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Abstract

Connectionist Temporal Classification (CTC) and attention
mechanism are two main approaches used in recent scene
text recognition works. Compared with attention-based meth-
ods, CTC decoder has a much shorter inference time, yet a
lower accuracy. To design an efficient and effective model,
we propose the guided training of CTC (GTC), where CTC
model learns a better alignment and feature representations
from a more powerful attentional guidance. With the bene-
fit of guided training, CTC model achieves robust and accu-
rate prediction for both regular and irregular scene text while
maintaining a fast inference speed. Moreover, to further lever-
age the potential of CTC decoder, a graph convolutional net-
work (GCN) is proposed to learn the local correlations of ex-
tracted features. Extensive experiments on standard bench-
marks demonstrate that our end-to-end model achieves a new
state-of-the-art for regular and irregular scene text recogni-
tion and needs 6 times shorter inference time than attention-
based methods.

Introduction

Scene text recognition has been studied in academia and in-
dustry for many years, as it plays an important role in various
real-world applications such as vehicle license plate recog-
nition, identity authentication and content analysis. In re-
cent years, many methods proposed (Bissacco et al. 2013;
Shi, Bai, and Yao 2016; Shi et al. 2018) to recognize text in
the wild. However, due to different sizes, fonts, colors and
character placements of scene texts, scene text recognition
is still a challenging task.
Current Recognition Framework Generally, the frame-
work of scene text recognition models is an encoder-decoder
structure. Recent methods mainly use two techniques to
train the sequence recognition model, namely Connection-
ist Temporal Classification (CTC) and attention mechanism.
Inspired by speech recognition, CTC is introduced to align
the frame-wise probability with labels. In CTC-based meth-
ods (Liu et al. 2016; Shi, Bai, and Yao 2016), CNN is used
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Figure 1: Accuracy versus inference time (ms/image) trade-
off tables of different approaches. 1D Attention and 2D At-
tention represent two attention-based methods. Our method
is much faster and more effective.

to extract feature sequence and the Recurrent Neural Net-
work (RNN) is used to model the feature sequence. They
are trained with CTC loss and can make fast prediction
using parallel decoding. Attention-based methods use the
attention-mechanism to capture the dependencies of each
character in a text line, which can learn a better alignment
and deeper feature representations than CTC-based meth-
ods. Also some rectification methods have been proposed
for text image preprocessing. The rectify module transforms
the input text image and rectifies character alignments based
on Thin-Plate Spline transformation. The rectified images
are then passed to the encoder-decoder structure for recog-
nition. This module can be added to CTC or attention-based
methods and it is trained in an end-to-end fashion to learn
adaptive transformations.
Motivations Though previous approaches give promising
results on either regular or irregular scene text recognition,
they still have limitations of balancing the trade-off between
recognition accuracy and inference time (see Figure 1). As
attention-based methods make predictions depending on the
features in previous time steps, this non-parallel decoding
scheme will slow down the inference process a lot. Although
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Figure 2: Overview of the proposed method. Different colors of the arrow indicate different computational graphs. Note that the
gradients calculated from CTC loss are only used to update the weights of GCN+CTC decoder in the back-propagation process.
The ground truth label is the same for both the guidance and GCN+CTC decoder.

CTC-based methods are relatively efficient, they are not as
effective as attention-based methods, where CTC loss mis-
leads the training of its feature alignments and feature rep-
resentations. With the intention of designing an efficient
and effective scene text recognizer, we aim to optimize the
CTC model. To overcome the limitations of CTC, we have
two motivations: (1) learning better feature representations
from a more effective guidance, and (2) building correlations
among the local features.

Our Work We propose the guided training of CTC (GTC),
a novel method for general CTC optimization. The proposed
method uses an end-to-end trainable framework as shown in
Figure 2. The rectify module is a simple transformation net-
work that applies rectification to text images. The CTC de-
coder is used for both training and evaluation, which leads
to efficient inference. For guidance, it is made up of an ef-
fective attention decoder which will not be used in the in-
ference. The encoder from a powerful network can learn a
better alignment and feature representations, where the fea-
ture maps are easier to be decoded. Thus, the CTC model
learns from the guidance and becomes more effective. The
gradients calculated from cross entropy loss will be used
to directly optimize the rectify module, ResNet CNN and
the attention decoder, which gives a powerful guidance. The
choice of guidance is flexible, which makes this method very
general.

As CTC decoding allows repetitions of characters and
blank labels, one label can be predicted in multiple time
steps. We assume neighbouring time steps have supplemen-
tary features and there are certain correlations inside the fea-
ture sequence. For example, the letter ‘H’ can be misclassi-

fied as ‘I’ if only half part of ‘H’ is considered. To merge the
supplementary features of the feature sequence, we further
propose a novel GCN module to capture the dependency of
each sequence slice and merge the features belonging to the
same label based on the correlation. This further improves
the robustness and accuracy of the CTC decoder while main-
taining a fast inference speed.

In summary, the contributions of this paper are three-fold:
1) We design a novel GTC method for scene text recog-

nition, which is flexible and effective. This method can be
adopted to various CTC-based methods and makes the CTC
model more effective by learning from powerful guidance,
which may become a general method to improve the effec-
tiveness of CTC-based methods. We also use different guid-
ance to show that GTC is a general method for CTC model
optimization.

2) This is the first attempt to apply graphs in scene text
recognition and build sequence correlations by using GCN,
which improves the accuracy and robustness of CTC de-
coder. Through extensive experiments, we show that the
GCN module is effective.

3) Our proposed method has a 6 times shorter inference
time than attention-based methods and achieves a new state-
of-the-art on most regular and irregular scene text datasets,
which is more efficient and effective compared to other
works.

Related Work

Regular Scene Text Recognition Early works, e.g. (Bis-
sacco et al. 2013), treated scene text recognition as a char-
acter segmentation and recognition problem. However, the
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complicated background and different alignments of scene
texts make the character segmentation the most challeng-
ing part to be trained. Besides, (Jaderberg et al. 2015) also
used a multi-classification approach to directly predict each
word, but this method is heavily constrained by the dic-
tionary size. (Lee and Osindero 2016) proposed a recur-
rent model R2AM with an attention decoder for regular
scene text recognition. Inspired by the sequence-to-sequence
alignment in speech recognition, (Shi, Bai, and Yao 2016)
introduced CTC decoder into scene text recognition with
a Bidirectional Long Short-Term Memory (BiLSTM) to
model the feature sequence, which is known as CRNN. A
Gated Recurrent Convolutional Neural Network (GRCNN)
was presented by (Wang and Hu 2017) which is trained with
CTC loss for regular text recognition. Alternatively, (Liu et
al. 2018) proposed a binary convolutional encoder-decoder
network (B-CEDNet) trained with cross-entropy loss, and
achieved fast inference. However, it is designed for regu-
lar scene text recognition and requires pixel-wise labels for
training. Inspired by CTC, (Bai et al. 2018) proposed a “Edit
Probability” to optimize the training process, as missing or
superfluity of characters may mislead CTC training. (Zhang
et al. 2019) also introduced a domain adaption method to
varying length text recognition. The major approach for re-
cent regular text recognition methods is still CTC-based,
which enforces the alignment between feature sequence and
labels. However, CTC fails on predicting irregular scene
text, as the curvatures mislead the alignments.
Irregular Scene Text Recognition Recognizing irregular
scene text has attracted increasing attention in recent years,
as it is a more challenging problem. Due to the distortions
and curvatures of irregular texts, (Shi et al. 2018) and (Shi et
al. 2016) firstly rectified the irregular texts, based on Spatial
Transformer Network (STN) (Jaderberg et al. 2016), which
makes text images more regular and easier to be recognized.
(Luo, Jin, and Sun 2019) and (Zhan and Lu 2019) focused on
improving the rectification pipeline to get better transforma-
tion results. These methods all use attention-based decoders.
CTC-based decoder was also used in (Liu et al. 2016), with
a STN rectifying the input image. Instead of rectifying im-
ages, some works recognize the irregular text directly. Due
to the misalignment between the feature map and the atten-
tion region, (Cheng et al. 2017) used a Focusing Network to
adjust the “attention drift”. (Liu, Chen, and Wong 2018) also
proposed a Character-Aware Neural Network (Char-Net) to
rectify the individual characters. However, both methods re-
quire character-level annotations. (Cheng et al. 2018) used a
multi-direction approach to encode features before the atten-
tion network. Alternatively, there are other methods which
extend the attention-mechanism into 2D feature maps, as
the 2D space captures more spatial dependency. (Yang et
al. 2017) and (Liao et al. 2019) recently use 2D local fea-
tures in their attention networks, but these two works also
require character-level annotations. (Li et al. 2019) pro-
posed a 2D attention decoder to significantly improve the
performance on irregular text recognition, although the in-
ference time is relatively longer. (Wang et al. 2019) pro-
posed a Transformer-based decoder which is also connected
to a 2D feature map. This method achieves parallel training,

but non-parallel decoding. Among the mentioned works, the
attention-based (Attention or STN+Attention) methods gen-
erally have higher accuracy on irregular scene text datasets,
but the attention decoder slows down the inference. Al-
though STN+CTC maintains a faster inference time, the ca-
pacity of CTC decoder constrains its performance.

Different from the mentioned approaches, this paper uses
the guided training to optimize the CTC model with better
representations of images. We also build spatial and contex-
tual correlations among the sequence by using a designed
GCN layer. To our best knowledge, this may be the first work
of scene text recognition that uses a guided training method
and a GCN layer.

Although (Cheng et al. 2017) used extensive experiments
to show that the direct combination of CTC and attention
network does not work well on scene text recognition, they
did not give explanations. The reason behind is that CTC de-
grades the learning of feature representations. We use solid
experiments to show that CTC model can achieve a much
better performance by learning from an powerful guidance.
Different from (Kim, Hori, and Watanabe 2017) which used
a shared encoder by CTC-attention and uses attention de-
coder for evaluation in speech recognition, encoder and rec-
tification model in our network are solely optimized by the
gradients calculated from the guidance. At the test time,
only the CTC decoder is used to make predictions and this
achieves a much shorter inference time than the attention
method. The guidance is only used in the training phase,
which supervises the CTC model to learn a better con-
text alignment and feature representations. Therefore, GTC
makes the CTC model more efficient and effective.

Methodology

Overview

Guided training is proposed to overcome the limits of CTC
itself. In the inference of CTC model, only the maximum
probability of each time step is chosen as the final predic-
tion. However, in training, different probabilities in a single
time step contribute to the loss of different CTC paths. The
CTC training will make feature representations to tolerate
some prediction error. If we have a ground truth label ‘AB’,
for a 3 time-steps output, the CTC path (pseudo label) can be
‘A-B’ or ‘-AB’ or ‘AB-’ or ‘AAB’ or ‘ABB’. As labels for
CTC loss calculation are ambiguous, it is confusing to learn-
ing feature representations in each time step. Missing or su-
perfluous characters may degrade the learning of its feature
alignments and feature representations. Though we used the
same encoders for both attention model and CTC model, we
found in experiments that the encoder of CTC model has
poor feature representations. We assert that the performance
of CTC encoder is actually constrained by CTC loss itself.
Therefore, a guidance can provide better feature representa-
tions for CTC model.

The proposed GTC is described in this section, where
a general attention decoder is used as a guidance and our
GCN+CTC decoder is used for training and inference. As
shown in Figure 2, our network consists of four parts. The
first part is a STN which is the same as in (Shi et al. 2016).
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It transforms input images into normalized images. The sec-
ond part is a ResNet backbone for feature extraction, which
is widely used in scene text recognition (Li et al. 2019;
Wang et al. 2019; Zhan and Lu 2019). The third part is an
attentional guidance which uses attention mechanism to out-
put the text sequence. The fourth part is a GCN powered
CTC decoder which strengthens the correlations of feature
sequence. The STN, ResNet-CNN and the attentional guid-
ance are solely trained with cross entropy loss, while the
GCN+CTC decoder is trained with CTC loss.

Spatial Transformer Network

As many text images in natural scenes appear with curved
texts and different perspectives, the transformation module
is adopted for robust and accurate recognition, which ap-
plies spatial transformation to text images and normalizes
the character region. It is a differentiable module and con-
sists of a localization network and a grid generator. The
localization network will predict transformation parameters
and use them to create a grid. The grid and the input image
will be sampled by the generator to generate the transformed
output.

Feature Extractor

We choose ResNet50 (He et al. 2016) as our network’s back-
bone, which is shown in Table 1. To extract more precise fea-
tures, we change the original residual block stride from 2 to
1. We also add two max-pooling layers for down-sampling
the feature map. The extracted feature sequence h1:T has a
fixed height and a varying length, which will be used for
decoding.

Attentional Guidance

Inspired by machine translation, the sequence-to-sequence
model is used to translate a feature sequence into a char-
acter sequence, which aligns outputs and labels. The atten-
tion mechanism in such a model has the ability to capture
output dependencies and focus on character region at each
time step. For fair comparisons, we choose a general at-
tention decoder as in (Shi et al. 2016; Cheng et al. 2017;
Zhan and Lu 2019) to demonstrate the effectiveness of GTC.
We adopt the attentional sequence-to-sequence decoder at
the top of the ResNet backbone. It is based on an RNN pro-
ducing a target sequence of length T, denoted by (y1, y2...,
yT ).

The attention decoder either predicts a character or a end-
of-sequence token ‘EOS’. It stops predicting when it pre-
dicts an ‘EOS’. The Gated Recurrent Cell (GRU) is adopted
to learn the attention dependency. At time-step t, output yt
is,

yt = Softmax(WT st), (1)
where st is a hidden state of the GRU cell and W is a train-
able parameter.

The hidden state st is updated via the recurrent process of
GRU:

st = GRU(yprev, gt, st−1), (2)
where yprev is the embedding vector of the previous output
yt−1. During training, yt−1 is replaced by the ground truth

Table 1: The configuration of our ResNet50 feature extrac-
tor. ”Conv” means convolutional layers, provided with its
kernel size, output channels, stride and padding. The stride
for all ‘Residual Block’ is set to 1. The configuration for
”Max-pooling” and ”Average-pooling” represents its kernel
size, stride, and padding. The overall down-sampling ratio is
W: 1/4, H: 1/16.

Layer Name Configuration
Conv 7× 7, 64, 2× 2, 3

Max-pooling 3× 3, 2× 2, 1

Residual Block

[
Conv : 1× 1, 64
Conv : 3× 3, 64
Conv : 1× 1, 256

]
× 3

Residual Block

[
Conv : 1× 1, 128
Conv : 3× 3, 128
Conv : 1× 1, 512

]
× 4

Max-pooling 2× 1, 2× 1

Residual Block

[
Conv : 1× 1, 256
Conv : 3× 3, 256
Conv : 1× 1, 1024

]
× 3

Max-pooling 2× 1, 2× 1

Residual Block

[
Conv : 1× 1, 512
Conv : 3× 3, 512
Conv : 1× 1, 2048

]
× 3

Average-pooling 4× 1, 1× 1

sequence. gt represents the glimpse vector calculated as:

gt =

T∑
i=1

(αtihi), (3)

where hi is the feature sequence vector of h1:T at the time-
step i. αt is the attention weight vector as follows:

αt = Attention(st−1, hi), (4)
which is described in (Luong, Pham, and Manning 2015).

The attentional guidance is trained with the cross entropy
loss and the prediction results will not be used in the evalu-
ation.

GCN+CTC Decoder

Given a sequence of probability distributions y1:T of length
T , it seeks multiple paths M−1(l) that produce the same
label sequence l, allowing repetitions of consecutive char-
acters or blank labels ∅. yt represents the probability distri-
bution at time-step t over the classification labels L, where
∅∈L. M defines the operation of mapping all possible paths
π to the target label. For example, it maps the path ‘-hh-e-ll-
l–oo–’ into ‘hello’. CTC trains the network to optimize the
summation of probabilities over all paths:

p(l|h1:T ) =
∑

π∈M−1(l)

p(π|h1:T ), (5)

where the probability of one possible path π is calculated as:

p(π|h1:T ) =

T∏
t=1

ytπt
, ∀π ∈ M−1(l). (6)
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Based on Equations (5) and (6), CTC trains the network
to optimize the loss function:

LossCTC = −log p(l|h1:T ). (7)

In CRNN, BiLSTM is used to extract sequence feature
by reading the text line from both directions. However, it
lack the ability of focusing on local regions, as characters
appear in separate locations. Graph Convolutional Networks
(GCNs) (Kipf and Welling 2016) are an efficient variant of
CNNs on graph data, where edges of the graph represent im-
plicit connections within the data. Given a relation defined
by a graph, graph convolutions pass the messages from a
node to its neighbors. We propose a special GCN layer be-
fore the BiLSTM, where a similarity adjacency matrix and a
distance matrix are combined to describe the spatial contex-
tual correlations.

Given the feature map h1:T from ResNet CNN, the ad-
jacency matrix is learned by computing pairwise similarity
between every two sequence slices:

AS(i, j) = f(ci, cj), (8)

The similarity projection function is defined as:

f(ci, cj) =
ci · cj

||ci|| ||cj || , (9)

where ci is a linear transformation result of hi. The formula
basically calculates pairwise cosine similarities. In addition
to using similarity relations to focus on similar features, a
distance matrix is also used to constrain the similarity to fo-
cus on neighboring features. The distance matrix is defined
as:

AD(i, j) =
exp(−dij + β)

exp(−dij + β) + 1
, (10)

where dij = |i − j| and β is a scale factor. Therefore, the
final output of our GCN+CTC is calculated as:

X = (AS ∗AD)HWg, (11)

where Wg is an optional weight matrix. The X is then passed
to the BiLSTM for sequence modelling.

logits = Seq(X)Wc, (12)

where Wc is a weight matrix for classification and Seq is the
BiLSTM with the hidden size of 512. The logits and label l
are finally used to calculate CTC loss to train the GCN+CTC
decoder.

In summary, GTC uses a more powerful model to guide
CTC decoder, where the gradients calculated from CTC loss
will not be used to update the rectify module, ResNet CNN,
feature maps or the attentional guidance. CTC Decoder up-
dates itself through the training process of the attentional
guidance, where it learns to predict from better feature rep-
resentations and better alignments. GCN builds correlations
among features and further improves the performance.

Experiments

We conduct experiments on both regular and irregular scene
text datasets to evaluate the performance of our proposed
method.

Datasets

Synthetic Datasets There are three public synthetic
datasets, namely Synth90K (Jaderberg et al. 2015), Synth-
Text (Gupta, Vedaldi, and Zisserman 2016) and SynthAdd
(Li et al. 2019). Synth90K is randomly generated based on
the 90K common English words, which contains 9-million
image instances. In SynthText, texts are randomly blended
on full images and text samples are cropped. There are in
total 8-million images in SynthText. SynthAdd is also a syn-
thetic dataset with only text line annotations to compensate
the lack of special characters. There are 1.6-million images
in SynthAdd.
Regular datasets mainly contains text images with hori-
zontal layout of characters and equal spacing between char-
acters. These images can be simply recognized by reading
from left to right.

• IIIT5K-Words (IIIT5K) (Mishra, Alahari, and
Jawahar 2012) is collected from Google image
searches, which contains 2,000 images for training
and 3,000 images for evaluation.

• Street View Text (SVT) (Wang, Babenko, and Be-
longie 2011) is collected from Google Street Im-
age, with 257 training images and 647 testing im-
ages. Some of these outdoor street images are of low-
resolution.

• ICDAR 2003 (IC03) (Lucas et al. 2003) is a regu-
lar text dataset cropped from real scene text images.
It contains 1,156 training images and 1,110 testing
images. Instead of filtering the samples which con-
tain non-alphanumeric characters or have fewer than
three characters, we use the whole dataset for testing.

• ICDAR 2013 (IC13) (Karatzas et al. 2013) has 848
cropped text instances for training and 1095 for test-
ing. It inherits most of IC03’s images.

Irregular datasets contain many hard cases of scene text
images. Many of these are curved, rotated and distorted text
images.

• ICDAR 2015 (IC15) (Karatzas et al. 2015) contains
4,468 images for training and 2,077 images for eval-
uation. These images are cropped from natural im-
ages captured by Google Glasses. Thus, many im-
ages are blurry, curved and rotated.

• SVT Perspective (SVT-P) (Quy Phan et al. 2013)
consists of 645 cropped images, which are from side
view images and contain perspective distortions.

• CUTE80 (Risnumawan et al. 2014) contains 288
text patches cropped from natural scene images.
Many of these are curved text images of high res-
olution.

• COCO-Text (COCO) (Veit et al. 2016) contains
42618 real text images for training and 9837 images
for testing.

Implementation Details

We implement our proposed network structure with PyTorch
and conduct all experiments on NVIDIA Tesla V100 GPUs
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Table 2: Text line recognition accuracy (in percentages) on public benchmarks, including both regular and irregular datasets.
All experiments are compared in a lexicon-free basis. In each column, the state-of-the-art result is shown in bold, and the
second best result is shown in underline. The methods marked with “*” are carefully evaluated with rotation strategy. The
methods marked with “+” are trained with both word-level and character-level annotations. Our best model outperforms all the
compared methods in the overall recognition rate, and achieves the state-of-the-art on most scene text datasets.

Method Regular Text Irregular Text Infer-Time
IIIT5K IC03 IC13 SVT IC15 SVT-P CUTE80 ms/image

CTC (Liu et al. 2016) 83.3 89.9 89.1 83.6 - 73.5 - -
(Wang and Hu 2017) 80.8 91.2 - 81.5 - - - -

(Shi, Bai, and Yao 2016) 81.2 89.9 89.6 82.7 - 66.8 54.9 2.7
Attention (Lee and Osindero 2016) 78.4 88.7 90.0 80.7 - - - -

(Shi et al. 2016) 81.9 90.1 88.6 81.9 - 71.8 59.2 -
(Yang et al. 2017)+ - - - - - 75.8 69.3 -

(Cheng et al. 2017)+ 87.4 94.2 93.3 85.9 70.6 - - -
(Liu et al. 2018)+ 87.0 93.1 92.9 - - - - -

(Liu, Chen, and Wong 2018)+ 92.0 92.0 91.1 85.5 74.2 78.9 - -
(Bai et al. 2018)+ 88.3 94.6 94.4 87.5 73.9 - - -

(Zhan and Lu 2019) 93.3 - 91.3 90.2 76.9 79.6 83.3 -
(Shi et al. 2018) 93.4 94.5 91.8 93.6 76.1 78.5 79.5 73.1

(Luo, Jin, and Sun 2019) 91.2 95.0 92.4 88.3 68.8 76.1 77.4 87.3
(Liao et al. 2019)+ 91.9 - 91.5 86.4 - - 79.9 -

(Li et al. 2019)* 95.0 - 94.0 91.2 78.8 86.4 89.6 -
(Wang et al. 2019) 93.3 - 91.3 88.1 77.9 80.2 85.1 -

Ours CTC Baseline 95.4 93.6 91.8 89.2 76.4 80.1 85.7 9.5
GTC (1D) 96.0 95.8 93.2 91.8 79.5 85.6 91.3 10.6
GTC (2D) 95.0 94.6 92.6 91.2 79.3 83.4 90.6 10.6

CTC + GCN 95.2 93.9 92.4 90.6 76.6 81.7 88.2 11.0
GTC (1D) + GCN 95.5 95.2 94.3 93.2 80.4 85.5 92.0 11.0
GTC (2D) + GCN 95.8 95.5 94.4 92.9 79.5 85.7 92.2 11.0

GTC (2D) + GCN * 95.5 95.2 94.3 92.9 82.5 86.2 92.3 -

with 16GB memory. We use a batch size of 32 on each GPU,
with 32 GPUs in total. ADAM optimizer is chosen for train-
ing, with the initial learning rate set to 10−3 and a decay rate
of 0.1 every 30000 iterations. We directly train our network
using synthetic data (Synth90k, SynthText and SynthAdd)
and the training images provided from public benchmarks
(IIIT5K, SVT, IC03, IC13, IC15, COCO), which is the same
as what is described in (Li et al. 2019). We randomly sample
5.6-million images from those training images for training.
The input images are resized to have a fixed height of 64
pixels and a varying length, but not longer than 160 pixels.

During the evaluation, the attentional guidance is aban-
doned. We directly evaluate the input images by using CTC
decoder without any rotation or prediction strategies. Greedy
decoding is adopted.

Experimental Results

All experiments were evaluated in a lexicon-free condition.
We directly evaluated the test images of 7 public datasets
and the results are shown in Table 2. ‘1D’ denotes the atten-
tional guidance described in the Methodology. We also eval-
uated GTC by using another attentional guidance from (Li et
al. 2019), which shows the robustness of GTC. The related
experimental results are denoted by ‘2D’. (Li et al. 2019)
rotated testing images by 90 degrees clockwise and anti-
clockwise respectively, and recognized them together with

the original image. For fair comparison, our experiment in
the last row of Table 2 also used the rotation strategy. Our
other experiments directly evaluated the test images without
rotation. Therefore, we claim that we achieved the state-of-

Figure 3: Accuracy versus inference time (ms/image) trade-
off tables of different approaches. GTC outperforms CTC
and attention-based methods in all datasets.
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Table 3: Comparison between GTC and guided training of
attention. The performance was measured by using overall
accuracy on all public benchmarks.

Experiment overall accuracy
Use CTC to Guide Attention 87.87%

Use Attention to Guide CTC (GTC) 90.06%

the-art by using only word annotations and public datasets.
Our GTC method outperforms CTC-based methods a lot

while it maintains a fast inference. The GCN module has
also been verified to model a better feature sequence for ir-
regular texts. Note that all GTC results are based on the pre-
dictions of CTC decoder.

To evaluate the efficiency of our approach, we also con-
duct experiments to analyze the inference time of different
methods. We fix the batch size as 1 and run all test experi-
ments on the same device. The inference time is measured
on a single NVIDIA Titan X GPU with 12 GB memory. The
comparison of our method and other methods is shown in
Figure 3. The results show that our GTC method achieves
6 times faster in the inference than attention-based methods
and maintains the highest recognition rate. The GCN+CTC
decoder is even 14+ times faster than the attention decoder.
The inference time is 54 ms/image for attention decoder and
3.7 ms/image for the GCN+CTC decoder.

Ablation Study

In this experiment, CTC is used to guide the attention de-
coder instead. The encoder is trained with the CTC loss and
the attention decoder is used for evaluation. The result in Ta-
ble 3 shows that CTC is not an effective guidance compared
with Attention. The result also indicates that the CTC loss
harms the training process and produces poor feature repre-
sentations. Therefore, this experiment suggests that a pow-
erful guidance is necessary in the guided training in order to
improve the overall performance.

Besides, we find that GTC also has better transformation
results compared with STN+CTC framework (see Figure 4).
As attention mechanism is more sensitive to spatial informa-
tion, the transformation module can be more responsive.

To clearly describe how GCN works, we present visual-
izations in Figure 5. With distance matrix and similarity ma-
trix multiplied point-wisely, we get the adjacency matrix of
GCN, which focuses on local similar features. Thus, it estab-
lishes the local correlations for better sequence modelling.

Original CTC STN + CTC STN + GTC

Figure 4: Examples of original images and rectified images
from different approaches.

A_d (Distance) A_s (Similarity)

A (Local Correlations)

Figure 5: Visualization of the similarity matrix, the distance
matrix and their point-wise product.

Conclusion

In this paper, we propose an effective and efficient GTC
method to significantly improve the robustness and perfor-
mance on scene text recognition, which overcomes the limi-
tations of CTC. This work is the first attempt to use GCN to
learn the local correlations of feature sequences, which fur-
ther improves CTC performance. We conduct experiments
to evaluate the effectiveness of our method on 7 public
benchmarks and the method achieves a new state-of-the-art
on most datasets.
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