground-truth class activation zy in (a)
Softmax, (b) SphereFace, (c) CosFace and (d) ArcFace. Different curves mean different M values.

Larc = log(1 +

∑K
k 6=y e

szk

es[cos (arccos zy)+m2]
) (3)

Lcos = log(1 +

∑K
k 6=y e

szk

es(zy−m3)
) (4)

where m1,m2 and m3 are hyperparameters that control the
inter-class margin. Note that the only difference between
these loss functions is the denominator in the fraction.

3.2 The Intra-Class Component
In this section, we first introduce how the intra-class ob-
jective is entangled with the inter-class objective. Then
we compare the intra-class objective between Softmax and
its margin-based variants (Eq.2-4). Finally, we present the
intra-class objective of our Dissected Softmax loss.

Let M =
∑K

k 6=y e
szk represent the numerator in the

fraction in the loss. M reflects the inter-class similarity.
Large M means that the input has large cosine-similarity
with all negative classes. With fixed M , we plot the loss
Ls = log(1 + M

eszy) against the ground-truth class activa-
tion zy in Fig. 2 (a). Two observations can be made.

First, this family of curves can be approximated by piece-
wise linear functions: when zy is small, Ls → logM − szy ,
and when zy is large, Ls → 0. It implies that when the intra-
class similarity zy is small, the loss will back-propagate a
near-constant gradient, while the gradient is almost 0 when
zy is large. Second, the inflection point where the gradient
changes is positively correlated to M .We can figure out the
intersection point d of the piecewise linear function:

d =
logM

s
(5)

d can be considered as an approximate termination point of
optimization because the gradient vanishes.

This observation supports an important conclusion:

• Conclusion #1: With Softmax as objective, when the
class weights are widely separated (lead to small M), the
optimization of intra-class objective almost terminates at
a small value.

Unfortunately, the condition that the class weights are
widely separated(explained in Sec. 3.4) always holds in the
training process. Therefore, the termination of intra-class

objective optimization is always so early that the training
is not sufficient. By comparing the loss curves in Fig. 2,
we speculate the early termination of the intra-class simi-
larity optimization is the main reason why Softmax under-
performs its margin-based variants. All termination points
of variant curves have significant positive shifts compared
to the vanilla Softmax under the same M . This means these
losses do not stop optimizing the intra-class similarity until
zy is pretty large (say 0.8).

To address this problem that M is not large enough, we
propose to disentangle the intra-class objective from the
inter-class objective, by replacingM with a constant value ε.
In this manner, we can manually adjust the optimization ter-
mination point d of the intra-class similarity to a sufficiently
large value. To summarize, the intra-class component of the
Dissected Softmax is:

Lintra
D = log(1 +

ε

eszy
) (6)

3.3 The Inter-Class Component
In Sec. 3.2 we modified softmax loss and obtain a disentan-
gled intra-class objective. However, we still need inter-class
objective as a regularization to avoid collapsing to a trivial
solution where all the data is mapped to a single point. Sim-
ilarly, we first analyze the inter-class objective of softmax
and its variants, then give the formulation of the inter-class
objective of D-Softmax.

Consider a sample x of class y and its activation on the
n-th (n 6= y) class zn. Softmax loss can be written as,

Ls = log(1+
eszn +

∑K
k 6=y,n e

szk

eszy
) = log(1+

eszn +Mn

eszy
)

(7)
where we replace the summation with Mn for convenience.

Firstly we fix Mn and study how the loss varies with dif-
ferent zn and zy . A family of curves are presented in Fig.
3 (a). Similar characteristic emerges like in the intra-class
analysis: The gradient ∂Ls

∂zn
remains almost constant with

large negative-class similarity zn and diminishes rapidly to
0 at some point. Once again we define the optimization ter-
mination point for zn as the intersection point of the approx-
imate piecewise linear function,

d′ =
log(eszy +Mn)

s
(8)

10959

0.4 0.6 0.8 1.0
zn

0

10

20

30
L

os
s

(a) Loss v.s. zn
zy = 0.1

zy = 0.3

zy = 0.5

zy = 0.7

zy = 0.9

0.4 0.6 0.8 1.0
zy

0.4

0.6

0.8

1.0

d
′

(b) Termination point v.s. zy
Softmax

SphereFace

CosFace

ArcFace

Figure 3: How the inter-class objective of Softmax is en-
tangled with the intra-class objective. (a) The loss curve of
Softmax against negative-class similarity zn under different
positive-class similarity zy . (b) The termination point of the
inter-class objective w.r.t. varying intra-class similarity zy .

and a conclusion can be drawn,

• Conclusion #2: With Softmax as objective, when the
intra-class similarity (zy) is large, the optimization of the
negative class weights almost terminates at a large value.

This may lead to non-sufficient discrepancy among dif-
ferent class weights thus hamper the embedding learning.
As an evidence, we plot in Fig. 3 (b) the termination
point d′ against the intra-class similarity zy for Softmax,
SphereFace, CosFace and ArcFace. Wider plateau in the
curve means the objective regularizes the inter-class similar-
ity more rigorously. All the large-margin Softmax variants
present much wider plateau than the vanilla Softmax.

In light of above analysis, we propose to disentangle the
inter-class objective, by replacing the intra-class similarity
eszy with a constant. We simply set this constant to 1, there-
fore the inter-class component of the Dissected Softmax is,

Linter
D = log(1 +

∑
k 6=y

eszk) (9)

In such manner, the d′ curve is a flat line, which means the
regularization on inter-class similarity is always strict.

3.4 D-Softmax and Its Light Variants
Based on Eq.6 and 9, the final form of the Dissected Softmax
(D-Softmax) loss is,

LD = Lintra
D +Linter

D = log(1+
ε

eszy
)+ log(1+

∑
k 6=y

eszk)

(10)
The merits of Dissected Softmax are mainly two-folds.

First, as we learn from Conclusion #1 and #2 that, in
vanilla Softmax, the optimization of intra- and inter-class
objective is entangled. Minimizing the intra-class objective
will relax the regularization on inter-class objective, and vice
versa. In D-Softmax, the optimization is disentangled, thus
the constraints are always strict, so the learned embedding
is more discriminative. Second, such disentangled formula-
tion allows us to further reduce the computational complex-
ity of the loss function, significantly boosting the training
efficiency when the number of classes is tremendous.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
pairwise class-weight similarity

fre
qu

en
cy

(a) Random initialized class-weights

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
pairwise class-weight similarity

fre
qu

en
cy

(b) Trained with Softmax Loss

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
pairwise class-weight similarity

fre
qu

en
cy

(c) Trained with intra
D only

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
pairwise class-weight similarity

fre
qu

en
cy

(d) Trained with 1
64 sampled DK

Figure 4: The distributions of pairwise class-weight cosine
similarities (a) when the class-weights are randomly initial-
ized, (b) after trained with Softmax, (c) after trained with
the intra-class objective Lintra

D only, (d) after trained with
the 1

64 sampled Linter
D .

When the number of classes is larger than 106, the compu-
tation of Softmax becomes the bottleneck of the training pro-
cess. Denote the batch size asB, the number of classes asK,
then the time complexity for computing Softmax isO(BK).
In D-Softmax, this complexity is dissected into O(B) for
Lintra
D plus O(B(K − 1)) for Linter

D . When K � B, the
computation of Linter

D becomes the major time overhead. In
order to accelerate training, let us consider: Is it necessary to
compute all the negative-class activations in a mini-batch?

In this work, our answer is No. The main reason lies
in the approximate orthogonality of class-weights in high-
dimensional space. For illustrating the approximate orthogo-
nality, we randomly initialize 10, 000 class weights with 256
dimension and plot how the pairwise cosine similarities dis-
tribute in Fig. 4 (a). The pairwise cosine similarities present
a narrow Gaussian distribution with zero mean and around
3σ = 0.2, which means the class weights are far apart from
each other. We also plot how this distribution changes after
training with softmax in Fig. 4 (b). Interestingly, the mean
of the Gaussian distribution does not shift, and the variance
just increases a little. This means Linter

D is not pushing the
class weights strictly further from each other. Considering
above two points, we may reach the following conclusion,
• Conclusion #3: When optimizing in high-dimensional

embedding space, the function of the inter-class objec-
tive is not pushing class-weights strictly further apart, but
mainly maintaining the approximate orthogonality of the
class-weights as a regularization.
Based on this conclusion, we speculate theO(B(K − 1))

computation of Linter
D may be redundant. To validate it, we

again train an identical model using Lintra
D and a sampled

Linter
D . In each mini-batch we randomly sample 1

64 of the
K − 1 classes as the negative classes. After training , we
plot the distribution of pairwise cosine similarities between
class weights in Fig. 4 (d). As expected, the distribution is al-
most the same as training with the full Softmax. In Sec. 4 we
will present the performance degradation of the sampled loss
compared to the full D-Softmax is also minor while the com-
putation of Linter

D is 64× faster. We name this light variant
of D-Softmax as D-Softmax-K for the negative classes are

10960

Table 1: Face recognition performance with different loss functions and performance of D-Softmax with different configura-
tions. The best results are bolded and the second best results are underlined.

Loss d
Verification accuracy (%) IJBC:TAR@FAR (%) MegaFace:

LFW CFP AgeDB 10−1 10−2 10−3 10−4 Rank1@106

Ls - 99.30 87.23 94.48 98.15 95.82 91.45 85.43 91.25
Lsphere - 99.59 91.37 96.62 98.03 96.10 92.60 86.41 96.04
Larc - 99.68 92.26 97.23 98.01 95.84 92.64 87.29 96.97
LD 0.5 99.38 88.34 95.04 98.02 95.80 91.45 85.47 92.06
LD 0.7 99.60 91.44 96.51 98.08 96.15 92.58 86.56 95.90
LD 0.9 99.74 92.27 97.22 98.09 96.21 92.91 88.17 96.94
LD 1.0 99.63 92.01 96.88 98.03 96.11 92.60 86.88 96.25

Lintra
D + Linter

s 0.9 99.47 90.21 95.21 98.01 95.94 91.78 85.86 93.08
Lintra
D + Linter

arc 0.9 99.73 93.07 97.30 98.02 96.12 92.97 88.28 97.02

sampled from the K − 1 classes. Formally, The mini-batch
version of D-Softmax-K is

LDK =
B∑
i=1

log(1+
ε

eszyi
)+

B∑
i=1

log(1+
∑
k∈SK

eszk) (11)

where SK = {k|k = 1, 2, ...,K}\{yi|i = 1, 2, ..., B}
means a subset of the class-weight set . The sampling rate
remains a hyperparameter for performance-speed trade-off.

An alternative sampling strategy is sampling from mini-
batch samples, and we name such strategy as D-Softmax-B,

LDB =

B∑
i=1

log(1 +
ε

eszyi
) +

∑
i∈SB

log(1 +

K∑
k=1

eszk) (12)

where SB is a subset of batch samples. The strengths and
weaknesses of each strategy will be shown in Sec. 4.3.

4 Experimental Results
4.1 Datasets and Evaluation Metrics
Evaluation.We validate the effectiveness of the proposed D-
Softmax in the face recognition task. The testing datasets
include LFW (Huang et al. 2008), CFP-FP (Sengupta et al.
2016), AgeDB-30 (Moschoglou et al. 2017), IJB-C (Maze
et al. 2018) and MegaFace (Kemelmacher-Shlizerman et al.
2016). LFW is a standard face verification benchmark that
includes 6,000 pairs of faces, and the evaluation metric is the
verification accuracy via 10-fold cross validation. CFP-FP
and AgeDB-30 are similar to LFW but emphasis on frontal-
profile and cross-age face verification respectively. IJB-C is
a large-scale benchmark for template-based face recogni-
tion. A face template is composed of multiple face images
or video face tracks. Features are simply average pooled in a
template to obtain the template feature. The evaluation met-
ric is the true accept rate (TAR) at different false alarm rate
(FAR). MegaFace identification challenge is a large-scale
benchmark to evaluate the performance at the million dis-
tractors. We perform the rank-1 identification accuracy with
106 distractors on the a refined version used by ArcFace1.

1https://github.com/deepinsight/insightface

0.5 0.6 0.7 0.8 0.9 1.0
d

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Ra
nk

1@
10

6

full dataset@ResNet 50
sub dataset1@ResNet 50
sub dataset2@ResNet 50
full dataset@ResNet 34
sub dataset1@ResNet 34
sub dataset2@ResNet 34

Figure 5: Rank-1 identification accuracy against 106 dis-
tractors on MegaFace dataset (refined) with different hyper-
parameter.We randomly split the full MS-Celeb-1M dataset
into sub-dataset1 and sub-dataset2

Training. We adopt the MS-Celeb-1M (Guo et al. 2016)
dataset for training. Since the original MS-Celeb-1M con-
tains wrong annotations, we adopt a cleaned version that
is also used in ArcFace. The cleaned MS-Celeb-1M con-
sists of around 5.8M images of 85K identities. Moreover,
to validate the effectiveness and efficiency of the proposed
losses on massive-scale data, we combine MS-Celeb-1M
with the MegaFace2 (Nech and Kemelmacher-Shlizerman
2017) dataset to obtain a large training set. The MegaFace2
dataset consists of 4.7M images of 672K identities, so the
joint dataset has 9.5M images of 757K identities in total.

4.2 Experiments on D-Softmax
In this section, we explore how to set the intra-class termi-
nation point d for best performance, and how different for-
mulations of inter-class objective affect the discrimination
of the learned embedding. Finally we compare D-Softmax
with other state-of-the-art loss functions.

All the models are standard ResNet-50 (He et al. 2016),
trained on MS-Celeb-1M. We set the scale s = 32, the mar-
gin m1 = 4 for SphereFace, m2 = 0.5 for ArcFace for the
best performance. The other hyperparameters are the same.
Selection of d. By tuning the hyperparameter ε in LD, we
are able to set the optimal d. Table 1 shows performance of
LD with different settings of d. With d increasing from 0.5

10961

Table 2: Comparison of D-Softmax-B, D-Softmax-K and other sampling-based Softmax variants in terms of face recognition
accuracy. The best results at 1/64 sampling rate are bolded, and the second best results are underlined.

Loss | SB | | Sk | Sampling Verification accuracy (%) IJB:TAR@FAR (%) MegaFace:
Rate LFW CFP AgeDB 10−1 10−2 10−3 10−4 Rank1@106

D-Softmax-B 256 85K 1 99.74 92.27 97.22 98.09 96.21 92.91 88.17 96.94
D-Softmax-B 64 85K 1⁄4 99.75 92.27 97.18 98.08 96.22 92.90 88.13 96.93
D-Softmax-B 16 85K 1⁄16 99.74 92.24 96.92 98.03 96.20 93.02 87.98 96.91
D-Softmax-B 4 85K 1⁄64 99.60 90.89 95.84 98.09 95.87 92.15 86.74 95.34
D-Softmax-B 1 85K 1⁄256 99.50 89.09 94.57 97.95 95.29 91.25 85.24 91.53
D-Softmax-K 256 1.3K 1⁄64 99.55 89.77 95.02 98.09 95.40 92.01 86.03 94.72
Rand-Softmax 256 1.3K 1⁄64 99.07 85.47 89.35 98.05 94.30 87.52 78.96 88.27
Rand-ArcFace 256 1.3K 1⁄64 99.43 88.21 84.08 98.11 95.14 91.27 84.26 93.62
HF-Softmax 256 1.3K 1⁄64 99.18 86.11 91.55 97.92 94.45 89.63 81.85 91.18

to 0.9, the performance increases steadily. However, when
we further insrease d to 1.0, the performance drops slightly.
We also perform a range of experiences with different back-
bone networks and training set and Fig.5 shows how the
identification accuracy varies with different d. In each set-
ting, the conclusion is consistent: A moderately large termi-
nation point for intra-class similarity e.g. 0.9, leads to the
best results, so we set d = 0.9 in all the following experi-
ments.
Different forms of inter-class objective. Apart from the
simple form Linter

D proposed in Sec. 3.3, we also compare
several different forms of inter-class objective, the inter-
class objective of Softmax(NormFace) and ArcFace. We do-
nate such objectives as Linter

s and Linter
arc .

To accomplish such objectives, in the forward pass we
compute the full Softmax or ArcFace loss, while in the back-
ward pass we only back-propagate the inter-class part of the
gradients, by setting ∂L

∂zy
to 0. Then we combine Linter

s or
Linter
arc with the intra-class part of D-Softmax Lintra

D to train
a model. Table 1 compares the performance between LD,
Lintra
D + Linter

s and Lintra
D + Linter

arc . With the same intra-
class objective, it is shown that Linter

D outperforms Linter
s

by a large margin. Linter
D and Linter

arc lead to almost the
same good performance, which is as expected. Though en-
tangled with the intra-class objective, the regularization on
inter-class similarity in ArcFace is rigorous enough until the
intra-class similarity is pretty large (say > 0.8). Similarly,
the proposed dissected form of inter-class objective is al-
ways rigorous regardless of the intra-class similarity. Com-
pared with Linter

arc , Linter
D has a more concise form with no

hyperparameter and is easier to be extended to fast variants.
Comparison with state-of-the-art losses. For fair com-
parison, we re-implement NormFace (Wang et al. 2017a),
SphereFace and ArcFace and compare the proposed D-
Softmax with them using the same training data and model.
As shown in Table 1, the proposed D-Softmax outperforms
the Softmax (NormFace) baseline even with a small d = 0.5,
and with d = 0.9 D-Softmax outperforms Softmax by a sig-
inificant margin. SphereFace and ArcFace also outperform
the Softmax baseline because of the introduced angular mar-
gin. To tell the difference between d and margin parameteter,
we take ArcFace for example. The hyperparameter m is the
required angular margin between sample features and nega-
tive class weights, affects both the intra- and inter-class ob-

jective, so that for all class the intra-class constraint is not
the same rigorous. Therefore, it needs to be tuned. The best
selection may vary with other hyperparameters varies. In-
stead, we introduce d which has a more clear interpretation
to reach the same goal of adding margin. d indicates the op-
timization termination of distance between sample features
and positive class weights. Therefore, it is straightforward to
select a reasonable value of d, and for all class the intra-class
constraint is the same rigorous. The best selection of d in D-
Softmax consistently ranges from 0.8 to 0.9 with different
training settings, even when we down-sample the inter-class
objective in the next section.

4.3 Experiments on Light D-Softmax
In Sec. 3.4 we proposed two sampling-based variants of D-
Softmax, i.e., D-Softmax-B and D-Softmax-K, for reduc-
ing the computational complexity of training with massive
classes. In this section, we explore the strength and weak-
ness of each sampling strategy.
D-Softmax-B. D-Softmax-B is a most easy-to-implement
sampling method for reducing the complexity of the inter-
class objective. In practice, one only needs to sample from
the batch samples and then computes all the negative-class
activations w.r.t. the sampled batch samples. To illustrate
the effectiveness of D-Softmax-B, we train several ResNet-
50 with batch size of 256, and employ D-Softmax-B as the
objective, with sampling rates varying from 1 to 1/256. As
shown in Table 2, the performance drops slowly until the
sampling rate is lower than 1/64. The accuracy drop of 1/16
sampling rate is nearly neglectable compared to the non-
sampled version, while the computation of Linter

D is 16×
faster. However, even with the extreme sampling rate 1/256,
i.e., only one batch sample is used for computing the inter-
class objective, the performance of D-Softmax-B is still
acceptable(99.50%v.s. full-computed version 99.74% LFW
accuracy). These results in turn strongly support Conclu-
sion #3 we made in Sec. 3.4, that the inter-class objective is
mainly maintaining the approximate orthogonality of class
weights as a regularization, thus the full-computation with
O(B(K−1)) is redundant. The advantages of D-Softmax-B
are the simplicity for implementation and minimal sacrifice
of performance. However, it faces a dilemma in practice, i.e.,
the memory limit of GPU is also a matter in large-scale train-
ing. The computation of D-Softmax-B requires the whole

10962

Table 3: Comparison between D-Softmax-K and several baseline methods on large-scale training set. The loss/total average
time is computed as the average time for one forward-backward pass of the loss layer / the entire model. The best results are
bolded and the second best results are underlined.

Loss Loss Avg. Total Avg. Verification accuracy (%) IJBC:TAR@FAR (%) MegaFace:
Time (s) Time (s) LFW CFP AgeDB 10−1 10−2 10−3 10−4 Rank1@106

Softmax 3.12 3.96 99.38 87.96 95.60 98.14 95.84 91.55 85.79 93.03
Rand-Softmax 0.20 1.04 99.10 85.56 89.58 98.06 94.44 88.02 79.21 88.92
HF-Softmax 2.04 2.88 99.27 86.10 91.82 98.04 94.71 90.26 82.23 91.79
D-Softmax-K 0.21 1.05 99.47 89.59 95.32 98.10 95.66 91.83 85.83 94.54

class-weight matrix to be copied to the GPU memory thus
adds difficulties on parallelism.
D-Softmax-K. For each mini-batch, D-Softmax-K first sam-
ples candidate negative classes from the intersection of
negative-classes sets w.r.t. every batch sample, then the
batch inter-class objective is computed with simple data par-
allel. To tackle the problem of GPU memory limit, inspired
by (Zhang et al. 2018), we adopt a parameter server to store
all the class weights on a large-capacity memory (e.g. CPU
Ram). When some classes are sampled in a mini-batch, the
weights of these classes are retrieved on the parameter server
and then cached in the client’s GPU. In such manner the
dilemma of GPU memory limit is mitigated, and also the
implementation is not so complicated.

However, compared with D-Softmax-B at the same sam-
pling rate (see the gray rows in Table 2), performance of
D-Softmax-K is slightly inferior. A possible interpretation
is that in D-Softmax-B all the class weights are updated
in every mini-batch thus the class weights are more up-to-
date in each iteration. This suggests sampling from the batch
samples can achieve better performance. Nevertheless, con-
sidering the difference in performance is minor while D-
Softmax-K is much easier for parallelism, we suggest to use
D-Softmax-K in large-scale training.
Compared with other sampling-based methods. In order
to demonstrate the benefits of D-Softmax, we also com-
pare with some exsiting sampling-based methods. The first
is random Softmax, which means for one mini-batch the to-
be-computed class weights are randomly sampled. The sec-
ond is random ArcFace, which is similar to Rand-Softmax
but the loss function is ArcFace. At the same 1/64 sam-
pling rate, both D-Softmax-B and D-Softmax-K outper-
form Rand-Softmax and Rand-ArcFace by a significant mar-
gin (99.60/99.55% v.s. 99.07/99.43% LFW accuracy). The
sampling operation reduce the inter-class objective, which
relaxes the intra-class constraint of Softmax and ArcFace.
As for D-Softmax, the intra-class constraint is not affected.

HF-Softmax proposed in (Zhang et al. 2018) also needs
to be comapred, so we adopt the code released by the authors
and train HF-Softmax on the same dataset for fair compari-
son. It also samples fromK−1 negative classes to reduce the
computational cost. The difference is that the sampling is not
random, they build a hash forest to partition the weight space
and find approximate-nearest-neighbor (ANN) class weights
for batch samples. As shown in Table 2, HF-Softmax out-
performs Rand-Softmax (99.18% v.s. 99.07% LFW accu-
racy), since the negative class weights are sampled from the

’hard-negatives’ which are more valuable for optimization.
But compared with D-Softmax, the performance is inferior.
It is again because the entanglement between the intra- and
inter-class objective. Though hard negative class weights are
mined, only the inter-class regularization is improved. The
intra-class constraint is still not strict enough.
Large-scale experiments. In order to validate the acceler-
ation effectiveness of the proposed D-Softmax-K on train-
ing, we perform a large-scale experiment on the joint dataset
of MS-Celeb-1M and MegaFace2. Performance and average
time cost of some baseline methods are listed in Table 3.
The sampling rate is set to 1/64 in all losses. HF-Softmax and
D-Softmax outperform Rand-Softmax at the same sampling
rate in terms of accuracy, yet only D-Softmax outperforms
the full Softmax loss. Sampling based on the entangled form
of Softmax, the performance upper bound of HF-Softmax is
comaprable to the full Softmax. In contrast, the sampled D-
Softmax has the ability to exceed full Softmax.

In terms of the time cost, it is obvious that the full Softmax
is the slowest one, with 3.12s average time cost on the loss
layer for one forward-backward pass, while Rand-Softmax
is the fastest with 0.20s. HF-Softmax is supposed to be ef-
ficient because only a small fraction of the weights need to
be computed, but the update of the random forest cost too
much time (1.83s on average, while the computation of loss
is only 0.21s.). This time cost can be decreased by changing
to fast ANN algorithm or enlarging the updating time dura-
tion of the random forest, but the performance will decrease
meanwhile. In contrast, the proposed D-Softmax-K provides
a pretty good performance-speed trade-off. The training with
D-Softmax-K is as fast as Rand-Softmax since we do not
need to build and update a random forest.

Note that the results of large-scale experiments seem to
be inferior to that of training with MS-Celeb-1M alone. This
is because the MegaFace2 dataset is rather noisy. If trained
with a cleaned large-scale dataset, the performance is sup-
posed to be better.

5 Conclusion
In this paper, we propose to dissect the softmax loss into
independent intra- and inter-class objectives. By doing so,
the optimization of the two objectives is no longer entangled
with each other, and as a consequence it is more straightfor-
ward to tune the objectives to be consistently rigorous dur-
ing the training time. The propsed D-Softmax shows good
performance in the face recognition task. By sampling the
inter-class similarity, it is easy to be extended to fast variants

10963

(D-Softmax-B and D-Softmax-K) that can handle massive-
scale training. We show that the fast variants of D-Softmax
significantly accelerate the training process, while the per-
formance drop is quite small.

References
Chen, W.; Grangier, D.; and Auli, M. 2015. Strategies for
training large vocabulary neural language models. arXiv
preprint arXiv:1512.04906.
Deng, J.; Guo, J.; Xue, N.; and Zafeiriou, S. 2018. Arc-
face: Additive angular margin loss for deep face recognition.
arXiv preprint arXiv:1801.07698.
Fan, X.; Jiang, W.; Luo, H.; and Fei, M. 2019. Spher-
ereid: Deep hypersphere manifold embedding for person re-
identification. Journal of Visual Communication and Image
Representation.
Goodman, J. 2001. Classes for fast maximum entropy train-
ing. arXiv preprint cs/0108006.
Grave, E.; Joulin, A.; Cissé, M.; Jégou, H.; et al. 2017. Ef-
ficient softmax approximation for gpus. In ICML.
Guo, Y.; Zhang, L.; Hu, Y.; He, X.; and Gao, J. 2016.
Ms-celeb-1m: A dataset and benchmark for large-scale face
recognition. In ECCV.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR.
Huang, G. B.; Mattar, M.; Berg, T.; and Learned-Miller, E.
2008. Labeled faces in the wild: A database for studying
face recognition in unconstrained environments. In Work-
shop on faces in’Real-Life’Images: detection, alignment,
and recognition.
Kemelmacher-Shlizerman, I.; Seitz, S. M.; Miller, D.; and
Brossard, E. 2016. The megaface benchmark: 1 million
faces for recognition at scale. In CVPR.
Le, H.-S.; Oparin, I.; Allauzen, A.; Gauvain, J.-L.; and
Yvon, F. 2011. Structured output layer neural network lan-
guage model. In 2011 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP).
Liu, W.; Wen, Y.; Yu, Z.; Li, M.; Raj, B.; and Song, L. 2017.
Sphereface: Deep hypersphere embedding for face recogni-
tion. In CVPR.
Maze, B.; Adams, J.; Duncan, J. A.; Kalka, N.; Miller, T.;
Otto, C.; Jain, A. K.; Niggel, W. T.; Anderson, J.; Cheney,
J.; et al. 2018. Iarpa janus benchmark-c: Face dataset and
protocol. In 2018 International Conference on Biometrics
(ICB).
Moschoglou, S.; Papaioannou, A.; Sagonas, C.; Deng, J.;
Kotsia, I.; and Zafeiriou, S. 2017. Agedb: the first manually
collected, in-the-wild age database. In CVPR Workshops.
Nech, A., and Kemelmacher-Shlizerman, I. 2017. Level
playing field for million scale face recognition. In CVPR.
Oh Song, H.; Xiang, Y.; Jegelka, S.; and Savarese, S. 2016.
Deep metric learning via lifted structured feature embed-
ding. In CVPR.

Ranjan, R.; Castillo, C. D.; and Chellappa, R. 2017. L2-
constrained softmax loss for discriminative face verification.
arXiv preprint arXiv:1703.09507.
Salimans, T., and Kingma, D. P. 2016. Weight normaliza-
tion: A simple reparameterization to accelerate training of
deep neural networks. In NIPS.
Schroff, F.; Kalenichenko, D.; and Philbin, J. 2015. Facenet:
A unified embedding for face recognition and clustering. In
CVPR.
Schwenk, H. 2007. Continuous space language models.
Computer Speech & Language 21(3):492–518.
Sengupta, S.; Chen, J.-C.; Castillo, C.; Patel, V. M.; Chel-
lappa, R.; and Jacobs, D. W. 2016. Frontal to profile face
verification in the wild. In WACV.
Sohn, K. 2016. Improved deep metric learning with multi-
class n-pair loss objective. In NIPS.
Sun, Y.; Chen, Y.; Wang, X.; and Tang, X. 2014. Deep learn-
ing face representation by joint identification-verification. In
NIPS.
Sun, Y.; Wang, X.; and Tang, X. 2014. Deep learning face
representation from predicting 10,000 classes. In CVPR.
Sun, Y.; Wang, X.; and Tang, X. 2016. Sparsifying neural
network connections for face recognition. In CVPR.
Taigman, Y.; Yang, M.; Ranzato, M.; and Wolf, L. 2014.
Deepface: Closing the gap to human-level performance in
face verification. In CVPR.
Wang, F.; Xiang, X.; Cheng, J.; and Yuille, A. L. 2017a.
Normface: l 2 hypersphere embedding for face verification.
In ACM MultiMedia.
Wang, J.; Zhou, F.; Wen, S.; Liu, X.; and Lin, Y. 2017b.
Deep metric learning with angular loss. In ICCV.
Wang, H.; Wang, Y.; Zhou, Z.; Ji, X.; Gong, D.; Zhou, J.; Li,
Z.; and Liu, W. 2018. Cosface: Large margin cosine loss for
deep face recognition. In CVPR.
Xiang, W.; Huang, J.; Qi, X.; Hua, X.; and Zhang, L. 2018.
Homocentric hypersphere feature embedding for person re-
identification. arXiv preprint arXiv:1804.08866.
Zhang, X.; Yang, L.; Yan, J.; and Lin, D. 2018. Accelerated
training for massive classification via dynamic class selec-
tion. In AAAI.

10964

