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Abstract

3D shape completion is important to enable machines to per-
ceive the complete geometry of objects from partial observa-
tions. To address this problem, view-based methods have been
presented. These methods represent shapes as multiple depth
images, which can be back-projected to yield correspond-
ing 3D point clouds, and they perform shape completion by
learning to complete each depth image using neural networks.
While view-based methods lead to state-of-the-art results, they
currently do not enforce geometric consistency among the
completed views during the inference stage. To resolve this
issue, we propose a multi-view consistent inference technique
for 3D shape completion, which we express as an energy min-
imization problem including a data term and a regularization
term. We formulate the regularization term as a consistency
loss that encourages geometric consistency among multiple
views, while the data term guarantees that the optimized views
do not drift away too much from a learned shape descriptor.
Experimental results demonstrate that our method completes
shapes more accurately than previous techniques.

Introduction

Convolutional neural networks have proven highly successful
at analysis and synthesis of visual data such as images and
videos. This has spurred interest in applying convolutional
network architectures also to 3D shapes, where a key chal-
lenge is to find suitable generalizations of discrete convolu-
tions to the 3D domain. Popular techniques include using dis-
crete convolutions on 3D grids (Wu et al. 2015), graph convo-
lutions on meshes (Litany et al. 2018), convolution-like oper-
ators on 3D point clouds (Atzmon, Maron, and Lipman 2018;
Li et al. 2018b), or 2D convolutions on 2D shape parameter-
izations (Cohen et al. 2018). A simple approach in the last
category is to represent shapes using multiple 2D projections,
or multiple depth images, and apply 2D convolutions on
these views. This has led to successful techniques for shape
classification (Su et al. 2015), single-view 3D reconstruction
(Richter and Roth 2018), shape completion (Hu et al. 2019),
and shape synthesis (Soltani et al. 2017). One issue in these
approaches, however, is to encourage consistency among the
separate views and avoid that each view represents a slightly
different object. This is not an issue in supervised training,
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where the loss encourages all views to match the ground
truth shape. But at inference time or in unsupervised training,
ground truth is not available and a different mechanism is
required to encourage consistency.

In this paper, we address the problem of shape completion
using a multi-view depth image representation, and we pro-
pose a multi-view consistency loss that is minimized during
inference. We formulate inference as an energy minimization
problem, where the energy is the sum of a data term given by
a conditional generative net, and a regularization term given
by a geometric consistency loss. Our results show the benefits
of optimizing geometric consistency in a multi-view shape
representation during inference, and we demonstrate that our
approach leads to state-of-the-art results in shape completion
benchmarks. In summary, our contributions are as follows:

i) We propose a multi-view consistency loss for 3D shape
completion that does not rely on ground truth data.

ii) We formulate multi-view consistent inference as an en-
ergy minimization problem including our consistency
loss as a regularizer, and a neural network-based data
term.

iii) We show state-of-the-art results in standard shape com-
pletion benchmarks, demonstrating the benefits of the
multi-view consistency loss in practice.

Related Work

3D shape completion. Different 3D shape representations
have been applied in 3D shape completion, such as vox-
els, point clouds, and multiple views. Voxel-based repre-
sentations are widely used in shape completion with 3D
CNN, such as 3D-Encoder-Predictor CNNs (Dai, Qi, and
Nießner 2017) and encoder-decoder CNN for patch-level
geometry refinement (Han et al. 2017). However, computa-
tional complexity grows cubically as the voxel resolution
increases, which severely limits the completion accuracy. To
address this problem, several point cloud-based shape com-
pletion methods (Achlioptas et al. 2018; Yang et al. 2017;
Yuan et al. 2018) have been proposed. The point completion
network (PCN) (Yuan et al. 2018) is a current state-of-the-
art approach that extends the PointNet architecture (Qi et al.
2017) to provide an encoder, followed by a multi-stage de-
coder that uses both fully connected (Achlioptas et al. 2018)
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Figure 1: Overview of the multi-view consistent inference for 3D shape completion. Given a partial point cloud as input, we first
render multiple incomplete views X , which form our shape representation of the incomplete input. To perform inference, we
apply a conditional generative network G to generate completed depth images V based on a shape descriptor z conditioned on
X . As a key idea, we design our consistency loss C to evaluate the geometric consistency among V . Intuitively, for all pixels in
all views Vt we find the distance to their approximate closest neighbor in the other views Vs, and sum up these distances to form
C. Specifically, for each target view (e.g. V7 in the figure) we reproject all completed depth images Vs according to the pose of
V7, which leads to reprojection maps denoted R7

s . Then we compute consistency distances, denoted D7
s , for each reprojection

map R7
s and the target V7 via a pixel-wise closest point pooling operation. Finally, a consistency pooling operator aggregates all

consistency distances D7
s into a loss map M7. In inference, we minimize all loss maps as a function of the shape descriptor z.

Figure 2: Net structure.

and folding layers (Yang et al. 2017). The output point cloud
size in these methods is fixed, however, to small numbers
like 2048 (Yang et al. 2017), which often leads to the loss of
detail. View-based methods resolve this issue by completing
each rendered depth image (Hu et al. 2019) of the incomplete
shape, and then back-projecting the completed images into
a dense point cloud. By leveraging state-of-the-art image-to-
image translation networks (Isola et al. 2017), MVCN (Hu et
al. 2019) completed each single view with a shape descriptor
which encodes the characteristics of the whole 3D object to
achieve higher accuracy. However, view-based methods fail
to maintain geometric consistency among completed views
during inference. Our approach resolves this issue using our
novel multi-view consistent inference technique.
Multi-view consistency. One problem of view-based rep-
resentation is inconsistency among multiple views. Some

Figure 3: Methods to calculate consistency distance.

Figure 4: Consistency pooling with respect to V7.

researchers presented a multi-view loss to train their net-
work to achieve consistency in multi-view representations,
like discovering 3D keypoints (Suwajanakorn et al. 2018)
and reconstructing 3D objects from images (Lin, Kong, and
Lucey 2018; Li et al. 2018a; Tulsiani, Efros, and Malik 2018;
Jiang et al. 2018; Khot et al. 2019). With differentiable render-
ing (Lin, Kong, and Lucey 2018; Tulsiani, Efros, and Malik
2018), the consistency distances among different views can
be leveraged as 2D supervision to learn 3D shapes in their
networks. However, these methods can only guarantee consis-
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Figure 5: Eight loss maps of a 3D model.

tency for training data in training stage. Different from these
methods, with the help of our novel energy optimization and
consistency loss implementation, our proposed method can
improve geometric consistency on test data directly during
the inference stage.

Multi-view Consistent Inference

Overview. The goal of our method is to guarantee multi-
view consistency in inference, as shown in the overview
in Fig. 1. Our method starts from converting partial point
clouds to multi-view depth image representations by ren-
dering the points into a set of incomplete depth images
X = {X1, . . . , X8} from a number of fixed viewpoints. In
our current implementation, we use eight viewpoints placed
on the corners of a cube. Our approach builds on a con-
ditional generative net G(z;X) which is trained to output
completed depth images V by estimating a shape descriptor
z conditioned on a set of incomplete inputs X . We obtain
the conditional generative net in a separate, supervised train-
ing stage. During inference, we keep the network weights
fixed and optimize the shape descriptor z to minimize an
energy consisting of a consistency loss, which acts as a reg-
ularizer, and a data term. On the one hand, the consistency
loss C(V ) = C(G(z;X)) quantifies the geometric consis-
tency among the completed depth images V . On the other
hand, the data term encourages the solution to stay close to
an initially estimated shape descriptor z̊. This leads to the
following optimization for the desired shape descriptor z∗:

z∗ = argmin
z

C(G(z;X)) + μ||G(z;X)−G(̊z;X)||
= Lcon(z) + μLgen(z),

(1)

where μ is a weighting factor, and we denote Y = G(̊z;X)
and V = G(z;X) as the initially estimated completed depth
images and optimized completed depth images in inference,
respectively. In addition, we will formulate the regularization
term and data term as multi-view consistency loss Lcon(z)
and generator loss Lgen(z) in Section ‘Consistency Loss’.
Conditional generative net. The conditional generative net
G(z;X) is built on the structure of multi-view completion
net (Hu et al. 2019), as shown in Fig. 2, which is an image-to-
image translation architecture applied to perform depth image
completion for multiple views of the same shape. We train the
conditional generative net following a standard conditional
GAN approach (Goodfellow et al. 2014). To share informa-
tion between multiple depth images of the same shape, our
architecture learns a shape descriptor z for each 3D object by

pooling a so-called shape memory consisting of N feature
maps fn, n ∈ [1, N = 8] from all views of the shape. The
network G consists of 8 U-Net modules, and each U-Net mod-
ule has two submodules, Down and Up, so there are 8 Down
submodules (D7−0) in the encoder and 8 Up submodules
(U0−7) in the decoder. Down submodules consist of the form
Convolution-BatchNorm-ReLU(Ioffe and Szegedy 2015;
Nair and Hinton 2010), and Up submodules (D0−7) consist
of the form UpReLU-UpConv-UpNorm. The shape memory
is the feature map after the third Down submodule (D3) of
the encoder. More details can be found in (Isola et al. 2017;
Hu et al. 2019).

In inference, we optimize the shape descriptor z of
G(z;X) given test input X . We first get an initial estimation
of the shape descriptor z̊ for each test shape by running the
trained model once, and initialize z with z̊. During inference
the other parameters of G are fixed.

Consistency Loss

Our consistency loss is based on the sum of the distances
between each pixel in the multi-view depth map and its ap-
proximate nearest neighbor in any of the other views. In
this section we introduce the details of the multi-view con-
sistency loss calculation following the overview in Fig. 1.
For all views Vt, we first calculate pairwise per-pixel consis-
tency distances Dt

s to each other view Vs, that is, per-pixel
distances to approximate nearest neighbors in view Vs. We
then perform consistency pooling, which for each view Vt

provides the consistency distances over all other views (as
opposed to the initial pairwise consistency distances between
two of views). We call these the loss maps M t. The final
consistency loss is the sum over all loss maps.

Pairwise Consistency Distances

Given a source view Vs and a target view Vt, we calcu-
late the consistency distance Dt

s between Vs and Vt by
view-reprojection and closest point pooling, where Vt, Vs ∈
R

H×W and H × W is the image resolution. Specifically,
view-reprojection transforms the depth information of source
Vs to a reprojection map Rt

s according to the transformation
matrix of the target Vt. Then, closest point pooling further
produces the consistency distance Dt

s between Rt
s and Vt.

Fig. 3 shows the pipeline, where the target view is V7 and
the source view is V2. In the following, we denote a pixel
on source view as pi = [ui, vi, di], where ui and vi are
considered pixel coordinates, its back-projected 3D point
as Pi = [x̂i, ŷi, ẑi], and the reprojected pixel on reprojec-
tion map Rt

s as p′i = [u′
i, v

′
i, d

′
i], where di = Vs[ui, vi] and

d′i = Rt
s[u

′
i, v

′
i] are the depth values at the location [ui, vi]

and [u′
i, v

′
i], respectively.

View-reprojection. The view-reprojection operator back-
projects each point pi = [ui, vi, di] on Vs into the canonical
3D coordinates as Pi = [x̂i, ŷi, ẑi] via

Pi = �−1
s (K−1pi − τs) ∀i, (2)

where K is the intrinsic camera matrix, and �s and τs are the
rotation matrix and translation vector of view Vs respectively.
This defines the relationship between the view Vs = {pi}
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and its back-projected point cloud {Pi}. We use Ts to denote
the transformation matrix of Vs, which contains the pose in-
formation, such that Ts = (�s, τs). Then, we transform each
3D point Pi in the point cloud into a pixel p′i = [u′

i, v
′
i, d

′
i]

on the reprojection map Rt
s as

p′i = K(�tPi + τt) ∀i. (3)

Eq. (2) and Eq. (3) illustrate that we can transform the
depth information of source view Vs to reprojection map Rt

s,
which has the same pose with the target view Vt. However,
due to the discrete grid of the depth images, different points
Pi in the point cloud may be projected to the same pixel
[u′, v′] on the reprojection map Rt

s when using Eq. (3), like
p′1 = [u′, v′, d′1], p

′
2 = [u′, v′, d′2], p

′
3 = [u′, v′, d′3] in Fig. 3.

In fact, all the {p′1, p′2, p′3} are projected to the same pixel
p′r on Rt

s, and the corresponding point on the target view
Vt is pt. To alleviate this collision effect, we implement a
pseudo-rendering technique similar to (Lin, Kong, and Lucey
2018). Specifically, for each pixel on Rt

s, a sub-pixel grid
with a size of (U × U ) is presented to store multiple depth
values corresponding to the same pixel, so the reprojection is
Rt

s ∈ R
H×U×W×U .

Closest point pooling. The closest point pooling opera-
tor computes the consistency distance between reprojec-
tion Rt

s and target view Vt. First, we also upsample Vt to
R

H×U×W×U by repeating each depth value into a U × U
sub-pixel grid. Then, we calculate the element-wise L1 dis-
tance between Rt

s and the upsampled Vt. Finally, we perform
closest point pooling to extract the minimal L1 distance in
each sub-pixel grid using min-pooling with a U × U filter
and a stride of U × U . This provides the consistency dis-
tance Dt

s between source view Vs and target view Vt, where
Dt

s ∈ R
H×W . The consistency distance Dt

s is shown in
Fig. 3, where t = 7, s = 2. Note that we directly take the tth
input view Xt as the reprojection Rt

t when t = s, since the
incomplete input Xt also provides some supervision.

Note that some consistency distances in Dt
s may be large

due to noisy view completion or self-occlusion between the
source and target views, and these outliers interfere with our
energy minimization. Therefore, we perform outlier suppres-
sion by ignoring consistency distances above a threshold of
2.5% of the depth range (from the minimum to the maximum
depth value of a model).

Consistency Distance Aggregation by Consistency
Pooling

Given a target view Vt, we get all the consistency distances
Ds

t between Vt and all the other N source views Vs, as shown
in Fig. 4, where t = 7, N = 8, and we use the same color-
bar with Fig. 1. Obviously, different source views Vs cover
different parts of the target view Vt, which leads to different
consistency distances in Dt

s. For example, the red parts on
each Dt

s in Fig. 4 indicate that they can not be well inferred
from the source view, so these parts are not helpful for the
optimization of the target view.

By extracting the minimum distance between Vt and the
reprojections from all other views, we cover the whole Vt

with the closest points to it and we obtain the loss maps

Table 1: Chamfer distance over different loss functions in
Eq. 7. CD is multiplied by 103.

μ μ = 0.1 μ = 1 μ = 2 μ = 5 μ = 10 μ = 0
L1 5.228 5.160 5.129 5.160 5.155 6.383
L2 5.362 5.110 5.136 5.135 5.175

Table 2: The effects of depth-buffer sizes U (a) and num-
bers of views J (in Eq. 4) in consistency pooling (b). CD is
multiplied by 100.

U Average CD
Table Sofa

U = 1 0.8876 0.8440
U = 3 0.8830 0.8421
U = 5 0.8754 0.8394

(a)

J Average CD
Table Sofa

J = 3 0.8810 0.8484
J = 5 0.8764 0.8410
J = 8 0.8754 0.8394

(b)

M t. In our pipeline, we implement this efficiently using a
consistency pooling operator defined as,

M t(x, y) = min
j∈[1,J]

Dt
j(x, y), (4)

where M t ∈ R
H×W , x ∈ [1, H], y ∈ [1,W ], and J is

the number of views in pooling. We use J ≤ N to make
it possible to restrict pooling to a subset of the views (see
Section ‘Experiments’ for an evaluation of this parameter).
This is illustrated using M7 as an example in Fig. 4. Fig. 5
shows all the consistency loss maps to each target view.

Loss Function

Our multi-view consistent inference aims to maximize the
depth consistency across all views by optimizing the shape
descriptor z of a 3D model. Therefore, the consistency loss
Lcon(z) to the whole 3D model takes the loss maps for all
target views,

Lcon(z) = C(G(z;X)) =
1

N ×H ×W

N∑

t=1

H∑

x=1

W∑

y=1

Mt(x, y),

(5)
where N is the number of views and X is the input set of

incomplete depth images of the 3D model.
In Eq. (1), we also have a data term to keep z close to

the initial estimation z̊ during inference. We call this the
generator loss Lgen, which aims to prevent the completed
depth images drifting away from the prior learned from the
training data:

Lgen(z) = ‖G(z;X)−G(̊z;X)‖, (6)
where X is the input, Y = G(̊z;X) and V = G(z;X)

are the initially estimated outputs and optimized outputs
respectively, and X,Y, V ∈ R

N×H×W . In summary, the
overall loss function in inference L(z) is

L(z) = Lcon(z) + μLgen(z), (7)
where μ is a weighting factor. We optimize the shape

descriptor z for 100 gradient descent steps, and we take z
with the smallest consistency loss in the last 10 steps as z∗. It
should be mentioned that since the gradients of z are small,
we use a large learning rate of 0.2.

11000



Figure 6: Consistency loss maps over different depth-buffer sizes (U ) and numbers of views in consistency pooling J . (c) to (g)
are the consistency loss maps, where the values of the consistency loss (scaled with 100) are marked in red. We use the same
colorbar with Fig. 1.

Figure 7: Comparisons between direct optimization and our methods on optimizing point clouds (left) and depth maps (right).
The normals of the point clouds are shown.

Figure 8: Consistent inference optimization (loss vs steps).

Figure 9: Completions on noisy inputs. GT is ground truth.

Experiments

Our method is built on MVCN (Hu et al. 2019), a state-
of-the-art view-based shape completion method. To fairly
evaluate the improvements over MVCN directly, we use the
same pipeline a MVCN to generate training and test depth
images, where each 3D object is represented by N = 8
depth maps with a resolution of 256 × 256. We take 3D
models from ShapeNet (Chang et al. 2015). Initially, we
set J = N in Eq. 5 to conduct consistency pooling in the
following experiments. In addition, we use the same training
dataset and hyperparameters with (Hu et al. 2019) to train
the network, and the same test dataset with (Hu et al. 2019;
Yuan et al. 2018) to evaluate our methods with Chamfer

Distance (CD) (Fan, Su, and Guibas 2017).

Analysis of the Objective Function

We test different objective functions in Eq. (7) to justify the
effectiveness of our methods. Table 1 shows the quantitative
effects of these variations. The experiments are conducted
on 100 3D airplane models (besides test dataset or training
dataset), which are randomly selected under the constraints
that the average CD is close to that of the test dataset in
(Hu et al. 2019). We change the weighting factor μ between
Lcon(z) and Lgen(z), and different distance functions in
Lgen(z) (using L1 or L2). When μ = 0, only Lcon(z) is
used in loss function. According to the comparison, we select
L2 distance to calculate generator loss, and set μ = 1 in the
following experiments.

The Size of Depth-buffer in Pseudo-rendering

As mentioned above, we use a depth-buffer in pseudo-
rendering, and the depth-buffer size is U × U . Obviously,
a bigger buffer means less collisions in pseudo-rendering,
which further makes the reprojection more accurate. The
average CD is lower when we increase the size of the depth-
buffer, as shown in Table 2 (a), where the experiments are
conducted on two categories of the test dataset. From the loss
maps in Fig. 6 (c) to (e), given J = 8 in consistency pooling
Eq. (5), the consistency loss goes smaller when we increase
U . This is because the closest points (reprojected from the
other 8 views) to the target view are more accurate. We also
see less noisy points (brighter ones) in Fig. 6 (e).

The Number of Views in Consistency Pooling

In this part, we analyze the effects of varying the number of
views J in consistency pooling. As shown in Fig. 4, more
views mean a bigger coverage over the target view and a
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Table 3: Mean Chamfer Distance over multiple categories in ShapeNet. CD is scaled by 100.

Method Avg Airplane Cabinet Car Chair Lamp Sofa Table Vessel
3D-EPN 2.0147 1.3161 2.1803 2.0306 1.8813 2.5746 2.1089 2.1716 1.8543

FC 0.9799 0.5698 1.1023 0.8775 1.0969 1.1131 1.1756 0.9320 0.9720
Folding 1.0074 0.5965 1.0831 0.9272 1.1245 1.2172 1.1630 0.9453 1.0027

PN2 1.3999 1.0300 1.4735 1.2187 1.5775 1.7615 1.6183 1.1676 1.3521
PCN-CD 0.9636 0.5502 1.0625 0.8696 1.0998 1.1339 1.1676 0.8590 0.9665

PCN-EMD 1.0021 0.5849 1.0685 0.9080 1.1580 1.1961 1.2206 0.9014 0.9789
MVCN 0.8298 0.5273 0.7154 0.6322 1.0077 1.0576 0.9174 0.9020 0.8790

Direct-Opt 0.8195 0.5182 0.7001 0.6156 0.9820 1.1032 0.8885 0.8854 0.8619
Ours 0.8052 0.5175 0.6722 0.5817 0.9547 1.1334 0.8394 0.8754 0.8669

Figure 10: Completion results given three different inputs (a, b, c). 3 different views (c). GT indicates ground truth (d).

smaller consistency loss. Given a depth-buffer size of 5× 5,
Fig. 6 (e) to (g) show that the consistency loss increases when
J = 3 or J = 5, and we also find more noisy points in these
loss maps Fig. 6 (f) and (g).

Comparison with Direct Optimization Method

Our multi-view consistent inference can also be used to opti-
mize completed depth maps directly without the conditional
generative net G. We call this direct optimization on depth
maps, and in this part, we compare our methods with direct
optimization. In fact, direct optimization only contains the
Consistency loss calculation C part in Fig. 1. Each depth
map will be a trainable tensor. We first initialize the tensors
with the completed views Vn, n ∈ [1, 8], and then update
these tensors by minimizing the consistency loss in Eq. 7.
We use L2 distance to calculate Lgen(z), μ = 1, and the
learning rate is 0.0006, which produces the best results for
direct optimization.

Fig. 7 shows the comparisons. Here we color-code the
normals of the completed point clouds, which are estimated
using a k-d tree search algorithm with a search radius of 0.5
and a maximum number of neighbors of 30. Compared with
direct optimization, our method performs better. For exam-
ple, in terms of optimizing point clouds, we can smooth the
surface, like the seat of the chair, and remove some outliers.
As for completing depth maps, our method can fill a hole ap-
pearing in MVCN (Hu et al. 2019) and even add the missing
leg, where the L1 distances to the ground truth are marked in
red.

Though the direct optimization method can also refine the
point clouds of MVCN, it does not perform well in removing
outliers on point clouds (left) or completing a depth map
(right) in Fig. 7. The reason is that direct optimization does
not have any knowledge to distinguish shape and background

from a depth map, which means that for pixels in a hole,
direct optimization does not know whether they belong to
a hole of the shape or the background. However, with the
knowledge of shape completion learned in the conditional
generative net G, our method completes shapes better.

Intermediate Results and Convergence

In Fig. 8, the image insets illustrate the intermediate comple-
tion results of the [0, 20, 40, 60, 80, 100]th step for one exam-
ple depth image from the cabinet class. In addition, Lgt(z) =
‖GT −G(z;X)‖ is averaged over all cabinet objects, where
GT is ground truth. For clarity, the curve is offset vertically
by 0.2. ΔLgt(z) = ‖GT − G(̊z;X)‖ − ‖GT − G(z;X)‖.
We see the completed results are closer to ground truth than
MVCN, though there is no ground truth supervision in infer-
ence.

Fig. 8 illustrates empirically that, under the defined loss
function, our optimization can find a good solution within
100 steps. The figure shows the average loss vs gradient
descent steps on all the 150 cabinet test objects. We reach
the maximum of Lgen(z) within s steps, then the distance to
G(̊z;X) decreases in the following 100− s steps. For 98%
of all the 1200 test objects, the maximum is reached within
10 steps (s < 10), and within 20 steps for almost all. After
100 steps, the optimization has largely converged.

Completion results

Improvements over Existing Works. Here we compare our
method with the state-of-the-art shape completion methods,
including 3D-EPN (Dai, Qi, and Nießner 2017), FC (Achliop-
tas et al. 2018), Folding (Yang et al. 2017), three variants
of PCN (Yuan et al. 2018): PN2, PCN-CD, PCN-EMD, and
MVCN (Hu et al. 2019). TopNet (Tchapmi et al. 2019) is a
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Figure 11: Improvements over MVCN on multiple categories in ShapeNet. GT is ground truth.

recent point-based method, but their generated point clouds
are sparse.

Table 3 shows the quantitative results, where the comple-
tion results of the other methods are from (Yuan et al. 2018;
Hu et al. 2019) and ‘Direct-Opt’ is the direct optimization
method introduced above. With multi-view consistency op-
timization, both direct optimization and our method can im-
prove MVCN on most categories of the test datasets, and our
method achieves better results. The optimization methods
fail on the Lamp dataset. As mentioned in (Hu et al. 2019),
the reason is that the completion of MVCN is bad on several
lamp objects, which makes the optimization less meaningful.

Fig. 11 shows the qualitative improvements over the cur-
rently best view-based method, MVCN, where the normals
of point clouds are color-coded. With the conditional gener-
ative net G and multi-view consistency loss C, our method
produces completed point clouds with smoother surfaces and
fewer outliers, and can also fill holes of shapes on multiple
categories.
Completions results given different inputs. Fig. 10 (a, b,

c) show completed airplanes and cars under 3 different inputs
of the same objects. Since the car input in (a) leaves a lot of
ambiguity, the completed cars vary. The airplanes results are
more similar because the inputs contain most of the structure.
Multiple views of completed shapes. Fig 10 (c) shows a
completed airplane and car from 3 views. We see the com-
pleted shapes are consistent among different views.
Completions on noisy inputs. In Fig. 9, we perturb the input
depth map with Gaussian noise whose standard deviation is
0.01 times the scale of the depth measurements. Our comple-
tion is robust to the noisy input.

Conclusion

We proposed multi-view consistent inference to enforce geo-
metric consistency in view-based 3D shape completion. We
defined a novel multi-view consistency loss suitable for op-
timization in inference, which can be achieved without the
supervision of ground truth. The experimental results demon-
strate that our method can complete 3D shapes more accu-
rately than existing methods.
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