
Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020)

Joint Inference of Reward Machines and Policies for Reinforcement Learning

Zhe Xu,1∗ Ivan Gavran,2∗ Yousef Ahmad,1 Rupak Majumdar,2 Daniel Neider,2 Ufuk Topcu,1

Bo Wu1

1University of Texas at Austin, Austin, TX
2Max Planck Institute for Software Systems, Kaiserslautern, Germany

{zhexu, utopcu, bwu3}@utexas.edu, {gavran, rupak, neider}@mpi-sws.org, ysa6549@gmail.com

Abstract

Incorporating high-level knowledge is an effective way to ex-
pedite reinforcement learning (RL), especially for complex
tasks with sparse rewards. We investigate an RL problem
where the high-level knowledge is in the form of reward ma-
chines, a type of Mealy machines that encode non-Markovian
reward functions. We focus on a setting in which this knowl-
edge is a priori not available to the learning agent. We de-
velop an iterative algorithm that performs joint inference of
reward machines and policies for RL (more specifically, q-
learning). In each iteration, the algorithm maintains a hypoth-
esis reward machine and a sample of RL episodes. It uses
a separate q-function defined for each state of the current
hypothesis reward machine to determine the policy and per-
forms RL to update the q-functions. While performing RL,
the algorithm updates the sample by adding RL episodes
along which the obtained rewards are inconsistent with the
rewards based on the current hypothesis reward machine. In
the next iteration, the algorithm infers a new hypothesis re-
ward machine from the updated sample. Based on an equiva-
lence relation between states of reward machines, we transfer
the q-functions between the hypothesis reward machines in
consecutive iterations. We prove that the proposed algorithm
converges almost surely to an optimal policy in the limit. The
experiments show that learning high-level knowledge in the
form of reward machines leads to fast convergence to optimal
policies in RL, while the baseline RL methods fail to con-
verge to optimal policies after a substantial number of train-
ing steps.

1 Introduction
In many reinforcement learning (RL) tasks, agents only ob-
tain sparse rewards for complex behaviors over a long pe-
riod of time. In such a setting, learning is very challenging
and incorporating high-level knowledge can help the agent
explore the environment in a more efficient manner (Tay-
lor and Stone 2007). This high-level knowledge may be ex-
pressed as different levels of temporal or behavioral abstrac-
tions, or a hierarchy of abstractions (Nachum et al. 2018;
Abel et al. 2018; Akrour et al. 2018).

The existing RL work exploiting the hierarchy of abstrac-
tions often falls into the category of hierarchical RL (Sutton,

∗The first two authors have contributed equally; the rest of the
authors are ordered alphabetically.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Precup, and Singh 1999; Dietterich 2000; Parr and Russell
1998). Generally speaking, hierarchical RL decomposes an
RL problem into a hierarchy of subtasks, and uses a meta-
controller to decide which subtask to perform and a con-
troller to decide which action to take within a subtask (Barto
and Mahadevan 2003).

For many complex tasks with sparse, non-Markovian re-
wards, there exists high-level knowledge capturing the tem-
poral structure of the reward functions (Aksaray et al. 2016;
Li, Vasile, and Belta 2017; Xu and Topcu 2019). One way
of encoding a non-Markovian reward function and incor-
porating it into the standard q-learning algorithm (Watkins
and Dayan 1992) is by using a type of Mealy machines
named reward machines (Icarte et al. 2018). In many real-
istic situations, the reward machines are not straightforward
to be handcrafted, as emphasized in (Toro Icarte et al. 2018).
Oftentimes, such high-level knowledge is implicit and un-
known to the learning agent.

In this paper, we provide a framework that enables an RL
agent to infer high-level knowledge over its exploration pro-
cess and utilize the inferred knowledge to effectively guide
its future explorations. Specifically, we use reward machines
to represent the high-level knowledge, and we present an
iterative algorithm that performs joint inference of reward
machines and policies (JIRP) for RL (more specifically, q-
learning (Watkins and Dayan 1992)).

In each iteration, the JIRP algorithm maintains a hypoth-
esis reward machine and a sample of RL episodes. It uses
a separate q-function defined for each state of the current
hypothesis reward machine to determine the policy and per-
forms RL to update the q-functions. While performing RL,
the algorithm updates the sample by adding counterexam-
ples (i.e., RL episodes in which the rewards are inconsis-
tent with the rewards based on the current hypothesis re-
ward machine). The updated sample is used to infer a new
minimal hypothesis reward machine, using automata learn-
ing techniques (Neider and Jansen 2013; Oncina and Garcia
1992). We prove that the proposed algorithm converges al-
most surely to an optimal policy in the limit if the maximal
length of each RL episode is sufficiently long.

We use two algorithmic optimizations in the proposed al-
gorithm for its efficient implementation. First, we batch the
counterexamples and trigger the inference of a new hypoth-
esis reward machine periodically. In this way, we can adjust

590

the frequency of inferring new hypotheses reward machines.
Second, we utilize the experiences from previous iterations
by transferring the q-functions between equivalent states of
two hypothesis reward machines in consecutive iterations.
We prove that the optimal convergence guarantees are pre-
served with the two algorithmic optimizations.

We implement the proposed JIRP approach and compare
it with three baseline methods: q-learning in augmented
state space, hierarchical reinforcement learning (Kulkarni
et al. 2016), and deep reinforcement learning with double
q-learning (Hasselt, Guez, and Silver 2016). We evaluated
them in three scenarios: an autonomous vehicle scenario, an
office world scenario, and a Minecraft world scenario, run-
ning a set of tasks for every scenario. The experiments show
that the proposed JIRP approach significantly outperforms
the three baseline algorithms in all three scenarios.
Related work Our work is closely related to the use of
formal methods in RL, such as RL for reward machines
(Icarte et al. 2018) and RL with temporal logic specifi-
cations (Aksaray et al. 2016; Li, Vasile, and Belta 2017;
Fu and Topcu 2014; Toro Icarte et al. 2018; Wen, Papusha,
and Topcu 2017; Alshiekh et al. 2018). For example, the
authors in (Icarte et al. 2018) develop a method called q-
learning for reward machines (QRM) and show that QRM
can converge almost surely to an optimal policy in the tab-
ular case. Furthermore, QRM outperforms both q-learning
and hierarchical RL for tasks where the reward functions
can be encoded by reward machines. The results mentioned
above mostly rely on the assumption that the high-level
knowledge (e.g., reward machines) is given. In this work, we
drop that assumption and infer reward machines from data.

With implicit high-level knowledge representing the re-
ward functions, an approach related to this work has been re-
cently proposed in (Xu and Topcu 2019), where the inferred
high-level knowledge is represented by temporal logic for-
mulas and the authors perform q-learning in the augmented
state space constructed from the inferred temporal logic for-
mulas. In comparison to temporal logic formulas, the re-
ward machines used in this paper can express a larger set
of non-Markovian reward functions. Besides, the method in
(Xu and Topcu 2019) is mainly used for transfer learning.

In recent work (Icarte et al. 2019), the authors propose
a method, called LRM, to learn reward machines that rep-
resent the memory of partially observable Markov deci-
sion processes (POMDP) and perform RL with the learned
reward machines. While superficially similar, the two ap-
proaches are useful in different contexts. JIRP excels when
the temporal structure of the rewards contains all the useful
information because it learns a smallest and complete rep-
resentation of the rewards. In this situation, LRM tends to
learn larger-than-necessary reward machines, which makes
reinforcement learning slower. In cases where the reward
function is Markovian, on the other hand, JIRP is not as use-
ful, while LRM can still speed up RL as it can infer useful
information about the structure of the POMDP that is not
contained in the reward function.

Learning high-level knowledge about rewards from ex-
periences is also used in inverse RL (Arora and Doshi
2018). In contrast to the inverse RL where rewards are

learned from demonstrations generated by human experts,
JIRP learns reward machines from the agent’s exploration of
the environment. Function approximation is often used in in-
verse RL literature (Wulfmeier, Ondruska, and Posner 2015;
Wen, Papusha, and Topcu 2017). For non-Markovian re-
wards, it is not known beforehand how much history is
needed for expressing the rewards. Our approach provides
a systematic way to determine the structure of the reward
and performs RL with optimal convergence guarantees.

Motivating Example

As a motivating example, let us consider an autonomous ve-
hicle navigating a residential area, as sketched in Figure 1.
As is common in many countries, some of the roads are pri-
ority roads. While traveling on a priority road, a car has the
right-of-way and does not need to stop at intersections. In
the example of Figure 1, all the horizontal roads are priority
roads (indicated by gray shading), whereas the vertical roads
are ordinary roads.

A

B

Figure 1: Map of a residential area.

Let us assume that the task of the autonomous vehicle is
to drive from position “A” on the map to position “B” while
obeying the traffic rules. To simplify matters, we are here
only interested in the traffic rules concerning the right-of-
way and how the vehicle acts at intersections with respect to
the traffic from the intersecting roads. Moreover, we make
the following two further simplifications: (1) the vehicle cor-
rectly senses whether it is on a priority road and (2) the vehi-
cle always stays in the road and goes straight forward while
not at the intersections.

The vehicle is obeying the traffic rules if and only if

• it is traveling on an ordinary road and stops for exactly
one time unit at the intersections;

• it is traveling on a priority road and does not stop at the
intersections.

We intend to achieve the above task in the setting of episodic
RL. Specifically, after each episode of 100 time units, the
vehicle receives a reward of 1 if it reached B while obeying
the traffic rules; otherwise it receives a reward of 0. It can
be seen that the (implicit) reward function is non-Markovian
(the reward depends not only on the current state, but also on
the history of states from which one can decide if the traffic
rules were obeyed).

591

2 Preliminaries

In this section we introduce necessary background on rein-
forcement learning and reward machines.

Markov Decision Processes and Reward Machines

Definition 1. A labeled Markov decision process (MDP) is
a tupleM = (S, sI , A, p,R, γ,P, L) consisting of a finite
state space S, an agent’s initial state sI ∈ S, a finite set
of actions A, and a probabilistic transition function p : S ×
A× S → [0, 1]. A reward function R : (S ×A)+ × S → R

and a discount factor γ ∈ [0, 1) together specify payoffs to
the agent. Finally, a finite set P of propositional variables,
and a labeling function L : S ×A× S → 2P determine the
set of relevant high-level events that the agent senses in the
environment. We define the size ofM, denoted as |M|, to be
|S| (i.e., the cardinality of the set S).

Our definition of MDPs differs from the “usual” defini-
tion used in reinforcement learning (e.g., (Sutton and Barto
2018)) in two ways. First, the reward function R is defined
over the whole history (i.e., the reward is non-Markovian).
Second, Definition 1 includes a set P of propositions and
a labeling function L assigning sets of propositions—also
called labels—to each transition (s, a, s′) of an MDP. Labels
represent a high-level description of a transition that is suffi-
cient to express a reward. They come from expert knowledge
of what is relevant for successfully executing a task and are
assumed to be available to the agent. In the motivating exam-
ple with the autonomous vehicle, for instance, it is enough to
reason about the vehicle’s behavior while entering an inter-
section from a priority or an ordinary road (and these would
be the propositional variables). Note, however, that the full
state space is still necessary to capture the model’s dynam-
ics, which might vary across different elements of S.

A policy is a function mapping states in S to a probability
distribution over actions in A. At state s ∈ S, an agent using
policy π picks an action a with probability π(s, a), and the
new state s′ is chosen with probability p(s, a, s′). A policy
π and the initial state sI together determine a stochastic pro-
cess and we write S0A0S1 . . . for the random trajectory of
states and actions.

A trajectory is a realization of this stochastic process: a
sequence of states and actions s0a0s1 . . . skaksk+1, with
s0 = sI . Its corresponding label sequence is �0�1 . . . �k
where L(si, ai, si+1) = �i for each i ≤ k. Similarly,
the corresponding reward sequence is r0r1 . . . rk, where
ri = R(s0a0 . . . siaisi+1), for each i ≤ k. We call the pair
(λ, ρ) := (�0 . . . �k, r0 . . . rk) a trace.

A trajectory s0a0s1a1 . . . skaksk+1 achieves a re-
ward

∑k
i=0 γ

iR(s0a0 . . . siaisi+1). The objective of the
agent is to maximize the expected cumulative reward,
Eπ[

∑∞
i=0 γ

iR(S0A0 . . . Si+1)].
Encoding a (non-Markovian) reward in a type of finite

state-machine is achieved by reward machines (Icarte et al.
2018; Camacho et al. 2019). 1 Technically, a reward machine

1The reward machines we are using are the so-called simple
reward machines in the parlance of (Icarte et al. 2018), where every
output symbol is a real number.

is a special instance of a Mealy machine (Shallit 2008), the
one that has real numbers as its output alphabet and subsets
of propositional variables (originating from an underlying
MDP) as its input alphabet. (To accentuate this connection
in the following definition, we explicitly mention both the
input alphabet 2P and the output alphabet R.)

Definition 2. A reward machine A = (V, vI , 2
P ,R, δ, σ)

consists of a finite, nonempty set V of states, an initial state
vI ∈ V , an input alphabet 2P , an output alphabet R, a (de-
terministic) transition function δ : V × 2P → V , and an
output function σ : V × 2P → R. We define the size of A,
denoted as |A|, to be |V | (i.e., the cardinality of the set V).

When a reward machine is in one of its finitely many
states, upon reading a label, it outputs a reward and transi-
tions into a next state. Formally, the run of a reward machine
A on a sequence of labels �0 . . . �k ∈ (2P)∗ is a sequence
v0(�0, r0)v1(�1, r1) . . . vk(�k, rk)vk+1 of states and label-
reward pairs such that v0 = vI and for all i ∈ {0, . . . , k},
we have δ(vi, �i) = vi+1 and σ(vi, �i) = ri. We write
A(�0 . . . �k) = r0 . . . rk to connect the input label sequence
to the sequence of rewards produced by the machine A. We
say that a reward machine A encodes the reward function R
of an MDP if for every trajectory s0a0 . . . skaksk+1 and the
corresponding label sequence �0 . . . �k, the reward sequence
equals A(�0 . . . �k).

An interesting (and practically relevant) subclass of re-
ward machines is given by Mealy machines with a specially
marked subset of final states, the output alphabet {0, 1}, and
the output function mapping a transition to 1 if and only if
the end-state is a final state and the transition is not a self-
loop. Additionally, final states must not be a part of any cy-
cle, except for a self-loop. This special case can be used in
reinforcement learning scenarios with sparse reward func-
tions (e.g., see the reward machines used in the case studies
in (Icarte et al. 2018)).

Figure 2 shows a reward machine for our motivating ex-
ample, where transitions not shown in the figure are self-
loops with reward 0. Intuitively, state v0 corresponds to the
vehicle traveling on a priority road, while v1 and v2 corre-
spond to the vehicle traveling and stopped on an ordinary
road, respectively. While in v0, the vehicle ends up in a sink
state v3 if it stops at an intersection (labels for which the
propositional formula sp is true). While in state v1, the ve-
hicle gets to the sink state v3 if it does not stop at an in-
tersection (¬sp), and gets to state v2 if it stops at an inter-
section (sp). While in state v2, the vehicle gets to the sink
state v3 if it stops again at the same intersection (sp); it gets
back to state v0 if it enters a priority road (¬sp ∧ pr); and it
gets back to state v0 if it keeps moving on an ordinary road
(¬sp∧¬pr). The reward machine switches among states v0,
v1 and v2 if the vehicle is obeying the traffic rules. Finally,
a reward of 1 is obtained if from v0 the goal position B is
reached.

Reinforcement Learning With Reward Machines

In reinforcement learning, an agent explores the environ-
ment modeled by an MDP, receiving occasional rewards ac-
cording to the underlying reward function (Sutton and Barto

592

v0start v1 v2

v3v4

(¬sp ∧ ¬pr , 0)

(¬sp ∧ pr , 0)
(sp, 0)

(¬sp ∧ pr , 0)

(sp, 0)(sp, 0)

(¬sp, 0)
(B, 1) (¬sp ∧ ¬pr , 0)

Figure 2: Reward machine for the autonomous vehicle. sp:
stops at an intersection; pr: ends up in a priority road. An
edge (¬sp ∧ ¬pr , 0) between v0 and v1 means that the re-
ward machine will transition from v0 to v1 if the proposi-
tional formula ¬sp ∧ ¬pr is true for a sensed label and it
will output a reward equal to zero.

Algorithm 1: QRM episode
1 Hyperparameter: episode length eplength, learning

rate α, discount factor γ
2 Input: a reward machine (V, vI , 2

P ,R, δ, σ), a set of
q-functions Q = {qv|v ∈ V }

3 s← InitialState(); v ← vI ;λ← []; ρ← []
4 for 0 ≤ t < eplength do
5 a← GetEpsilonGreedyAction(qv, s)
6 s′ ← ExecuteAction(s, a)
7 v′ ← δ(v, L(s, a, s′))
8 r ← σ(v, L(s, a, s′)) or observe reward in JIRP
9 qv(s, a)←

(1− α) · qv(s, a) + α · (r + γ ·max
a

qv(s′, a))

10 for v̂ ∈ V \ {v} do
11 v̂′ ← δ(v̂, L(s, a, s′))
12 r̂ ← σ(v̂, L(s, a, s′))
13 update qv̂(s, a) using reward r̂

14 append L(s, a, s′) to λ; append r to ρ
15 s← s′; v ← v′

16 return (λ, ρ,Q)

2018). One way to learn an optimal policy is tabular q-
learning (Watkins and Dayan 1992). There, the value of the
function q(s, a), which represents the expected future re-
ward for the agent taking action a in state s, is iteratively
updated. For MDPs with a Markovian reward function, q-
learning converges to an optimal policy in the limit provided
that all state-action pairs are seen infinitely often (Watkins
and Dayan 1992).

The QRM algorithm modifies q-learning to learn an opti-
mal policy when the reward function is encoded by a reward
machine (Icarte et al. 2018). Algorithm 1 shows one episode
of the QRM algorithm (with episode length eplength, learn-
ing rate α, and discount factor γ as its hyperparameters and
a reward machine as its input). It maintains a set Q of q-
functions, denoted as qv for each state v of the reward ma-
chine (their initial values can be specified as an input to the
algorithm).

The current state v of the reward machine guides the ex-
ploration by determining which q-function is used to choose
the next action (Line 5). However, in each single exploration
step, the q-functions corresponding to all reward machine
states are updated (Lines 9 and 13).

The modeling hypothesis of QRM is that the rewards are
known, but the transition probabilities are unknown. When
using QRM as a part of JIRP, this knowledge is not avail-
able and the rewards must be observed (see Line 8). During
the execution of the episode, traces (λ, ρ) of the reward ma-
chine are collected (Line 14) and returned in the end. While
not necessary for q-learning, the traces will be useful in our
algorithm to check the consistency of an inferred reward ma-
chine with rewards received from the environment.

3 Joint Inference of Reward Machines and

Policies (JIRP)

Given a reward machine, the QRM algorithm learns an
optimal policy. In many situations, however, assuming the
knowledge of the reward function (and thus the reward ma-
chine) is unrealistic, and even if the reward function is
known, it can be very challenging to formalize it in terms
of a reward machine. In this section, we describe an RL al-
gorithm that iteratively infers (i.e., learns) a correct reward
machine together with the optimal policy for a given RL
problem and a labeling function, which provides high-level
knowledge about relevant events.

Our algorithm combines an automaton learning algorithm
to infer hypothesis reward machines and the QRM algorithm
for RL on the current candidate. Inconsistencies between the
hypothesis machine and the observed traces are used to trig-
ger a re-learning of the reward machine. We show that the
resulting iterative algorithm converges in the limit almost
surely to the reward machine encoding the reward function
and to an optimal policy for this reward machine.

JIRP Algorithm

Algorithm 2 describes our JIRP algorithm. It maintains a hy-
pothesis reward machine H and runs the QRM algorithm to
learn an optimal policy (given H). The episodes of QRM
are used to collect traces and update q-functions. As long as
the traces are consistent with the current hypothesis reward
machine H, QRM interacts with the environment using H
to guide the learning process. However, if a trace (λ, ρ) is
detected that is inconsistent with the hypothesis reward ma-
chine (i.e., H(λ) �= ρ, Line 6), our algorithm records it in
a set X (Line 7)—we call the trace (λ, ρ) a counterexample
and the set X a sample. Every time the sample is updated,
JIRP infers a minimal reward machine (Line 8) that is con-
sistent with the sample (we formalize this shortly).

Note that JIRP infers not an arbitrary consistent reward
machine but a minimal one (i.e., a consistent reward machine
with the fewest number of states among all consistent reward
machines). This additional requirement can be seen as an
Occam’s razor strategy (Löding, Madhusudan, and Neider
2016) and is crucial in that it enables JIRP to converge to
the optimal policy in the limit.

593

Algorithm 2: JIRP
1 Initialize the hypothesis reward machineH with a set of

states V
2 Initialize a set of q-functions Q = {qv|v ∈ V }
3 Initialize X = ∅
4 for episode n = 1, 2, . . . do
5 (λ, ρ,Q) = QRM episode(H, Q)
6 ifH(λ) �= ρ then
7 add (λ, ρ) to X
8 infer a new, minimal hypothesis reward

machineH based on the traces in X
9 re-initialize Q

Inference of Minimal Reward Machines

Intuitively, a sample X ⊂ (2P)+ × R
+ contains a finite

number of counterexamples, and we would like to construct
a (new) reward machine that is both minimal and consistent
with X . This objective is formalized next.
Task 1. Given a finite set X ⊂ (2P)+ × R

+, construct a
minimal reward machineH that is consistent with X in that
H(λ) = ρ for each (λ, ρ) ∈ X .

To learn minimal consistent reward machines, we adopt
a popular approach from classical automata learning (Heule
and Verwer 2010; Neider and Jansen 2013; Neider 2014).
Our key idea is to generate a sequence of propositional logic
formulas ϕX

k for increasing values of k ∈ N\{0} that satisfy
two properties:
• ϕX

k is satisfiable if and only if there exists a reward ma-
chine with k states that is consistent with X; and

• a satisfying assignment of the variables in ϕX
k contains

sufficient information to derive such a reward machine.
By starting with k = 1 and increasing k by one until ϕX

k be-
comes satisfiable, which we check using a highly-optimized
SAT solver, we obtain an effective algorithm that learns a
minimal reward machine that is consistent with the given
sample. Due to the limited space, however, we have to re-
fer the reader to the extended version of the paper (Xu et al.
2019) for a detailed description of the formulas ϕX

k and the
corresponding learning algorithm.

Optimal Convergence

Both tabular q-learning and QRM almost surely converge
to an optimal policy. We here show that the same desirable
property holds for JIRP. More specifically, in the follow-
ing sequence of lemmas we show that—given a long enough
exploration—JIRP will converge to the reward machine that
encodes the reward function of the underlying MDP. We
then use this fact to show that the overall learning process
converges to an optimal policy (see Theorem 1).

We begin by defining attainable trajectories—trajectories
that can possibly appear in the exploration of an agent.
Definition 3. Let M = (S, sI , A, p,R, γ,P, L) be a la-
beled MDP and m ∈ N a natural number. We call a tra-
jectory ζ = s0a0s1 . . . skaksk+1 ∈ (S × A)∗ × S m-
attainable if (i) k ≤ m and (ii) p(si, ai, si+1) > 0 for each

i ∈ {0, . . . , k}. Moreover, we say that a trajectory ζ is at-
tainable if there exists an m ∈ N such that ζ is m-attainable.

An induction shows that JIRP almost surely explores ev-
ery attainable trajectory in the limit (i.e., with probability 1
when the number of episodes goes to infinity).
Lemma 1. Let m ∈ N be a natural number. Then, JIRP with
eplength ≥ m almost surely explores every m-attainable
trajectory at least once in the limit.

Analogous to Definition 3, we call a label sequence λ =
�0 . . . �k (m-)attainable if there exists an (m-)attainable tra-
jectory s0a0s1 . . . skaksk+1 such that �i = L(si, ai, si+1)
for each i ∈ {0, . . . , k}. An immediate consequence of
Lemma 1 is that JIRP almost surely explores every m-
attainable label sequence in the limit.
Corollary 1. JIRP with eplength ≥ m almost surely ex-
plores every m-attainable label sequence at least once in
the limit.

If JIRP explores sufficiently many m-attainable label se-
quences for a large enough value of m, it is guaranteed to
infer a reward machine that is equivalent to the reward ma-
chine encoding the reward function R on all attainable label
sequences. This is formalized in the next lemma.
Lemma 2. Let M be a labeled MDP and A the reward
machine encoding the reward function of M. Then, JIRP
with eplength ≥ 2|M|+1(|A|+ 1)− 1 almost surely learns
a reward machine in the limit that is equivalent to A on all
attainable label sequences.

Lemma 2 guarantees that JIRP will eventually learn the
reward machine encoding the reward function of an under-
lying MDP. This is the key ingredient for establishing that
JIRP almost surely learns an optimal policy in the limit.
Note that Lemma 2 also provides a finite bound on the length
of the episodes. Therefore, we do not require the length of
the episodes to be infinite for guaranteeing optimal conver-
gence, as stated in the following theorem.
Theorem 1. Let M be a labeled MDP and A the reward
machine encoding the reward function of M. Then, JIRP
with eplength ≥ 2|M|+1(|A| + 1) − 1 almost surely con-
verges to an optimal policy in the limit.

The factor 2|M|+1 in the lower bound of eplength arises
from our quite general setting in which not every label se-
quence has to be attainable and the MDP can be nondeter-
ministic. For slightly more restrictive settings, we can pro-
vide drastically improved bounds.
Corollary 2. LetM and A be as in Theorem 1. Then:
• If M is deterministic (i.e., L(s, a, s′) = L(s, a, s′′) im-

plies s′ = s′′), then Theorem 1 is true already for
eplength ≥ (|M|+ 1) · (|A|+ 1)− 1.
• If every label sequence is attainable in M, then Theo-

rem 1 is true already for eplength ≥ 2(|A| + 1) − 1,
which no longer depends onM.

4 Algorithmic Optimizations

Section 3 provides the base algorithm with theoretical guar-
antees for convergence to an optimal policy. In this section,

594

Algorithm 3: JIRP with algorithmic optimizations
1 Initialize the hypothesis reward machineH with a set of

states V
2 Initialize a set of q-functions Q = {qv|v ∈ V }
3 Initialize X = ∅ and Xnew = ∅
4 for episode n = 1, 2, . . . do
5 (λ, ρ,Q) = QRM episode(H, Q)
6 ifH(λ) �= ρ then
7 add (λ, ρ) to Xnew

8 if
(
mod(n,N) = 0 and Xnew �= ∅

)
then

9 X ← X ∪Xnew
10 inferHnew using X
11 Qnew ← Transferq(Q,H,Hnew)
12 H ← Hnew, Q← Qnew, Xnew ← ∅

we present an improved algorithm, shown as Algorithm 3,
that includes two algorithmic optimizations: (1) batching of
counterexamples and (2) transfer of q-functions. Both opti-
mizations are designed so that the convergence guarantee of
Theorem 1 is preserved.

Batching of Counterexamples

Algorithm 2 infers a new hypothesis reward machine when-
ever a counterexample is encountered. This could incur a
high computational cost in frequently inferring the hypothe-
sis reward machines. In order to adjust the frequency of in-
ferring new reward machines, Algorithm 3 stores each coun-
terexample in a set Xnew. After each period of N episodes
(where N ∈ Z>0 is a user-defined hyperparameter) and if
Xnew is non-empty, we add Xnew to the sample X and in-
fer a new hypothesis reward machine Hnew (Lines 8 to 10).
Then, Algorithm 3 proceeds with the QRM algorithm for
Hnew. The procedure repeats until the policy converges.

Transfer of Q-functions

In Algorithm 2, after a new hypothesis reward machine is in-
ferred, the q-functions are re-initialized and the experiences
from the previous iteration of RL are not utilized. To uti-
lize experiences in previous iterations, we provide a method
to transfer the q-functions from the previously inferred re-
ward machine to the newly inferred reward machine (in-
spired by the curriculum learning implementation in Icarte et
al. (2018)). The transfer of q-functions is based on a notion
of equivalent states, as defined below.
Definition 4. Given a reward machineA and a state v ∈ V ,
let A[v] be the machine with v as the initial state. For two
reward machines A and Â over the sets V and V̂ of states,
respectively, two states v ∈ V and v̂ ∈ V̂ are equivalent,
denoted by v ∼ v̂, if and only if A[v](λ) = A[v̂](λ) for all
label sequences λ.

To determine pairwise equivalent states, one can use a
simple modification of Hopcroft’s partition refinement algo-
rithm (Hopcroft and Ullman 1979). More precisely, ifA has
m states and Â has n states, one can decide the equivalence
of every pair of states in time O(2P · (m+ n)2).

Algorithm 4: Transferq
1 Input: a set of q-functions Q = {qv|v ∈ V },

hypothesis reward machinesH = (V, vI , 2
P ,R, δ, σ),

Hnew = (Vnew, vInew, 2
P ,R, δnew, σnew)

2 Initialize Qnew = {qvnew
new | qvnew

new ∈ Vnew}
3 for vnew ∈ Vnew, v ∈ V do
4 if v ∼ vnew then
5 qvnew

new ← qv

6 Return Qnew

With Definition 4, we provide the following theorem
claiming equality of optimal q-functions for equivalent
states of two reward machines. We use q∗v(s, a) to denote
the optimal q-function for state v of a reward machine.

Theorem 2. Let A = (V, vI , 2
P ,R, δ, σ) and Â =

(V̂ , v̂I , 2
P ,R, δ̂, σ̂) be two reward machines encoding the

rewards of a labeled MDP M = (S, sI , A, p,R, γ,P, L).
For states v ∈ V and v̂ ∈ V̂ , if v ∼ v̂, then for every s ∈ S
and a ∈ A, q∗v(s, a) = q∗v̂(s, a).

Algorithm 4 shows the procedure to transfer the q-
functions between the hypothesis reward machines of con-
secutive iterations. For any state of the hypothesis reward
machine in the current iteration, we check if there exists
an equivalent state of the hypothesis reward machine in the
previous iteration. If so, the corresponding q-functions are
transferred (Line 5). As shown in Theorem 2, the optimal
q-functions for two equivalent states are the same.

5 Case Studies

In this section, we apply JIRP to three different scenarios:
(1) an autonomous vehicle scenario, (2) an office world sce-
nario adapted from (Icarte et al. 2018), and (3) a Minecraft
world scenario adapted from (Andreas, Klein, and Levine
2017). The detailed description of the tasks in the three dif-
ferent scenarios can be found in the extended version (Xu et
al. 2019).

We compare the following four different methods:

1) JIRP: We have implemented a prototype of JIRP, which
uses the tabular q-learning method (Watkins and Dayan
1992) and the libalf library (Bollig et al. 2010) to infer
minimal reward machines.

2) QAS (q-learning in augmented state space): to incorpo-
rate the extra information of the labels (i.e., high-level
events in the environment), we perform tabular q-learning
(Watkins and Dayan 1992) in an augmented state space
with an extra binary vector representing whether each la-
bel has been encountered or not. We choose the learning
rate to be α = 0.8 and the discount factor to be γ = 0.9.

3) HRL (hierarchical reinforcement learning): Following
(Kulkarni et al. 2016), we define one option for each
propositional variable p ∈ P , and the option terminates
whenever p becomes true.

595

(a) JIRP (b) QAS (c) HRL (d) DDQN

Figure 3: Attained rewards of 10 independent simulation runs averaged for every 10 training steps for autonomous vehicle
scenario (first row), office world scenario (second row), and Minecraft world scenario (third row).

4) DDQN (deep reinforcement learning with double q-
learning): we adopt the DDQN method from (Hasselt,
Guez, and Silver 2016). The neural network used has 6
fully-connected layers and 64 neurons per layer. The fea-
ture inputs of the neural network are the past 200 labels
along the trajectory and the current MDP state.
The extended version (Xu et al. 2019) also contains the

results of running JIRP with an alternative polynomial-time
heuristic for inferring the hypothesis reward machines.

Autonomous Vehicle Scenario

We consider the autonomous vehicle scenario as introduced
in the motivating example from Section 1. The set of actions
is A = {straight, left, right, stay}, corresponding to going
straight, turning left, turning right and staying in place. For
simplicity, we assume that the labeled MDP is deterministic
(i.e, the slip rate is zero for each action).

The set of propositional variables is {sp, pr ,B} and the
labeling function L is defined by

sp ∈ L(s, a, s′)⇔ a = stay ∧ s ∈ J ,
pr ∈ L(s, a, s′)⇔ s′.priority = � ∧ s ∈ J ,
B ∈ L(s, a, s′)⇔ s′.x = xB ∧ s′.y = yB,

where s′.priority is a Boolean variable that is true (�) if
and only if s′ is on the priority roads, J represents the set of
locations where the vehicle is entering an intersection, s′.x
and s′.y are the x and y coordinate values at state s, and xB
and yB are x and y coordinate values at B (see Figure 1).

We set eplength = 100, N = 100 (see discussions below
for selecting N), and used the transfer of q-functions for the

JIRP method. Figure 4 shows the inferred hypothesis reward
machine in the last iteration of JIRP in one typical run. The
inferred hypothesis reward machine is different from the true
reward machine in Figure 2, but these two reward machines
are equivalent on all attainable label sequences.

The first row of Figure 3 shows the attained rewards with
the four different methods in the autonomous vehicle sce-
nario. JIRP converges to optimal policies within 100,000
training steps, while QAS does not converge to optimal poli-
cies, HRL and DDQN are stuck with near-zero cumulative
reward for up to two million training steps.

Batch Sizes To test the influence of different batch sizes
of counter-examples, we perform JIRP with four different
batch sizes of counter-examples: N = 1, N = 10, N = 100
and N = 1000. Table 1 shows the average computation
time for 10 independent runs with the four different batch
sizes in autonomous vehicle scenario. Figure 5 shows the
attained median rewards of 10 independent simulation runs
with the four different batch sizes in the autonomous ve-
hicle scenario. We observe that with increased batch size,
the computation time decreases as the frequency of inferring
new hypothesis reward machines decreases (as shown in Ta-
ble 1). On the other hand, the time to convergence increases
when N becomes larger than 100 (as shown in Figure 5),
as slow updating of hypothesis reward machines can cause
delay for the optimal convergence.

Transfer of Q-functions To test the influence of the trans-
fer of q-functions, we perform JIRP in the autonomous vehi-
cle scenario with and without the transfer of q-functions. As
can be seen in Figure 6, JIRP with the transfer of q-functions

596

Table 1: Average computation time (in seconds) for JIRP and
four different batch sizes in autonomous vehicle scenario.

N = 1 N = 10 N = 100 N = 1000

time (s) 3995.99 3193.280 2110.23 1311.79

converges to an optimal policy at about 110,000 training
steps, while JIRP without the transfer of q-functions con-
verges to an optimal policy at about 140,000 training steps.
Therefore, the transfer of q-functions improves sampling ef-
ficiency of JIRP.

Office World Scenario

We consider the office world scenario in the 9×12 grid-
world (Icarte et al. 2018). The agent has four possible ac-
tions at each time step: move north, move south, move east
and move west. After each action, the robot may slip to each
of the two adjacent cells with the probability of 0.05, respec-
tively. We use three tasks with different high-level structural
relationships among subtasks such as getting coffee, getting
mails and going to the office.

We use the same hyperparameters as those in the au-
tonomous vehicle scenario. The second row of Figure 3
shows the cumulative rewards with the four different meth-
ods in the office world scenario. JIRP converges to an op-
timal policy within 150,000 training steps, while QAS and
HRL reach only 40% and 80% (respectively) of the optimal
median cumulative reward within 400,000 training steps,
and DDQN is stuck with near-zero attained reward for up
to 400,000 training steps.

Minecraft World Scenario

We consider the Minecraft example in a 21×21 gridworld
(Andreas, Klein, and Levine 2017). The four actions and the
slip rates are the same as in the office world scenario. We use
four tasks including making a plank, making a stick, making
a bow and making a bridge.

We use the same hyperparameters as those in the au-
tonomous vehicle scenario. The third row of Figure 3 shows
the cumulative rewards with the four different methods in
the Minecraft world scenario. JIRP converges to an optimal

v0start v1

v3

v2

(¬sp ∧ ¬pr , 0)

(¬sp ∧ pr , 0)

(sp ∧ pr, 0)

(sp ∧ ¬pr, 0)

(sp ∧ ¬pr , 0)
(¬sp ∧

¬pr, 0
)

(pr ∨ B, 0)

(¬sp ∧
pr,

0)

(¬pr , 0)

(B, 1)

Figure 4: Inferred hypothesis reward machine in the last it-
eration of JIRP in one typical run in the autonomous vehicle
scenario.

Figure 5: Attained median rewards of 10 independent sim-
ulation runs in the autonomous vehicle scenario with four
different batch sizes in autonomous vehicle scenario.

Figure 6: Attained median rewards of 10 independent sim-
ulation runs in the autonomous vehicle scenario with and
without the transfer of q-functions.

policy within 600,000 training steps, while QAS, HRL and
DDQN reach only 50%, 40% and 20% (respectively) of the
optimal median cumulative reward within 600,000 training
steps.

6 Conclusion

We proposed an iterative approach that alternates between
reward machine inference and reinforcement learning (RL)
for the inferred reward machine. We have proved the opti-
mal convergence of the proposed approach and shown the
performance improvement over the baseline methods.

This work opens the door for utilizing automata learning
in RL. First, the same methodology can be applied to other
forms of RL, such as model-based RL, or actor-critic meth-
ods. Second, we will explore methods that can infer the re-
ward machines incrementally (based on inferred reward ma-
chines in the previous iteration). Finally, the method to trans-
fer the q-functions between equivalent states of reward ma-
chines can be also used for transfer learning between differ-
ent tasks where the reward functions are encoded by reward
machines.

7 Acknowledgments

This work is supported in part by grants DFG 389792660-
TRR 248, DFG 434592664, ERC 610150, DARPA
D19AP00004, ONR N000141712623, and NASA
80NSSC19K0209.

597

References

Abel, D.; Arumugam, D.; Lehnert, L.; and Littman, M.
2018. State abstractions for lifelong reinforcement learning.
In ICML’2018, 10–19.
Akrour, R.; Veiga, F.; Peters, J.; and Neumann, G. 2018.
Regularizing reinforcement learning with state abstraction.
In IROS, 534–539. IEEE.
Aksaray, D.; Jones, A.; Kong, Z.; Schwager, M.; and Belta,
C. 2016. Q-learning for robust satisfaction of signal tempo-
ral logic specifications. In IEEE CDC’16, 6565–6570.
Alshiekh, M.; Bloem, R.; Ehlers, R.; Könighofer, B.;
Niekum, S.; and Topcu, U. 2018. Safe reinforcement learn-
ing via shielding. In AAAI’18.
Andreas, J.; Klein, D.; and Levine, S. 2017. Modular
multitask reinforcement learning with policy sketches. In
ICML’2017, 166–175. JMLR. org.
Arora, S., and Doshi, P. 2018. A survey of inverse reinforce-
ment learning: Challenges, methods and progress.
Barto, A. G., and Mahadevan, S. 2003. Recent advances in
hierarchical reinforcement learning. Discrete event dynamic
systems 13(1-2):41–77.
Bollig, B.; Katoen, J.; Kern, C.; Leucker, M.; Neider, D.;
and Piegdon, D. R. 2010. libalf: The automata learning
framework. In CAV’2010, 360–364.
Camacho, A.; Toro Icarte, R.; Klassen, T. Q.; Valenzano, R.;
and McIlraith, S. A. 2019. LTL and beyond: Formal lan-
guages for reward function specification in reinforcement
learning. In IJCAI’2019, 6065–6073.
Dietterich, T. G. 2000. Hierarchical reinforcement learning
with the maxq value function decomposition. J. Artif. Int.
Res. 13(1):227–303.
Fu, J., and Topcu, U. 2014. Probably approximately correct
MDP learning and control with temporal logic constraints.
Robotics: Science and Systems abs/1404.7073.
Hasselt, H. v.; Guez, A.; and Silver, D. 2016. Deep
reinforcement learning with double q-learning. In Proc.
AAAI’16, 2094–2100. AAAI Press.
Heule, M., and Verwer, S. 2010. Exact DFA identification
using SAT solvers. In ICGI’2010’, volume 6339 of Lecture
Notes in Computer Science, 66–79. Springer.
Hopcroft, J. E., and Ullman, J. D. 1979. Introduction to
Automata Theory, Languages and Computation. Addison-
Wesley.
Icarte, R. T.; Klassen, T. Q.; Valenzano, R. A.; and McIl-
raith, S. A. 2018. Using reward machines for high-level task
specification and decomposition in reinforcement learning.
In ICML’2018, 2112–2121.
Icarte, R. A. T.; Waldie, E.; Klassen, T.; Valenzano, R.; Cas-
tro, M. P.; and McIlraith, S. A. 2019. Learning reward ma-
chines for partially observable reinforcement learning. In
NeurIPS.
Kulkarni, T. D.; Narasimhan, K.; Saeedi, A.; and Tenen-
baum, J. 2016. Hierarchical deep reinforcement learning:
Integrating temporal abstraction and intrinsic motivation. In
NeurIPS’2016, 3675–3683.

Li, X.; Vasile, C. I.; and Belta, C. 2017. Reinforcement
learning with temporal logic rewards. In Proc. IEEE/RSJ
Int. Conf. Intell. Robots and Syst., 3834–3839.
Löding, C.; Madhusudan, P.; and Neider, D. 2016. Ab-
stract learning frameworks for synthesis. In TACAS’2016,
volume 9636 of Lecture Notes in Computer Science, 167–
185. Springer.
Nachum, O.; Gu, S.; Lee, H.; and Levine, S. 2018. Data-
efficient hierarchical reinforcement learning. In NeurIPS,
3307–3317.
Neider, D., and Jansen, N. 2013. Regular model check-
ing using solver technologies and automata learning. In
NFM’2013, volume 7871 of Lecture Notes in Computer Sci-
ence, 16–31. Springer.
Neider, D. 2014. Applications of automata learning in ver-
ification and synthesis. Ph.D. Dissertation, RWTH Aachen
University.
Oncina, J., and Garcia, P. 1992. Inferring regular languages
in polynomial updated time. In Pattern recognition and im-
age analysis: selected papers from the IVth Spanish Sympo-
sium, 49–61. World Scientific.
Parr, R., and Russell, S. J. 1998. Reinforcement learning
with hierarchies of machines. In Advances in neural infor-
mation processing systems, 1043–1049.
Shallit, J. O. 2008. A Second Course in Formal Languages
and Automata Theory. Cambridge University Press.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and semi-MDPs: A framework for temporal abstrac-
tion in reinforcement learning. Artificial intelligence 112(1-
2):181–211.
Taylor, M. E., and Stone, P. 2007. Cross-domain transfer for
reinforcement learning. In Proc. ICML’07, 879–886. New
York, NY, USA: ACM.
Toro Icarte, R.; Klassen, T. Q.; Valenzano, R.; and McIlraith,
S. A. 2018. Teaching multiple tasks to an RL agent using
LTL. In Proc. AAMAS’2018, 452–461.
Watkins, C. J. C. H., and Dayan, P. 1992. Q-learning. Ma-
chine Learning 8(3):279–292.
Wen, M.; Papusha, I.; and Topcu, U. 2017. Learning from
demonstrations with high-level side information. In Proc.
IJCAI’17, 3055–3061.
Wulfmeier, M.; Ondruska, P.; and Posner, I. 2015. Max-
imum entropy deep inverse reinforcement learning. In
NeurIPS, Deep Reinforcement Learning Workshop, volume
abs/1507.04888.
Xu, Z., and Topcu, U. 2019. Transfer of temporal logic
formulas in reinforcement learning. In Proc. IJCAI’2019,
4010–4018.
Xu, Z.; Gavran, I.; Ahmad, Y.; Majumdar, R.; Neider, D.;
Topcu, U.; and Wu, B. 2019. Joint inference of reward
machines and policies for reinforcement learning. CoRR
abs/1909.05912.

598

