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Abstract

A key capability of a long-term tracker is to search for targets
in very large areas (typically the entire image) to handle pos-
sible target absences or tracking failures. However, currently
there is a lack of such a strong baseline for global instance
search. In this work, we aim to bridge this gap. Specifically,
we propose GlobalTrack, a pure global instance search based
tracker that makes no assumption on the temporal consistency
of the target’s positions and scales. GlobalTrack is developed
based on two-stage object detectors, and it is able to perform
full-image and multi-scale search of arbitrary instances with
only a single query as the guide. We further propose a cross-
query loss to improve the robustness of our approach against
distractors. With no online learning, no punishment on po-
sition or scale changes, no scale smoothing and no trajec-
tory refinement, our pure global instance search based tracker
achieves comparable, sometimes much better performance
on four large-scale tracking benchmarks (i.e., 52.1% AUC
on LaSOT, 63.8% success rate on TLP, 60.3% MaxGM on
OxUvA and 75.4% normalized precision on TrackingNet),
compared to state-of-the-art approaches that typically require
complex post-processing. More importantly, our tracker runs
without cumulative errors, i.e., any type of temporary track-
ing failures will not affect its performance on future frames,
making it ideal for long-term tracking. We hope this work will
be a strong baseline for long-term tracking and will stimulate
future works in this area.

Given an arbitrary, user-specified target in the first frame, the
task of visual tracking is to locate it continuously in succes-
sive frames. Visual tracking has been widely used in many
fields such as surveillance, augmented reality, robotics and
video editing. Over the past decades, significant progress
has been made in this area (Wu, Lim, and Yang 2015;
Valmadre et al. 2018; Huang, Zhao, and Huang 2018).

Most existing trackers work under a strong temporal
consistency assumption that the target’s position and scale
change smoothly. These approaches typically search within
a small window for the target and impose penalties on
large position and scale variations to limit the prediction
space (Bertinetto et al. 2016; Li et al. 2018; Huang, Zhao,

∗Corresponding author
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

20 1780280

30 1200 2040

50 520 3260

GlobalTrack (Ours) ATOM SiamRPN++ DaSiam_LT

1 440 1350

Figure 1: A comparison of our approach with state-of-the-
art trackers. ATOM (Danelljan et al. 2019), SiamRPN++ (Li
et al. 2019) and DaSiam LT (Zhu et al. 2018) work un-
der the temporal consistency assumption that the target’s
state changes smoothly. However, as the figure shows, such
assumption does not necessarily hold. Under abrupt mo-
tion and temporary target absence, these trackers cannot lo-
cate the targets for long. Our approach GlobalTrack, a pure
global instance search based tracker, successfully handles
these challenges and provides robust tracking results.

and Huang 2019; Danelljan et al. 2019). However, various
real-world challenges can break such assumption and cause
these approaches to fail. Figure 1 shows typical failure cases
of some state-of-the-art trackers, where under abrupt posi-
tion and scale changes, target absences and temporary track-
ing failures, none of these approaches is able to consistently
locate the targets for long.

In this paper, we propose a baseline tracker that handles
these challenges using pure global instance search. The key
idea is to remove the locality assumption and enable the
tracker to search for the target at arbitrary positions and
scales, thereby avoiding cumulative errors during tracking.
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Figure 2: The overall architecture of GlobalTrack. The architecture consists of two submodules: a Query-Guided RPN (QG-
RPN) for generating query-specific proposals, and a Query-Guided RCNN (QG-RCNN) for discriminating the proposals and
producing the final predictions. In the feature modulation of QG-RPN and QG-RCNN, we encode the correlation between the
query and search image features in the backbone and ROI outputs, so as to guide the detector to locate query-specific instances.
During tracking, we use the first frame as the query and simply take the top-1 prediction in a frame as the tracking result.

We build such global instance search algorithm based on
object detection models, since they are able to perform full-
image and multi-scale search of arbitrary sized objects.

Specifically, we propose GlobalTrack, a full-image visual
tracker, inspired by the two-stage object detector Faster-
RCNN (Girshick 2015). Similar to Faster-RCNN, Global-
Track consists of two submodules: a query-guided region
proposal network (QG-RPN) for generating query-specific
object candidates, and a query-guided region convolutional
neural network (QG-RCNN) for classifying the candidates
and producing the final predictions. The overall architecture
of GlobalTrack is visualized in Figure 2. In the feature mod-
ulation parts of QG-RPN and QG-RCNN, we encode the
correlation between the query and search image features in
the backbone and ROI outputs, thereby directing the detector
to locate query-specific instances.

During tracking, we take the annotated first frame as the
query and search independently in each of the rest frames
for the target. We simply take the top-1 prediction of QG-
RCNN as the tracking result, without using any further post-
processing. While adding additional processes, such as tra-
jectory smoothing, may improve the performance of our ap-
proach, we prefer to keep the current model simple and
straightforward. In the training phase, we sample frame pairs
from video datasets to optimize the model, utilizing the same
classification and localization losses as in Faster-RCNN. We
further propose a cross-query loss to improve the robustness
of GlobalTrack against instance-level distractors, which av-
erages the losses over different queries on a same image to
force the model to learn the strong dependency between the
queries and the prediction results.

We verify the performance of our approach on four large
scale tracking benchmarks: LaSOT (Fan et al. 2019), Track-
ingNet (Muller et al. 2018), TLP (Moudgil and Gandhi
2018) and OxUvA (Valmadre et al. 2018), where LaSOT,
OxUvA and TLP are long-term tracking benchmarks with
average video lengths of 2500, 4260 and 13529 frames,
respectively. GlobalTrack shows impressive performance
on these datasets, compared to state-of-the-art approaches
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Figure 3: A long-term tracking example where the target un-
dergoes a period of (∼400 frames) absence. All compared
methods fail to relocate the target after the temporary ab-
sence, while GlobalTrack relocates it immediately as it reap-
pears, and achieves a much higher average IoU score. The
example shows the advantages of GlobalTrack – since it
makes no locality assumption and searches globally, its per-
formance in a frame is not affected by its previous failures.

that typically require complex post-processing. For ex-
ample, GlobalTrack outperforms SiamRPN++ (Li et al.
2019) and ATOM (Danelljan et al. 2019) by achieving an
AUC (area-under-curve) of 52.1% on LaSOT benchmark;
it also achieves an large-margin absolute gain of 11.1% on
TLP benchmark, over the previous best long-term tracker
SPLT (Yan et al. 2019). More importantly, since our ap-
proach imposes no assumption on temporal consistency, its
performance in one frame is completely independent of pre-
vious tracking failures, enabling our model to track very
long videos without suffering from cumulative errors. Fig-
ure 3 shows an example where the target disappears tem-
porarily for around 400 frames. The compared approaches
fail to relocate the target as it reappears, while GlobalTrack
catches the target immediately as it shows up, showing the
advantage of our approach in long-term tracking scenarios.

Related Work

Long-term tracking refers to the task of continuously locat-
ing an arbitrary target in a relatively long video, where the
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target may temporarily disappear (Valmadre et al. 2018). A
key challenge of long-term tracking is to retrieve the tar-
get after a period of target absence or tracking failures. To
our knowledge, only limited works focus on this task (Kalal,
Mikolajczyk, and Matas 2012; Ma et al. 2015; Wang et al.
2019b; Yang et al. 2019). Representive approaches include
TLD (Kalal, Mikolajczyk, and Matas 2012), SPL (Supan-
cic and Ramanan 2013), LCT (Ma et al. 2015), EBT (Zhu,
Porikli, and Li 2016) and DaSiam LT (Zhu et al. 2018).
TLD, SPL, LCT and EBT are capable of performing full-
image search, which is an important ability, especially when
the target can disappear. TLD, SPL and LCT searches glob-
ally for the target when they detect tracking failures, while
EBT always perform full-image search. DaSiam LT (Zhu
et al. 2018) is a variant of DaSiamRPN (Zhu et al. 2018)
for long-term tracking, which expands the search area as it
detects tracking failures. Similar to these trackers, our ap-
proach GlobalTrack can perform full-image search for the
target. Differently, we use no online learning and impose no
constraints on temporal consistency of the target’s location
or scale to avoid cumulative errors.

In terms of the tracking framework, our approach share
some similarities with SiamRPN (Li et al. 2018) and
ATOM (Danelljan et al. 2019), where they all use shared
backbones for extracting features of the query and search
images, and they use correlation to encode the relationship
between them. However, our work has significant differ-
ences with these methods: (1) Our approach performs global
search for the target in all frames, without relying on any lo-
cality assumption, while ATOM and SiamRPN search only
locally and they use complex post-processing to impose con-
straints on the target’s location and scale changes; (2) We
reuse the RPN and RCNN heads of Faster-RCNN and apply
them on the modulated features to generate proposals and
final predictions. However, SiamRPN uses the query to gen-
erate classification and localization weights, while ATOM
learns a hand-crafted classifier from scratch during tracking.

Our Approach
In this work, we propose GlobalTrack, a pure global instance
search based tracker consisting of two components: a Query-
Guided RPN (QG-RPN) for adaptively generating propos-
als that are specific to a certain query, and a Query-Guided
RCNN (QG-RCNN) for classifying the proposals and gen-
erating final predictions. The overall architecture of Global-
Track is shown in Figure 2. In the feature modulation parts
of QG-RPN and QG-RCNN, we encode the correlation be-
tween the query and search image features in the outputs of
the backbone and ROI layers, thereby allowing the model
to learn the strong dependency between the queries and the
expected prediction results.

In the following, we first introduce the QG-RPN and QG-
RCNN in details. Then we present the cross-query loss used
in our approach. Finally, we introduce the offline training
and online tracking processes of our approach.

Query-guided RPN

Region Proposal Networks (RPNs) are widely used in two-
stage object detectors to generate class-agnostic object can-

didates of pre-defined classes and narrow the search scope
down. However, these RPNs are general-purposed; while
in tracking, we are only interested in candidates of spe-
cific targets. We propose a Query-Guided RPN (QG-RPN)
to achieve this, where the key idea is to use correlation to
encode the query information in backbone features.

Specifically, let z ∈ Rk×k×c denotes the ROI (Region-
Of-Interest) features of the query instance, and x ∈ Rh×w×c

represents the search image features, where h,w and k rep-
resent feature sizes; we aim to obtain an x̂ ∈ Rh×w×c that
encodes the correlation between z and x:

x̂ = gqg rpn(z, x) = fout(fx(x)⊗ fz(z)). (1)

Here ⊗ denotes the convolution operator, fz(z) converts z
to a convolutional kernel that is applied on the projected fea-
tures fx(x) to generate the correlation between z and x. fout
ensures the output x̂ to have the same size as x. For simplic-
ity, in our approach, we define fz to be a k × k convolution
layer with zero padding that converts z to a 1 × 1 convolu-
tional kernel, fx to be a 3× 3 convolution layer with 1 pixel
padding, while fout to be a 1×1 convolution layer that con-
verts the channel number back to c. We use no normalization
and no activation in these projections.

Since x̂ retains the size of x, we directly reuse the modules
of RPN and perform its subsequent processes (classification,
localization, filtering, etc.) to generate the proposals. We use
the same losses of RPN for training QG-RPN, where the
classification and localization losses Lcls and Lloc are binary
cross-entropy and smooth L1, respectively (Girshick 2015).
The total loss of QG-RPN is:

Lqg rpn(z, x) = Lrpn(x̂) =
1

Ncls

∑

i

Lcls(pi, p
∗
i ) +

λ
1

Nloc

∑

i

p∗iLloc(si, s
∗
i ) (2)

where pi and si are the predicted score and location of the
ith proposal, while p∗i and s∗i are groundtruths. λ is a weight
for balancing the classification and localization losses.

Query-guided RCNN

With proposals generated by QG-RPN, in the second stage,
we need to refine the predictions of their labels and bounding
boxes according to the ROI features. Note such process is
query-specific, since apparently different queries correspond
to different groundtruths. We propose Query-Guided RCNN
(QG-RCNN) for the classification and bounding box refine-
ment of these proposals. Specifically, given the ROI features
of the query z ∈ Rk×k×c and the ith proposal xi ∈ Rk×k×c,
we perform feature modulation to encode their correlation:

x̂i = gqg rcnn(z, xi) = hout(hx(xi)� hz(z)), (3)

where � denotes the Hadamard production, hx and hz are
feature projections for xi and z, respectively, while hout

generate output features x̂ and ensures that it retains the size
of xi. In our approach, we simply set hx and hz to 3 × 3
convolution layers with 1 pixel padding, and hout to a 1× 1
convolution layer with output channel number being c.
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After obtaining the modulated features x̂i, we continue
with the traditional RCNN processes and perform classifi-
cation and localization on the proposals to obtain the final
predictions. During training, similar to QG-RPN, we use bi-
nary cross-entropy and smooth L1 as the classification and
localization losses to optimize our model. The total loss of
QG-RCNN is formulated as:

Lqg rcnn(z, x) =
1

Nprop

∑

i

Lrcnn(x̂i), (4)

where Nprop is the proposal number and

Lrcnn(x̂i) = Lcls(pi, p
∗
i ) + λp∗iLloc(si, s

∗
i ). (5)

Here the pi and si are the estimated confidence and location
(center and scale offsets), while p∗i and s∗i are groundtruths.
λ is a weight for balancing different losses.

Cross-query Loss

To improve the discriminative ability of our approach
against instance-level distractors, we propose the cross-
query loss. The key idea is to enhance the awareness of
our model on the relationship between queries and pre-
diction outputs, by searching a same image using differ-
ent queries and average their prediction losses. Formally
speaking, given a pair of images with M co-exist instances
{1, 2, · · · ,M}, we can construct M query-search image
pairs, and thereby calculating M QG-RPN and QG-RCNN
losses. We average the losses over these queries to obtain the
final loss on a pair of images:

Lcql =
1

M

M∑

k=1

L(zk, x), (6)

where

L(zk, x) = Lqg rpn(zk, x) + Lqg rcnn(zk, x). (7)

Note the calculation of Lcql is very efficient, since the M
query-search image pairs share most computation in back-
bone feature extraction.

Offline Training

In the training phase, we randomly sample frame pairs from
training videos to construct training data. For each frame
pair Iz and Ix, we find the M instances that co-exist in both
frames, then we construct M query-search image pairs ac-
cordingly. We run one forward pass of backbone network on
Iz and Ix to obtain their feature maps, then we perform M
times of feature modulation using Eq. (1) and Eq. (3). The
modulated features are fed into QG-RPN and QG-RCNN to
obtain the query-specific predictions. The loss of the frame
pair is then evaluated using Eq. (6), which is an average of
losses over all available queries. The data sampling and loss
evaluation are performed for several iterations, and we use
the standard stochastic gradient descent (SGD) algorithm to
optimize our model.

Figure 4: AR@k plots of different region proposal networks
(RPNs). Compared to general purposed proposal networks
RPN and GA-RPN, the proposed query-guided RPN consis-
tently show a much higher recall.

Table 1: AR@k of different region proposal networks
(RPNs). QG-RPN shows high recall even with very few pro-
posals. Moreover, with all proposals available, the average
recall of QG-RPN still surpasses the compared approaches.

(%) AR@1 AR@10 AR@100 AR@500 AR@2000
RPN 11.3 40.5 84.9 94.8 97.8
GA-RPN 12.9 43.3 82.6 93.8 97.5
QG-RPN 67.1 91.9 97.4 98.8 99.2

Online Tracking

The tracking process of our approach is extremely simple.
In the first frame, we initialize the query using the user-
specified annotation. Then the query is fixed throughout the
tracking process with no updating. In a new tracking frame,
we run a forward pass of QG-RPN and QG-RCNN with
the query and current image as inputs. Finally, we directly
take the top-1 prediction of QG-RCNN in this frame as the
tracking result. No further post-processing is used. Although
adding some post-processing, such as casting penalization
on large state variations or performing trajectory refinement,
may improve the performance of our approach, we prefer
to keep the current model simple and straightforward, and
leave a more adaptive tracking model to our future works.

Experiments

To verify the effectiveness of our approach, we conduct eval-
uation on four large-scale tracking benchmarks: LaSOT (Fan
et al. 2019), TrackingNet (Muller et al. 2018), TLP (Moudgil
and Gandhi 2018) and OxUvA (Valmadre et al. 2018), where
their test sets contain 280, 511, 180 and 166 videos, re-
spectively. LaSOT, TLP and OxUvA are long-term track-
ing benchmarks with average video lengths of 2500, 13529
and 4260 frames, respectively. We compare our overall re-
sults with state-of-the-art approaches in this section. We also
carry out experiments to analyze the effectiveness of our in-
dividual components.
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Table 2: Numerical comparison of QG-RPN and QG-RCNN
in AR@k. QG-RCNN outperforms QG-RPN in AR@1 by
around 9.5%. As more candidates are introduced, QG-RPN
achieves higher average recall than QG-RCNN by around
5%. As the number of candidates gets larger, the average
recall of QG-RPN and QG-RCNN become close.

(%) AR@1 AR@5 AR@10 AR@100 AR@512
QG-RPN 67.1 87.1 91.9 97.4 98.8
QG-RCNN 76.6 82.5 85.9 97.4 98.9

Table 3: Comparison of GlobalTrack trained using cross-
query loss and single-query loss. The performance is eval-
uated on the test set of LaSOT. The results show that the
model trained with cross-query loss consistently outper-
forms that trained with single-query loss in all three metrics.

(%) Precision Norm. Precision Success
Single-query loss 49.3 55.7 49.5
Cross-query loss 52.7 59.9 52.1

Implementation Details

Parameters We use Faster-RCNN with ResNet-50 back-
bone (Girshick 2015) as our base model for constructing
query-guided RCNN. The channel number of the backbone
features is c = 256. We set the output channel number of
fx, fz and hx, hz to c′ = 256 as well. In this way, the fz in
effect converts the query features z to a 1×1 depth-wise con-
volutional kernel, which is more efficient in computation.
We employ ROI align (He et al. 2017) to extract ROI fea-
tures, where the output feature size is set to k = 7. We nor-
malize the size of each input image so that its longer edge is
no larger than 1333 pixels, while its shorter edge is no larger
than 800 pixels. The QG-RPN generates 2000 proposals for
calculating its losses, of which 512 proposals are sampled
to be fed into QG-RCNN. The localization loss weight in
Eq. (2) and Eq. (5) is set to λ = 1.

Training Data We use a combination of COCO (Lin et al.
2014), GOT-10k (Huang, Zhao, and Huang 2018) and La-
SOT (Fan et al. 2019) datasets for training our model, where
the sampling probabilities of the three datasets are 0.4, 0.4
and 0.2, respectively. COCO is an image object detection
dataset containing over 118 thousand images, which belong
to 80 object classes. GOT-10k and LaSOT are visual track-
ing datasets, where GOT-10k consists of 10,000 videos be-
longing to 563 object classes, while LaSOT consists of 1,400
videos belonging to 70 object classes. For COCO dataset, we
randomly sample an image and perform data augmentation
on it to generate an image pair; while for GOT-10k and La-
SOT datasets, we directly sample frame pairs from videos.
We use random horizontal flipping and color jitter to aug-
ment the image pairs and to enrich our training data.

Optimization We use stochastic gradient descent with a
batch size of 4 pairs to train our model. The momentum and
weight decay are set to 0.9 and 1 × 10−4, respectively. The
backbone of our model is initialized from Faster-RCNN pre-
tained on COCO dataset. We fix the batch normalization pa-
rameters during training while allowing all other parameters

Figure 5: AR@k plots of QG-RPN and QG-RCNN. QG-
RCNN achieves much higher AR@1 (equivalent to the top-
1 accuracy) than QG-RPN, while its average recall is soon
surpassed by QG-RPN as more candidates are introduced.
The results demonstrate the different preferences of QG-
RPN and QG-RCNN in recall and accuracy.

trainable. We train our model for 12 epochs on COCO and
another 12 epochs on a combination of COCO, GOT-10k
and LaSOT datasets, as described in the previous subsec-
tion. The initial learning rate is set to 0.01, and it decays
with a factor of 0.1 at epoch 8 and 11. Our approach is im-
plemented in Python, using PyTorch. The training process
takes about 16 hours on four GTX TitanX GPUs, while the
online tracking runs at around 6 fps on a single gpu.

Ablation Study

In this section, we perform an extensive analysis of the
proposed approach. Unless specified, the experiments are
conducted on OTB-2015 dataset, which consists of 100
videos. We evaluate the approaches using overlap precision
(OP), which indicates the percentage of successfully tracked
frames where the overlap rates exceed 0.5.

Analysis of QG-RPN We compare the proposed query-
guided RPN, which is able to adaptively change the pre-
dictions according to different queries, with the general
purposed RPN (Girshick 2015) and its improved variant
Guided-Anchor RPN (GA-RPN) (Wang et al. 2019a). The
results are shown in Figure 4 and Table 1. We use AR@k to
evaluate these RPNs, which indicates the average recall us-
ing top-k predictions. As shown in Figure 4, QG-RPN con-
sistently outperforms RPN and GA-RPN by a large margin,
and it is able to achieve high recall with only a few propos-
als. Table 1 shows the numerical comparison. Using only the
top-1 prediction, QG-RPN achieves a recall of 67.1%, sur-
passing RPN and GA-RPN by over 55%. With only the top-
10 proposals, QG-RPN achieves a recall of 91.9%, which is
comparable with the top-500 recalls of RPN and GA-RPN,
indicating the effeciency of our approach. With top-2000
proposals, our approach also outperforms the compared ap-
proaches by achieving a recall of 99.2%. These results verify
the effectiveness of QG-RPN and demonstrate its superiority
in both recall rate and efficiency.
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Figure 6: Success plots of GlobalTrack and state-of-the-art trackers on the test set of LaSOT. Compared to the previous best
tracker ATOM, our approach achieves absolute gains of 2.2% in precision score and 0.7% in success score, respectively. Besides,
GlobalTrack also outperforms the latest long-term trackers SPLT and DaSiam LT by a large margin.

Table 4: State-of-the-art comparison on the long-term track-
ing benchmark TLP in terms of success rate (SR, under over-
lap threshold 0.5), success score and precision score.

(%) SR0.5 Success Precision
LCT 8.7 9.9 7.2
ECO 21.9 20.2 21.2
ADNet 22.1 22.3 20.3
MDNet 42.3 37.0 38.4

MBMD 48.1 - -
SiamRPN 51.5 - -
ATOM 47.5 - -
SPLT 52.7 - -
GlobalTrack 63.8 52.0 55.6

Comparison of QG-RPN and QG-RCNN QG-RPN and
QG-RCNN are the two stages of our approach that pursue
for recall and the top-1 accuracy, respectively. We compare
their AR@k results in Figure 5 and Table 2. As shown in
Figure 5, the QG-RCNN achieves higher AR score than QG-
RPN at the very start, and is soon surpassed by QG-RPN
as more candidates are available. From Table 2 we observe
that, the top-1 accuracy (which is exactly the AR@1) of QG-
RCNN surpasses QG-RPN by up to 9.5%. However, as more
candidates are introduced, QG-RPN achieves significantly
higher recall than QG-RCNN, even using only the top-5 pre-
dictions. As k gets even larger (e.g., k ≥ 100), the ARs
of QG-RPN and QG-RCNN become close. The results ver-
ify the effectiveness of QG-RPN and QG-RCNN, and show
their different preferences for accuracy and recall.

Impact of Loss Function To verify the effectiveness
of the proposed cross-query loss, we compare our model
trained with cross-query loss and with single query loss –
the loss that only considers one instance per image pair. We
evaluate the two models on the test set of LaSOT dataset.
The results are shown in Table 3. We observe that, the model

Table 5: State-of-the-art comparison on the test set of Track-
ingNet in terms of precision, normalized precision and suc-
cess (AUC).

(%) Precision Norm. Precision Success
CFNet 53.3 65.4 57.8
MDNet 56.5 70.5 60.6
ECO 49.2 61.8 55.4
UPDT 55.7 70.2 61.1
DaSiamRPN 59.1 73.3 63.8
SiamRPN++ 69.4 80.0 73.3
C-RPN 61.9 74.6 66.9
ATOM 64.8 77.1 70.3
GlobalTrack 65.6 75.4 70.4

trained with cross-query loss surpasses that trained with the
single-query loss in all three metrics by 2.6% ∼ 4.2%, veri-
fying the robustness of the proposed loss function.

Comparison with State-of-the-art

We compare our approach GlobalTrack with state-of-the-
art trackers on four large-scale tracking benchmarks. The
compared approaches include SPLT (Yan et al. 2019),
ATOM (Danelljan et al. 2019), SiamRPN++ (Li et al. 2019),
C-RPN (Fan and Ling 2019), MBMD (Zhang et al. 2018),
DaSiam LT (Zhu et al. 2018), UPDT (Bhat et al. 2018), VI-
TAL (Song et al. 2018), SINT (Tao, Gavves, and Smeulders
2016), CF2 (Chao et al. 2016), ADNet (Yun et al. 2017),
MDNet (Nam and Han 2016), SiamFC (Bertinetto et al.
2016), SiamFCv2 (Valmadre et al. 2017), CFNet (Valmadre
et al. 2017), StructSiam (Yunhua et al. 2018), ECO (Danell-
jan et al. 2017), PTAV (Fan and Ling 2017), TLD (Kalal,
Mikolajczyk, and Matas 2012) and LCT (Ma et al. 2015).

LaSOT The test set of LaSOT consists of 280 videos with
an average length of 2448 frames, which is longer than most
other datasets. The precision and success plots on LaSOT
are shown in Figure 6. Compared to the previous best ap-
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Table 6: State-of-the-art comparison on the test set of Ox-
UvA in terms of maximum geometric mean (MaxGM), true
positve rate (TPR) and true negative rate (TNR).

(%) MaxGM TPR TNR
ECO-HC 31.4 39.5 0.0
MDNet 34.3 47.2 0.0
TLD 43.1 20.8 89.5
LCT 39.6 29.2 53.7
SINT 32.6 42.6 0.0
SiamFC+R 45.4 42.7 48.1
EBT 28.3 32.1 0.0
DaSiam LT 41.5 68.9 0.0
MBMD 54.4 60.9 48.5
SPLT 62.2 49.8 77.6

GlobalTrack 60.3 57.4 63.3

proaches ATOM and SiamRPN++, our approach achieves
an absolute gain of 2.2% and 3.6% in precision score, and
0.7% and 2.5% in success score, respectively. The tracking
results demonstrate the advantage of global instance search
in long-term tracking.

TLP The dataset consists of 50 long videos with an aver-
age length of 13529 frames, which is much longer than all
other tracking datasets. The results of the trackers are shown
in Table 4. Our approach GlobalTrack outperforms all other
trackers, including the latest long-term tracker SPLT, by a
very large margin (∼ 11.1% absolute gain in SR0.5), verify-
ing the significant advantage of our approach over all exist-
ing algorithms in tracking very long videos.

TrackingNet The test set of TrackingNet consists of 511
videos collected from the YouTube website. The evaluation
results of the trackers are shown in Table 5. SiamRPN++
and ATOM achieve impressive success scores of 73.3% and
70.3%, respectively, while our approach achieves a success
score of 70.4%, which is comparable with the best trackers.
The tracking results show the generalization ability of our
approach on large test data.

OxUvA OxUvA is a long-term tracking benchmark,
where its development and test sets consist of 200 and 166
videos, respectively. The average video length of OxUvA is
4260 frames, which is much longer than most other datasets.
The protocol of OxUvA requires the approach to submit
not only the estimated bounding boxes, but also the pre-
diction of target absences in all frames. To generate the
presence/absence prediction, we simply threshold the top-
1 scores of QG-RCNN, where the frames with top-1 scores
exceed τ = 0.84 are considered target presence, while those
with top-1 scores below the threshold are considered target
absence. The evaluation results of the trackers on the test
and development sets of OxUvA are shown in Table 6 and
Table 7, respectively. Compared to the reported best tracker
SiamFC-R, our approach achieves an absolute gain of 14.9%
and 24.2% on the test and development sets of OxUvA in
terms of MaxGM (maximum geometric mean of TPR and
TNR), respectively. The results demonstrate the strong per-

Table 7: State-of-the-art comparison on the development set
of OxUvA in terms of maximum geometric mean (MaxGM),
true positve rate (TPR) and true negative rate (TNR).

(%) MaxGM TPR TNR
ECO-HC 26.6 28.3 0.0
MDNet 32.4 42.1 0.0
TLD 36.6 14.1 94.9
LCT 31.7 22.7 43.2
SINT 30.3 26.8 0.0
SiamFC+R 39.7 35.4 43.8
GlobalTrack 63.9 55.8 73.2

formance of our approach in long-term tracking scenarios.

Conclusions and Future Works

In this work, we propose a pure global instance search based
tracker that imposes no assumption or constraint on tempo-
ral consistency. Therefore, its performance in a frame is not
affected by previous tracking failures, which makes it ideal
for long-term tracking. The method is developed based on
two-stage object detectors, and it is composed of two com-
ponents: a query-guided region proposal network for gener-
ating query-specific instance candidates, and a query-guided
region convolutional neural network for classifying these
candidates and generating the final predictions. Experiments
on four large-scale tracking benchmarks verify the strong
performance of the proposed approach.
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