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Abstract

We address the problem of multiple agents finding their paths
from respective sources to destination nodes in a graph (also
called MAPF). Most existing approaches assume that all
agents move at fixed speed, and that a single node accommo-
dates only a single agent. Motivated by the emerging appli-
cations of autonomous vehicles such as drone traffic manage-
ment, we present zone-based path finding (or ZBPF) where
agents move among zones, and agents’ movements require
uncertain travel time. Furthermore, each zone can accommo-
date multiple agents (as per its capacity). We also develop a
simulator for ZBPF which provides a clean interface from the
simulation environment to learning algorithms. We develop a
novel formulation of the ZBPF problem using difference-of-
convex functions (DC) programming. The resulting approach
can be used for policy learning using samples from the simu-
lator. We also present a multiagent credit assignment scheme
that helps our learning approach converge faster. Empirical
results in a number of 2D and 3D instances show that our ap-
proach can effectively minimize congestion in zones, while
ensuring agents reach their final destinations.

1 Introduction

The problem of multiagent path finding (MAPF) entails
multiple agents finding collision free paths in a collaborative
fashion from their respective sources to destination nodes
in a graph (Felner et al. 2017; Ma et al. 2017). The MAPF
problem has several practical applications such as for game
character movements (Ma et al. 2017), warehouse logis-
tics (Wurman, D’Andrea, and Mountz 2008), robotics (Yu
and Lavalle 2013), and vessel routing in maritime traf-
fic (Teng, Lau, and Kumar 2017). There are multiple ob-
jectives possible in MAPF including minimizing sum of ar-
rival time of all the agents at their destination nodes, or the
makespan, which is the arrival time of the agent that reaches
its destination last. Both these variants are known to be NP-
hard (Yu and Lavalle 2013).

Various solution approaches (both approximate and op-
timal) have been developed for MAPF. Reduction based
approaches translate MAPF to other well known problems
such as SAT (Surynek 2017; Surynek, Kumar, and Koenig
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2019), integer programming (Yu and Lavalle 2013), and
constraint satisfaction (Wang et al. 2019) among others.
There are several approaches that take a search based per-
spective of MAPF and develop multiagent search algorithms
such as conflict based search (Sharon et al. 2011; 2015) and
its variant (Boyarski et al. 2015). Reinforcement learning
based approaches are also developed for MAPF (Sartoretti
et al. 2019).

In the standard MAPF formulation, a key assumption is
that each graph node can accommodate at most one agent at
a time, and that agents move at fixed uniform speed. How-
ever, conflict free paths in such idealized models may not be
translated to real world scenarios where there is significant
uncertainty (e.g., in agent movements), partial observability
and decentralized control (agents can only observe their lo-
cal neighborhood), and graph nodes having capacities more
than one (Ma et al. 2017; Barták, Švancara, and Vlk 2018;
Surynek, Kumar, and Koenig 2019). Several recent attempts
aim to generalize standard MAPF to realistic settings. Based
on resource constrained activity scheduling, the MAPF
problem has been extended to incorporate nodes/edges with
higher capacity more than one agent, and non-uniform travel
time for different edges (Barták, Švancara, and Vlk 2018;
Surynek, Kumar, and Koenig 2019). However, this problem
setting is still deterministic as there is no uncertainty in the
movement of agents.

To handle movement uncertainty and imperfect plan exe-
cution by agents, delay probabilities are introduced in (Ma,
Kumar, and Koenig 2017) in which an agent’s movement to
the next node succeeds with probability p, and with 1 − p
probability agent stays at its current node. Such agent move-
ment essentially follows a geometric distribution, which
may not be general enough for several practical problems.
Their solution strategy relies on modifying the plan execu-
tion during run time to avoid collisions, rather than using
a full multiagent planning model such as a decentralized
partially observable MDP (Dec-POMDP) (Bernstein et al.
2002). Another limitation is that their approach considers
capacity of each node as one agent. Another robust plan ex-
ecution strategy is presented in (Honig et al. 2016). Their
approach post-processes the output of a MAPF solver to cre-
ate a schedule that can be executed safely (i.e., collission-
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free) by (robotic) agents. Their approach considers mini-
mum and maximum time needed by an agent to move along
a graph edge, and ensures that the post-processed output is
safe for all agent movements within the allowed range. Their
approach also considers nodes having the capacity of one
agent. A velocity planner is developed in (Singh et al. 2019).
Their approach addresses uncertainty in movement, but is
limited to optimizing only the temporal aspect of movement
(not the spatial movement of agents), and assumes that all
the agents are homogeneous. To summarize, there are gen-
eralizations of MAPF that consider graph nodes and edges
having capacity of more than one agent, but may not model
agent uncertainty, and there are other generalizations that
model movement uncertainty, but assume nodes and edges
have a capacity of one agent.

Our contributions: We make the following contributions.
First, our approach addresses the above limitations of previ-
ous MAPF models by allowing for nodes (or zones) with
capacity of more than one agent, modeling uncertainty
(by using the highly expressive class of exponential fam-
ily distributions to model variable duration movements of
agents), and partial observability wherein agents take deci-
sions based on their local observations. We model such zone
based path finding (ZBPF) under uncertainty using a variant
of the Dec-POMDP framework. Our model is also able to
exploit the symmetry present in a large multiagent system
where most agents are identical to each other, and influence
each other via their collective state (e.g., congestion). Ex-
ploiting such collective nature of interactions increases the
scalability of solution approaches.

Second, we present a novel difference-of-convex func-
tions (DC) programming (Lipp and Boyd 2016) based for-
mulation of policy optimization. The DC perspective results
in a sequence of optimization problems, each of which is
easier to solve than the original policy optimization prob-
lem using samples from the domain simulator. To improve
the convergence of the learning approach, we also develop
value function factorization techniques that perform multi-
agent credit assignment for faster convergence (Chang, Ho,
and Kaelbling 2004; Foerster et al. 2018).

Third, to validate our approach, we also develop a simula-
tor for ZBPF in the ml-agents platform of the Unity3D game
engine, which provides a clean interface from the simulation
environment to learning algorithms (Juliani et al. 2018). Our
simulator is highly expressive which can represent both 2D
and 3D maps. Using our simulator, we test on several in-
stances with varying map size and number of agents, and
show that our DC programming based learning approach
with credit assignment works much better than baseline ap-
proaches based on multiagent Q-learning (Fu et al. 2019).

Motivating applications: The ZBPF framework is moti-
vated by the emerging applications of autonomous-vehicle
fleet management, such as drone traffic control. Figure 1(a)
shows the airspace of a city divided into multiple geofenced
airblocks (which are analogous to zones). Such structured
airspace can be used by hundreds of drones to safely travel
to their destinations (Hio 2016). To avoid congestion, a traf-
fic management system based on ZBPF can be used. Un-

(a)

(b)

Figure 1: (a) Airspace management for drone traffic (Hio
2016); (b) Snapshot from our simulator (best viewed elec-
tronically)

like a graph like discrete data structure, airspace is continu-
ous. Therefore, dividing the airspace into zones which can
accommodate multiple drones is necessary. Furthermore,
as zones may have different lengths in different locations,
agents may often take variable and uncertain amount of
time to navigate them. Figure 1(b) shows conceptual rep-
resentation of a zone-based network in our simulator. Con-
nected blue cylinders/spheres are zones, and orange nodes
are agents.

2 Zone Based Path Finding

A standard MAPF formulation is as follows (Sharon et al.
2015). We are given a graph G=(V,E) where the set V de-
notes the locations where agents can move, and edges con-
nect different locations. We have i=1 :N agents; an agent
i has a start vertex si and final goal vertex gi. A path for
an agent i is a sequence of vertices where starting vertex is
si, final vertex is gi. More concretely, a function li describes
agent i’s path by mapping the time (t = 0 : H) to a loca-
tion; li(0) = si, li(H) = gi, li(t) ∈ V such that li(t) and
li(t+1) are either identical (which means the agent stays at
the same location), or li(t + 1) is the neighboring location
to li(t) connected by an edge e ∈ E where agent must move
to at time t + 1. A solution for MAPF consists of paths for
each agent such that there are no collisions (no two agents at
the same vertex at the same time). Some versions of MAPF
also consider edges having capacity one (or simultaneous
swap of agents on a single edge is not allowed). In the stan-
dard MAPF, all the agents move at fixed uniform speed, and
the problem setting is deterministic. There are multiple op-
timization criterion possible. In the makespan objective, the
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Figure 2: Dynamic Bayes Net (DBN) for T-step reward

total time until the last agent reaches its goal is minimized.
In the sum-of-cost (SOC) objective, we minimize the sum
of arrival time of all the agents at their goal zones. We next
introduce uncertainty in MAPF and higher capacity nodes.

Zone based path finding model: We next present a
model for ZBPF by using a variant of the Dec-POMDP
model (Bernstein et al. 2002), which is a popular framework
for multiagent sequential decision making under uncertainty
and partial observability. The set of all zones z is Z. Given a
directed graph G = (V,E), each node is a zone, and edges
represent connections between neighboring zones. We as-
sume that each zone has a capacity Cz , which denotes the
maximum number of agents a zone can accommodate at a
time. If more agents are present in a zone than its capac-
ity, it creates congestion. Crossing a zone z to a neighboring
zone z′ requires a minimum and maximum travel time—
tmin, tmax. Our approach can also handle the case when each
agent has a unique tmin, tmax for each zone intersection, but
for simplicity, we assume all zone movements have the same
lower/upper limits. We also assume time is discretized, and
horizon is H .

Agents’ decision model: We now describe how an agent’s
decision making evolves in ZBPF. Instead of describing a
specific formulation applied only to ZBPF, we develop a
more general decision theoretic model (in figure 2) of which
ZBPF is a specific instance. Figure 2 describes graphically
how different agents interact with each other using a dy-
namic Bayes net (and plate notation). Different arrows de-
scribe how the state transition/observation/reward functions
of an agent depend on global/local state, and previous ac-
tion; detailed descriptions of these parameters follow next.
Similar to MAPF, an agent i has a starting zone zio, and a
goal zone zig (multiple agents are allowed to share their start
and goal zones).

States: We model the behavior of each agent as follows.
Let sit denote the state of agent i at time t. Consider an agent
i currently inside a zone z. As the navigation between zones
has a variable duration (as described later), this agent can
be categorized as newly arrived at some zone z at time t or
in-transit through z at time t.

• [In-Transit] The state of an agent i is defined as a tuple
sit = 〈z, z′, τ〉, where z denotes the current zone of agent
i at time t; z′ denotes the next zone agent is heading to;

and τ is the remaining time to reach z′.

• [Newly Arrived] When an agent i newly arrives at zone
z, its next zone z′ and the time-to-reach z′ (say τ ) are not
yet determined (which will be determined by the agent’s
action sampled from the policy). The state sit is denoted
as 〈z,Φ,Φ〉.

Actions: The action set of an agent is A = {〈z, ν〉 ∀z ∈
V, ν ∈ �d} ∪ {noop}. In a given state sit, only some of the
actions are valid.

• If agent is in-transit, sit = 〈z, z′, τ〉, only valid action is
noop.

• If agent is newly arrived at a non-goal zone z ∈ Z \ {zig},
or sit=〈z,Φ,Φ〉, then valid action set is A={〈z, ν〉 ∀z ∈
Nb(z), ν ∈ �d}, where Nb(z) is the set of neighbor
zones of z where agent can move to. There are additional
conditions on possible parameter ν as explained in the
transition function.

• If agent is at the start of a goal zone, or sit = 〈zig,Φ,Φ〉,
then the only valid action is noop.

Intuitively, for an agent at the start of a non-goal zone z, two
action components are needed—〈z′, ν〉. First, the agent de-
cides its next destination z′ ∈ Nb(z) to move to. Second, the
agent must decide the speed at which it wants to move. To
avoid modeling the control dynamics of agents, we assume
that the agent decides the time to take to move to z′. This
temporal movement part is controlled by the continuous ac-
tion component ν (transition function shows a more precise
definition). Thus, the model we present contains both dis-
crete and continuous actions, which represents a more chal-
lenging setting than standard planning or RL.

Transition function: We assume that the movement un-
certainty is captured by the transition function. Instead of
assuming a specific movement model such as geometric
distribution (Ma, Kumar, and Koenig 2017), we chose to
model travel time uncertainty using a widely applicable yet
tractable class of exponential family distributions. Give pa-
rameter(s) η, the exponential family of probability distribu-
tions is defined as those distributions whose pdf or pmf have
the following general form (Bishop 2006, Chapter 2):

p(x|η) = h(x) exp{ηTT (x)−A(η)} (1)

The function T (x) is the sufficient statistic, η is the canon-
ical parameter, and A(η) is the partition function (to make
sure probabilities normalize to 1). Using this form, we now
frame the transition function of the model in figure 2 as:

p(s′i|si, ai, νi) = f(si, ai, s′i) exp{νiφ(si, s′i)−A(νi)} (2)

where f is non-negative (plays the role of h(x)); ai is
the discrete action (analogous to the direction decision in
ZBPF), and νi is the canonical parameter of the exponen-
tial family distribution that governs the transition function
of each agent i.

The above representation of the transition function is quite
general; it can represent standard categorical distribution
(which are widely used as transition function for MDPs), as

553



well as distributions such as Gaussian. The exponential fam-
ily distributions are also useful to model travel times because
they are the maximum-entropy distribution consistent with
given constraints (or prior information) about the underlying
random variables. As per the principle of maximum entropy,
among the distributions that satisfy given constraints, the
least informative one must be chosen (Jaynes 1957). E.g.,
given that we have fixed time limits tmin and tmax on the
movement of an agent between zones, an agent may decide
to move in α time steps. The maximum entropy discrete dis-
tribution with a given mean (say α) and bounded support
(between tmin and tmax) is the binomial distribution (Har-
remoes 2001), which models the uncertainty in agent move-
ment. In this case, we interpret ν as the success probabil-
ity of the binomial distribution. We can similarly interpret
the geometric distribution used by (Ma, Kumar, and Koenig
2017). In their approach, an agent’s move action succeeds
with (a given) probability p. In other words, the average time
to cross an edge is α=1/p. The maximum entropy distribu-
tion with a given mean is indeed the geometric distribution1.
Similarly, if time is continuous, then the agent’s action ν
can be interpreted as the mean of the Gaussian distribution
which models the travel duration (we can assume that the
agent cannot control the variance, which is known).

To summarize, given an action 〈z′, ν〉, the first action
component denotes the direction decision (the zone z′)
where agent wants to go next, and ν is the canonical pa-
rameter of the transition function (assuming the transition
function is from the exponential family). Specific transition
function for ZBPF is given as:

• For a newly arrived agent i, let sit = 〈z,Φ,Φ〉, action
taken 〈z′, ν〉 (which implies agent has decided to go to
zone z′), then the time taken to move to z′ is sampled
from the distribution τ ∼ pidur(·; ν, z′), where pidur is
an exponential family distribution with finite support be-
tween tmin and tmax (that is, τ ∈ {tmin, . . . , tmax}). If
τ = 1 (i.e., only one time step to-go), then the next
state is 〈z′,Φ,Φ〉 (or agent reaches the next zone z′ at
time t + 1), therefore, pi(〈z′,Φ,Φ〉|〈z,Φ,Φ〉, 〈z′, ν〉) =
pidur(τ ; ν, z

′). If τ > 1, the next state is 〈z, z′, τ − 1〉, and
pi(〈z, z′, τ − 1〉|〈z,Φ,Φ〉, 〈z′, ν〉)=pidur(τ ; ν, z

′).

• For in-transit agent i, let sit = 〈z, z′, τ〉, then the only ac-
tion allowed is noop. If τ = 1, then the state determin-
istically transitions to 〈z′,Φ,Φ〉. If τ > 1, then the state
deterministically transitions to 〈z, z′, τ − 1〉. That is, the
agent has not yet completed its movement action, and is
still in zone z en-route to z′.

We treat an agent’s goal zone as an absorbing state with-
out any outgoing transitions. For simplicity, we assume
well-formed infrastructures where an agent occupying its
goal zone does not obstruct other agents from finding their
paths (Cap et al. 2015).

Observation function: Each agent i observes yit based on
its local state sit, and the global state of all agents st. For
simplicity, we assume a deterministic observation function,

1https://en.wikipedia.org/wiki/Exponential family

which can include observation about all agents present in the
same zone as agent i and in neighboring zones.

Reward function: There is a penalty of wd < 0 given to
each agent for every time step the agent is not at its goal
location. When the agent reaches its goal zone for the first
time, a positive reward r is given. In a global state s, if total
number of agents in a zone z are more than its capacity Cz ,
then each agent in zone z receives a congestion penalty of
wc < 0. Total system reward r is sum of penalties and re-
wards for all the agents (or rt=

∑N
i=1 r

i
t). Notice that, when

there is movement uncertainty, finding a path for agents that
guarantees no collisions would lead to very conservative and
high cost solutions. Therefore, unlike MAPF, we use a soft
penalty to encourage coordination among agents and avoid
congestion.

Policy representation: An agent i has two policies. First,
the policy πi(ait|sit, yit) provides a distribution over discrete
actions a (discrete actions are analogous to the direction de-
cisions in ZBPF). Thus πi is a stochastic policy. We also
have a deterministic policy μi which provides the (often con-
tinuous) action component νit=μi(sit, y

i
t, a

i
t). These policies

can also be parameterized using parameters θ.

3 Objective Function and DC Programming

We first go over the difference-of-convex functions (DC)
programming framework (Yuille and Rangarajan ; Lipp and
Boyd 2016). Our goal would be to reformulate the objective
function as an instance of DC programming. The DC pro-
gramming and concave-convex procedure (CCCP) (Yuille
and Rangarajan ) are a popular approach to optimize a gen-
eral non-convex function expressed as a difference of two
convex functions. We describe it here briefly. Consider the
optimization problem:

min{g(x) : x ∈ Ω} (3)

where g(x) = u(x) − v(x) is an arbitrary function with u ,
v being real-valued convex functions and Ω being a convex
set. The CCCP method provides an iterative procedure that
generates a sequence of points xk by solving the following
convex program:

xk+1 = argmin{u(x)− xT∇v(xk) : x ∈ Ω} (4)

Each iteration of CCCP decreases the objective g(x) and
is guaranteed to converge to a local optimum (Lipp and
Boyd 2016). The above formulation is derived by lineariz-
ing the convex function v at the point xk as: v̂(x)=v(xk) +
∇v(xk)

T (x−xk), and exploiting the property that lineariz-
ing a convex function results in a global (valid over the en-
tire domain of function) lower bound on v. The key benefit
of CCCP is that problem (4) is often much easier to solve
than the original problem (3) as the objective in (4) is con-
vex (first term is convex, and second term is linear in x).

We now show how to exploit the DC for our ZBPF prob-
lem. Consider the DBN in figure 2. A joint trajectory is
denoted as ζ = s0,y0, (a0,ν0), r0, s1,y1, (a1,ν1), r1, . . .
where subscripts denote time. For deriving the DC formula-
tion, we start by considering policy πi for each agent is tab-
ular, and μi is a deterministic function. Let π and μ denote
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the joint-policy. We also assume deterministic observations
(as highlighted earlier). The objective to optimize is:

J(π, μ) =

∞∑
T=0

∑
ζ0:T

γT r(sT )b0(s0)π(a0|s0,y0)

T∏
t=1

(
p(st|st−1,at−1, μ(st−1,yt−1,at−1))π(at|st,yt)

)
(5)

where we assumed that the reward is discounted using γ, b0
denotes the initial state distribution. W.l.o.g, we also assume
rewards are non-negative (if they are not, we can use r−rmin

instead of r). Exploiting the DBN structure in figure 2, we
can factorize the joint transition function and reward func-
tion to get J(π, μ) as:

=

∞∑
T=0

∑
ζ0:T

γT r(sT )
( N∏
i=1

bi0(s
i
0)
)( N∏

i=1

πi(ai0|si0, yi0)
)

T∏
t=1

(( N∏
i=1

pi(sit|sit−1, a
i
t−1, μ

i(sit−1, y
i
t−1, a

i
t−1))

)( N∏
i=1

πi(ait|sit, yit)
))

(6)
The equation (6) is our objective to maximize by optimiz-

ing joint-policies (π, μ). The above objective is non-convex.
It is also not expressed in the DC form. To reformulate the
above objective into a DC form, we first make a number of
variable substitutions as below.

First, we substitute πi(ai|si, yi) with exp
(
λi(ai, si, yi)

)
in J(π, μ). This can always be done without affecting the
optimality. Similarly, we use the the exponential family
structure of the transition function (2) to get J(λ, μ) as:

=
∞∑

T=0

∑
ζ0:T

γT r(sT )
( N∏
i=1

bi0(s
i
0)
)( T∏

t=1

N∏
i=1

f(sit−1, a
i
t−1, s

i
t)
)

exp

[
N∑
i=1

(( T∑
t=0

λi(ait, s
i
t, y

i
t)
)
+

T∑
t=1

(
μi(sit−1, y

i
t−1, a

i
t−1)

×φ(sit−1, s
i
t)−A(μi(sit−1, y

i
t−1, a

i
t−1))

))]
(7)

Above expression has non-negative combination of exp(·)
functions (as all rewards, initial beliefs, and functions f
are non-negative). The exp function is convex in λ, but not
convex in μ. Reason is that for exponential family distri-
butions, the partition function A(νi = μi(·)) is a convex
function of canonical parameters ν. However, the exponen-
tial function has the term −A(νi), which is concave in νi.
To circumvent this problem, we use another substitution as
ξi(si, yi, ai) = A(μi(si, yi, ai)). We will also include this
constraint as part of our constraint set Ω when writing the
final DC formulation. Using these substitutions, our final ex-
pression for J(λ, μ, ξ) is:

=
∞∑

T=0

∑
ζ0:T

γT r(sT )
( N∏
i=1

bi0(s
i
0)
)( T∏

t=1

N∏
i=1

f(sit−1, a
i
t−1, s

i
t)
)

exp

[
N∑
i=1

(( T∑
t=0

λi(ait, s
i
t, y

i
t)
)
+

T∑
t=1

(
μi(sit−1, y

i
t−1, a

i
t−1)

×φ(sit−1, s
i
t)− ξi(sit−1, y

i
t−1, a

i
t−1)

))]
(8)

Now each exp term in the above expression is convex in each
of λ, μ, ξ, and non-negative combination of convex func-
tions is also convex. We can now reformulation policy op-
timization in the DC programming framework as:

min
λ,μ,ξ

0− J(λ, μ, ξ) (9)∑
ai

eλ
i(ai,si,yi) = 1 ∀si, yi, ∀i=1 : N (10)

ξi(si, yi, ai) = A(μi(si, yi, ai)) ∀si, yi, ai, ∀i=1 : N (11)

The objective (9) is a difference of two convex function, and
is therefore a DC function. Notice that the constraints (10)
and (11) are non-convex. However, the DC iteration is still
applicable because as highlighted earlier, the DC objective
uses linearization of the function v (which is J(λ, μ, ξ) in
our case), and linearization based bounds are valid over the
entire domain of the function.

DC Iteration for ZBPF: The optimization problem (9) is
no easier to solve than the original problem (6). However,
as (9) is a DC program, we can solve it iteratively analogous
to (4). Let the current estimate of parameters be (λk, μk, ξk).
To find the improved estimates (λ, μ, ξ), we need to solve
the below problem:

max
λ,μ,ξ

∑
i,ai,si,yi

∇λi(ai,si,yi)J(λk, μk, ξk)λ
i(ai, si, yi)

+
∑

i,ai,si,yi

∇μi(ai,si,yi)J(λk, μk, ξk)μ
i(ai, si, yi)

+
∑

i,ai,si,yi

∇ξi(ai,si,yi)J(λk, μk, ξk)ξ
i(ai, si, yi) (12)

subject to constraints (10) and (11) on variables λ, μ, ξ

We can further simplify the above optimization prob-
lem by eliminating constraints as follows. We can replace
back λi(ai, si, yi) = lnπi(ai|si, yi), and substitute back
ξi(ai, si, yi) = A(μi(ai, si, yi)) to get the following opti-
mization problem:

max
π,μ

∑
i,ai,si,yi

∇λi(ai,si,yi)J(λk, μk, ξk) lnπ
i(ai|si, yi)

+
∑

i,ai,si,yi

∇μi(ai,si,yi)J(λk, μk, ξk)μ
i(ai, si, yi)

+
∑

i,ai,si,yi

∇ξi(ai,si,yi)J(λk, μk, ξk)A(μi(ai, si, yi)) (13)

∑
ai

πi(ai|si, yi) = 1;πi(ai|si, yi) ≥ 0 ∀si, yi, ∀i (14)

Problem (13) is much easier to solve than original prob-
lem (6). This is because the most computationally intensive
step is to compute different gradients ∇J , which are with
respect to old parameters (λk, μk, ξk), and we show that a
closed form expression can be derived for them. An agent i’s
state, observation and action are denoted using (si, yi, ai),
and (s−i, y−i, a−i) denote the same for all other agents ex-
cept i. Let dk(si, yi, ai, s−i, y−i, a−i) denote the occupancy
measure or the total discounted amount of time the system
was in the joint setting (si, yi, ai, s−i, y−i, a−i) (note that
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action ν is deterministic given the joint-state, therefore not
included in dk). Expression for measure dk(·) is as:

∞∑
t=0

γtP (sit = si,s−i
t = s−i, yit = yi, y−i

t = y−i, ait = ai, a−i
t = a−i)

We also denote the total discounted reward from a given
joint state, action (s,a,ν) as Qk(s,a,ν). Both dk and Qk

are computed as per the old policy πk and μk. Using dk, Qk,
different gradients are as (proof in the supplementary):

∇λi(ai,si,yi)J(λk, μk, ξk) =∑
s−i,y−i,a−i

dk(si, yi, ai, s−i, y−i, a−i)Qk(si, yi, ai, s−i, y−i, a−i, νi, ν−i)

∇μi(ai,si,yi)J(λk, μk, ξk) = γ
∑

s−i,y−i,a−i

dk(si, yi, ai, s−i, y−i, a−i)

×
∑

s′,y′,a′
φ(si, s′i)P (s′,y′,a′|si, s−i, ai, a−i, νi, ν−i)Qk(s′,a′,ν ′)

∇ξi(ai,si,yi)J(λk, μk, ξk) = −
∑

s−i,y−i,a−i

dk(si, yi, ai, s−i, y−i, a−i)

×
(
Qk(si, s−i, ai, a−i, νi, ν−i)− r(si, s−i)

)

We can substitute back the gradients to our DC itera-
tion (13), and get the following optimization problem:

max
π,μ

Es,a,ν

[
Qk(s,a,ν)

( N∑
i=1

log πi(ai|si, yi)
)]

+γE s,a,ν,
s′,a′,ν′

[
Qk(s′,a′,ν ′)

(( N∑
i=1

φ(si, s′i)μi(ai, si, yi)
)

−
( N∑

i=1

A(μi(ai, si, yi))
)]

(15)

∑
ai

πi(ai|si, yi) = 1;πi(ai|si, yi) ≥ 0 ∀si, yi, ∀i (16)

In the above problem, we have introduced only policy nor-
malization constraints. There may be additional constraints
on μ variables for the particular exponential family distri-
bution used. The expectation over variables (s′,a′,ν ′) is
as per the joint transition probability of states and actions
P (·|s,a,ν). The expectation over variables (s,a,ν) is as
per the corresponding occupancy measure dk.

Planning: The optimization (15) is solvable when the pol-
icy of each agent has a convenient form (such as a tabular
policy), and transition/observation function are known. Us-
ing model parameters and the old policy πk, μk we can get
a better policy πk+1, μk+1. Note that, it is not required to
solve problem (15) exactly. E.g., we can use general pur-
pose nonlinear program solver such as SNOPT (Gill, Mur-
ray, and Saunders 2005) to approximately optimize it. Such
a process is also guaranteed to monotonically increase the
original objective J until convergence to a local optima. In
situations, when the exact planning model is not available,
or state-space is too large, we next present a gradient based
approach to approximately optimize (15).

Learning: The form of problem (15) is also highly con-
venient for reinforcement learning. We assume that policy
πθ and μθ are parameterized using θ. We can compute the
gradient of the DC iteration objective J ′ (15) as:

∇θJ
′ = Es,a,ν

[
Qk(s,a,ν)

( N∑
i=1

∇θ log π
i
θ(a

i|si, yi)
)]

+γE s,a,ν,
s′,a′,ν′

[
Qk(s′,a′,ν ′)

(( N∑
i=1

φ(si, s′i)∇θμ
i
θ(a

i, si, yi)
)

−
( N∑

i=1

∇θA(μi
θ(a

i, si, yi))
))]

(17)

We can use properties of exponential families to further sim-
plify gradient ∇θA(νi = μi

θ(a
i, si, yi)) as ∇νA(νi)∇θν

i.
The derivative ∇νA(νi) is nothing but the expectation of
the sufficient statistic φ in the transition function expres-
sion (2)2, which can also be estimated using sampling if
a closed form expression is not known. The equation (17)
provides a basis for computing gradients using sampling
to approximately optimize (15). Once a new estimate θk+1

is known, we can iteratively improve it again until conver-
gence.

Multiagent credit assignment: Performing vanilla gradi-
ent ascent based on (17) generally suffers from poor con-
vergence. The main reason is that in the presence of mul-
tiple agents, gradient estimates have high variance, and
the contribution of an agent’s action on the global reward
is not clear as multiple agents’ decisions affect the team
reward. This issue is known as the problem of multia-
gent credit assignment (Chang, Ho, and Kaelbling 2004;
Foerster et al. 2018). We next show how to extract a clearer
signal from empirical returns that performs effective credit
assignment. We assume that the joint Q-function (for a fixed
policy) is approximated as follows:

Q(s,a,ν) ≈
N∑
i=1

hi
w(s

i, ai, νi, yi(s)) (18)

We focus on an agent i’s contribution to the gradient expres-
sion (17). Considering first terms depending on ∇θπ

i, using
Q function approximation (18), we get:

Es,a,ν

[
Qk(s,a,ν)∇θ log π

i
θ(a

i|si, yi)
]
≈

Es,a,ν

[{ N∑
m=1

hm
w (sm, am, νm, ym)

}∇θ log π
i
θ(a

i|si, yi)
]

(19)

We can show that:

Es

[
Ea,ν|s

[{∑
m �=i

hm
w (sm, am, νm, ym)

}∇θ log π
i
θ(a

i|si, yi)
]]

= 0

(proof omitted). Therefore, (19) simplifies to:

Es

[
Eai,νi|s

[
hi
w(s

i, ai, νi, yi)∇θ log π
i
θ(a

i|si, yi)
]]

(20)

2https://people.eecs.berkeley.edu/∼jordan/courses/
260-spring10/other-readings/chapter8.pdf
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The above expression has much lower variance than esti-
mating gradients using (19). Let us now consider terms de-
pending on deterministic policy gradient ∇θμ

i:

E

[
Qk(s′,a′,ν ′)

(
φ(si, s′i)∇θμ

i
θ(a

i, si, yi)−∇θA(μi
θ(a

i, si, yi))
)]

≈ E

[{ N∑
m=1

hm
w (sm, am, νm, ym)

}(
φ(si, s′i)∇θμ

i
θ(a

i, si, yi)

−∇θA(μi
θ(a

i, si, yi))
)]

(21)

Empirically, the above expression also resulted in poor qual-
ity credit assignment because the gradient term ∇θμ

i
θ is af-

fected by the value accumulated by all the agents m. We
therefore used an approximation where we only add the
contributions from those agents which are in the immedi-
ate neighborhood of agent i given the joint-state s, denoted
using Nb(i, s). The expression becomes:

E

[{ ∑
m∈Nb(i,s)

hm
w (sm, am, νm, ym)

}(
φ(si, s′i)∇θμ

i
θ(a

i, si, yi)

−∇θA(μi
θ(a

i, si, yi))
)]

(22)

Using the above credit assignment techniques, our approach
worked significantly better than the vanilla gradient based
learning. To estimate hi

w(s
i, ai, νi, yi), we used empirical

returns. That is, for a given joint-trajectory of all the agents
from the simulator, the total discounted reward obtained by
an agent i given its current state-action-observation being
(si, ai, νi, yi) is treated as the target for hi

w(s
i, ai, νi, yi).

Practical considerations: As number of agents can be-
come quite large in practical ZBPF scenarios, optimizing
a unique policy for each agent would require far too many
samples to learn within a reasonable time. Therefore, we use
policy sharing among agents. We have one set of parameters
for each zone or θ={θz ∀z ∈ Z}. Our approach resembles
a traffic management system where traffic through a zone z
is controlled using πθz , μθz . To differentiate among agents,
we also provide agent id as part of the observation to the
agent. This approach is suited for settings where number
of start and goal zones are relatively fewer than the num-
ber of agents. This is a reasonable assumption, for exam-
ple, in drone traffic management, where most drones takeoff
and land at few specialized high-rise and safe locations in
the city. If each agent has a unique start-goal zone, then the
problem becomes highly combinatorial, and policy sharing
among agents may not be effective.

4 Experiments

We evaluate our approach on several 2D grid maps and
3D maps. Our ZBPF simulator is constructed in the cross
platform Unity3D engine which provides ml-agents frame-
work for training intelligent agents, and a simple Python
API to access simulation state. We vary several parame-
ters including grid size, number of agents, start and goal
zones. We compare our learning approach with credit as-
signment (‘DCRL’) against the vanilla gradient based ap-
proach (‘VPG’) in (17) where Q values are estimated by
total discounted global return, and multiagent Q-learning

based approach for discrete-continuous hybrid action spaces
(‘HA’) (Fu et al. 2019). We have adapted the ‘HA’ approach
for the ZBPF setting (details in supplementary). We opti-
mize SOC combined with penalties for congestion (more
details in supplementary). For comparison, we also show
SOC when all the agents follow their shortest path (‘SP’).
This value is the lowest SOC any approach can achieve; but
it also results in high congestion. All our experiments are
run on a Linux machine with 3GHz CPU and 64 GB RAM.
Maximum runtime allowed was 10 hours for any approach.

2D Open Grids: Figure 3 shows the SOC comparisons
among DCRL, VPG and HA. For each grid, starting and
goal locations were the top and bottom rows. For each agent,
we randomly selected its start and goal zones from the
top and bottom rows. As a result, multiple agents had the
same start and/or goal zones. This setting is also challeng-
ing for our approach—if multiple agents are in the same start
zone, the zone based policy has to properly assign different
route/travel time to them. If agents follow each other on the
shortest path to the goal zone, it creates high congestion.
The capacity of each zone was sampled uniformly from [1,
2] for 4x4 grid, [1, 3] for 8x8 grid, and [1, 4] for 10x10
grid. The tmin, tmax for each zone were 1, 5 respectively.
The travel time distribution used was the binomial distri-
bution, which is the maximum entropy distribution with a
given support and mean. Each training episode was cutoff
after 500 time steps or after 10 hours. We varied both grid
sizes and number of agents ranging from 4x4 grid, 2 agents
to 10x10 grid 30 agents. For each setting, we generated 5
instances, and the average SOC (along with standard devia-
tion) is shown in figure 3. This figure clearly shows that as
the problem becomes more complex (increasing grid size,
number of agents), our approach DCRL provides signifi-
cantly better solution quality than VPG and HA. This is
because DCRL performs credit assignment much more ef-
fectively than the VPG, and HA attempts to learn Q-values
over joint state and action, which may be inaccurate for large
number of agents. For larger grids (e.g., 10x10) and larger
density of agents (e.g., 10x10, 30 agents), several agents
did not reach their goal zone when using VPG based pol-
icy and Q learning based policy. To provide an estimate of
best possible SOC, we also show the SOC when all agents
move as fast as possible (using tmin time) on their short-
est path to goal (denoted using ‘SP’). DCRL is worse than
SP (as expected), however, not by a large margin. This is
expected as DCRL make agents take a longer route or take
more time traveling between zones to minimize congestion.
For the ZBPF problems we have generated as above, stan-
dard MAPF solvers including based on RL (such as by (Sar-
toretti et al. 2019)) are not applicable in a straightforward
fashion. In our instances, multiple agents can have the same
start zone, which is not allowed in standard MAPF, and they
also do not incorporate uncertainty in travel time and higher
capacity nodes.

Table 1 shows the results comparing congestion level be-
tween our approach, VPG and HA. For each time step, if
number of agents in a zone z (say Nz) are more than its ca-
pacity Cz , than Nz − Cz is added to the congestion level.

557



4x4
N2

4x4
N4

4x4
N6

8x8
N6

8x8
N1
2

8x8
N2
0

10
x10

N1
0

10
x10

N2
0

10
x10

N3
0

Instances

1

10

100

1000

10000

100000

SO
C

SP
DCRL
VPG
HA

Figure 3: Sum-of-cost (SOC) comparisons among DCRL,
VPG and HA (log-scale, lower is better). N# denotes number
of agents.

Setting
Congestion Stranded agents

DCRL VPG HA DCRL VPG HA
4x4 N2 0 0 0 0 0 0
4x4 N4 0.11 0.02 0.17 0 0 0
4x4 N6 0.12 0.04 0.29 0 0 0
8x8 N6 0.06 0.18 0.11 0 0.40 2.08
8x8 N12 0.50 0.67 31.62 0 2.21 6.20
8x8 N20 1.74 4.15 114.70 0 11.45 10.71
10x10 N10 0.44 0.07 0.68 0 6.81 2.83
10x10 N20 0.97 3.21 130.29 0 17.25 14.18
10x10 N30 2.12 35.12 273.16 0 27.33 18.38

Table 1: Average congestion level and stranded agents com-
parisons

We also show, on an average, how many agents were unable
to reach destination in these three approaches (or ‘stranded
agents’). These results clearly show that our approach is able
to effectively minimize congestion over VPG and HA, and
for all tested instances, agents were able to reach their des-
tinations. The standard deviation in congestion metric was
low for DCRL (less than 1 for all problems).

Figure 4 shows the learning curve for DCRL, VPG and
HA for the largest grid with most number of agents (10x10,
30 agents). This figure clearly shows that with credit as-
signment, our approach was quite stable during learning and
converged much faster and to a better quality than VPG. For
this large setting, HA was unable to reduce the congestion
level to an acceptable low level.

3D Maps: We also generated 3D maps (‘SmallCube’ and
‘Twofloor’) in the Unity environment (maps available in
the supplementary material). SmallCube map and TwoFloor
map have 30 zones and 142 zones respectively. Total num-
ber of agents were 10 and 20 for these two maps respec-
tively. Capacity of each zone was uniformly sampled from
[1, 3] and [1,4]. Agents moved from bottom left 5 zones
(which were start zones) to top right 5 zones (which were
goal zones) for SmallCube, and moved from bottom front
zones to bottom back zones for TwoFloor map. Rest of the
settings were same as for grid graphs. For such maps also,
our approach DCRL worked much better than VPG and
HA as expected. Table 2 shows the SOC, stranded agents
and congestion level results. For SmallCube map, all agents
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Figure 4: Learning curve (showing congestion level) of
DCRL, VPG and HA on a 10x10 grid, 30 agents instance

Metric Instance
Average

DCRL VPG HA

SOC SmallCube 155.29 312.00 775.98
TwoFloor 532.35 1300.73 6346.09

Stranded
agents

SmallCube 0 0 0.33
TwoFloor 0 0.2 8.66

Congestion SmallCube 3.66 4.37 10.61
TwoFloor 5.09 7.24 112.49

Table 2: Average SOC, stranded agents, and congestion level
comparisons (over 5 instances).

were able to reach their goals in both DCRL and VPG
approaches. But compared with DCRL, VPG gives higher
SOC (lower SOC is better) and marginally greater conges-
tion level. HA performed slightly worse in terms of stranded
agents (which is 0.33), but also gives worst SOC and conges-
tion level. For TwoFloor map, VPG gives reasonably higher
SOC of 1300.73 versus 532.35 by DCRL. This is because
there are slightly more average stranded agents (0.2) ver-
sus zero stranded agents by DCRL. Compared with DCRL
and VPG, HA gives the worst SOC (6346.09), and it cannot
work well for either making all agents reach goal zones or
minimizing the congestion.

5 Conclusion

We addressed the problem of zone based multiagent path
finding. Our work addressed the modeling of uncertainty in
agent movement, and higher capacity zones, which standard
MAPF solvers are unable to address in a single framework.
We used a general model of movement uncertainty by mod-
eling agent’s transition function using an exponential family
distribution. We developed a novel DC programming based
perspective on the policy optimization problem in ZBPF, and
showed how it enabled both planning and learning using a
sequence of easier optimization problems. Furthermore, to
make the learning approach converge faster, we developed
multiagent credit assignment techniques that enabled faster
and better quality learning than the standard gradient based
approach without credit assignment. We demonstrated the
effectiveness of our approach on a number of instances to
find paths that minimized congestion, and enabled all agents
to reach their goal zones.
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