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Abstract

Recently, graph convolutional networks have achieved re-
markable performance for skeleton-based action recognition.
In this work, we identify a problem posed by the GCNs for
skeleton-based action recognition, namely part-level action
modeling. To address this problem, a novel Part-Level Graph
Convolutional Network (PL-GCN) is proposed to capture
part-level information of skeletons. Different from previous
methods, the partition of body parts is learnable rather than
manually defined. We propose two part-level blocks, namely
Part Relation block (PR block) and Part Attention block (PA
block), which are achieved by two differentiable operations,
namely graph pooling operation and graph unpooling opera-
tion. The PR block aims at learning high-level relations be-
tween body parts while the PA block aims at highlighting
the important body parts in the action. Integrating the orig-
inal GCN with the two blocks, the PL-GCN can learn both
part-level and joint-level information of the action. Extensive
experiments on two benchmark datasets show the state-of-
the-art performance on skeleton-based action recognition and
demonstrate the effectiveness of the proposed method.

Introduction

Action recognition is a fundamental problem in computer vi-
sion with many applications (Poppe 2010). Due to the devel-
opment of depth sensors and pose estimation (Shotton et al.
2011), skeleton-based action recognition has drawn much at-
tention recently. Considering graph convolutional networks
have achieved state-of-the-art performance in many tasks
(Kipf and Welling 2016b; Schlichtkrull et al. 2018), several
recent works (Yan, Xiong, and Lin 2018; Li et al. 2018b)
propose to employ the GCNs to automatically learn the
spatial-temporal patterns of skeletons.

Nevertheless, there are some challenges existing in these
GCN-based methods. In this work, we mainly focus on one
of these challenges, dubbed as part-level action modeling.
This issue has not been well considered before and has no-
tably limited the performance. Let’s imagine some actions,
such as running and waving. Most of these actions are per-
formed by the co-movement of body parts, e.g., arms and
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Figure 1: Illustration of our main idea. The PR block aims
at capturing part-level relations. Besides, the PA block aims
at highlighting important body parts. The partition of body
parts is learned in a data-driven way.

legs. Actually, in many cases, body parts can be considered
as the smallest unit of action execution, which means these
actions can be identified only by the movement of body
parts. However, GCN only propagates information across
the edges, even we can stack many layers to make the joints
of different body parts inter-aware, it’s hard to automatically
learn such a high-level structure from data by GCN itself.

Recently, Thakkar et al. (Thakkar and Narayanan 2018)
propose a part-based graph convolutional network that man-
ually divides the graph into several subgraphs with shared
nodes. They first employ graph convolution operation within
the subgraphs of body parts, and then propagate information
between subgraphs via the shared nodes. Although they in-
troduce the concept of body parts into graph convolutional
networks, they still face the above problem because they lack
the process of aggregating information from body joints to
body parts. Moreover, different actions may have different
definition of body parts (e.g., hands for clapping and arms
for waving), it may be sub-optimal for action recognition to
manually partition body parts.

In light of these observations, we propose a novel Part-
Level Graph Convolutional Network (PL-GCN). Our main
target is to automatically aggregate body joints into body
parts for capturing part-level information of actions. Thus,
a differentiable graph pooling operation is devised to ensure
the flexibility of this process, such that the body parts can
be learned in a data-driven way. Besides, the connectivity
of body parts can also be learned in this process, making it
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possible to capture relations between body parts. However,
since the graph of body joints is pooled into the one of body
parts, the joint-level information may be missing. For some
fine-grained actions, e.g., reading and writing, it’s necessary
to additionally capture relations between body joints. To pre-
serve the joint-level information of actions, we propose to
keep the joint-level graph and regard the part-level graph as
a parallel structure. We thus develop the graph unpooling op-
eration, which can bridge the two level graphs, making our
model be able to capture rich information of actions.

Based on the graph pooling and unpooling operation, we
propose two blocks, namely Part Relation block (PR block)
and Part Attention block (PA block) for modeling two prop-
erties of body parts. Specifically, the PR block aims at cap-
turing relations between body parts. Therefore, a graph con-
volutional layer is employed after the graph pooling oper-
ation. Then the information of part-level relations is dis-
tributed back by the graph unpooling operation in an intra-
part way, which is shown in Fig.1. As for PA part, it focuses
on the importance of each body part. For fine-grained ac-
tions, such as reading and writing, which are performed by
specific body parts, it is important to focus on the salient
body parts for better identifying these actions. Thereupon,
the graph unpooling operation of PA block is performed in
a global way that allows the vertices of the joint-level graph
to select important body parts as shown in Fig.1.

Integrating the original GCN with the two blocks, the
PL-GCN can capture both joint-level and part-level infor-
mation of actions. Our method outperforms the state-of-
the-art methods on NTU RGB+D (Shahroudy et al. 2016)
and SYSU (Hu et al. 2015). 1) We propose an effective
graph pooling operation that can aggregate body joints into
body parts and simultaneously learn the connectivity of body
parts. 2) We propose two blocks, namely Part Relation block
(PR block) and Part Attention block (PA block) for capturing
part-level information of actions. Based on the two blocks,
we present a Part-Level Graph Convolutional Network (PL-
GCN) for skeleton-based action recognition. 3) The exper-
imental results show that inserting the two blocks can con-
sistently boost the performance of action recognition, and
our PL-GCN achieves state-of-the-art performance on two
benchmark datasets.

Related Work
Graph Convolutional Networks. GCNs can be classified
into spatial domain methods and spectral domain methods
(Bronstein et al. 2017). The spatial domain methods per-
form the convolution operation on graph vertices and their
neighbors. Niepert et al. (Niepert, Ahmed, and Kutzkov
2016) propose a framework for performing convolution on
arbitrary graphs by introducing graph labeling and nodes
partition. Different from the spatial domain methods, the
spectral domain methods utilize eigenvalues and eigenvec-
tors of Laplacian matrix. The first formulation which ex-
tends CNN to graph is proposed by Bruna et al. (Bruna et
al. 2014). This work is extended by Henaff et al. (Henaff,
Bruna, and LeCun 2015) using frequency smoothing for spa-
tial localization. Defferrard et al. (Defferrard, Bresson, and
Vandergheynst 2016) use Chebyshev polynomials to reduce

the computational cost of eigen decomposition. Kipf et al.
(Kipf and Welling 2016a) propose to simplify the ChebNets
(Defferrard, Bresson, and Vandergheynst 2016) by repeat-
edly performing one-hop graph convolution. Despite the im-
pressive performance, these methods may be insufficient to
capture high-level information of the graph due to the afore-
mentioned problem.

Hierarchical Graph Representation. There are several
recent works focusing on constructing hierarchical struc-
tures for the graph. Bruna et al. (Bruna et al. 2014) propose
to reduce the sizes of nodes via multi-resolution clustering
on graphs. Defferrard et al. (Defferrard, Bresson, and Van-
dergheynst 2016) use the binary tree for indexing nodes to
simulate the pooling operation of 1D signals. However, these
methods are performed in a two-stage fashion, which may be
sub-optimal for learning on graphs. To meet the requirement
of end-to-end learning, Ying et al. (Ying et al. 2018) use an
assignment matrix to achieve pooling operation on the graph
by assigning nodes to clusters. In addition, they learn a new
coarsened adjacency matrix for the next layer.

Our proposed blocks are also hierarchical structures.
Specifically, we propose a novel graph pooling operation to
aggregate body joints into meaningful body parts. Moreover,
we further propose the graph unpooling operations for dis-
tributing the part-level information to the original graph and
preserving the low-level relations between body joints.

Skeleton-based Action Recognition. Recent advances in
deep learning have made significant progress in this field.
Various works use Recurrent Neural Networks (RNNs) (Du,
Fu, and Wang 2016; Wang and Wang 2017; Zhang et al.
2017) and Convolutional Neural Networks (CNNs) (Du, Fu,
and Wang 2015; Ke et al. 2017) to model spatial-temporal
patterns of the skeleton sequence.

Inspired by the physical structure of human body, e.g.,
body joints and body parts, some hierarchical methods
(Du, Wang, and Wang 2015; Shahroudy et al. 2016) intro-
duce the hierarchical structures into RNNs or CNNs for ac-
tion recognition. However, the RNNs and CNNs may be not
enough to handle the graph-shaped topology of skeleton.
Naturally, the graph-based methods are introduced into
skeleton-based action recognition. Yan et al. (Yan, Xiong,
and Lin 2018) propose to treat the skeleton sequence as a
spatial-temporal graph. Li et al. (Li et al. 2018b) design the
graph convolutional filters which are simultaneously per-
formed on spatial and temporal domains. Thakkar et al.
(Thakkar and Narayanan 2018) propose a part-based graph
convolutional network, which divides the graph into several
subgraphs with shared nodes. However, this method needs
to manually define body parts and still lacks the ability of
modeling part-level information of actions.

Our method is based on GCNs. To the best of our knowl-
edge, we are probably the first to explicitly model part-level
information of actions based on GCNs for skeleton-based
action recognition. Besides, unlike the above methods, it is
unnecessary for our method to manually define body parts.

Proposed Method
In this section, we first briefly introduce some preliminar-
ies. Then we outline two important operations on graph,
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Figure 2: A simplified example for representing the process
of learning P T . The green arrow and black arrow denote the
forward process and the backward process respectively. The
color depth of backward arrows represents the magnitude
of gradient. The softmax operation enforces the elements
of rows to be non-negative. Meanwhile, the orthogonal con-
straint is applied to the matrix after L2-normalization. Under
the joint effect of softmax, L2-normalization and orthogonal
constraint, the matrices in sign 1 would approximate to those
in sign 3. (Best viewed in color)

i.e., graph pooling operation and graph unpooling operation.
The graph pooling operation is for automatically aggregat-
ing body joints into body parts and the graph unpooling
operation is exactly the opposite. Based on the two opera-
tions, we describe the proposed two blocks, i.e., Part Rela-
tion block and Part Attention block. Finally, we introduce
the Part-Level Graph Convolutional Network (PL-GCN).

Preliminaries

Notations. Let G = {V, E} denote an undirected graph of
skeleton, V is the set of body joints with |V| = N , and E
is the set of edges. Let H ∈ R

N×F denote the features of
joints with F referring to the number of channels. Let A ∈
R

N×N denote the adjacency matrix, whose element aij is
the weight assigned to the edge (i, j). We set aij = 1 if
joint i and j are connected and aij = 0 otherwise. Let D ∈
R

N×N denote the degree matrix defined as dii =
∑

j aij .
Graph convolution. In this paper, we adopt the simi-

lar implementation of graph convolution as in (Kipf and
Welling 2016a), which is formulated as:

H ′ = D̃− 1
2 ÃD̃− 1

2HW (1)

where W ∈ R
F×F ′

is the weight matrix, H ′ ∈ R
N×F ′

is
the feature after convolution. Ã = A+IN and D̃ ∈ R

N×N

is the degree matrix. The D̃− 1
2 ÃD̃− 1

2 can be viewed as a
symmetric normalization. Different from (Yan, Xiong, and
Lin 2018), we employ the distance partitioning, which is a
more general way to achieve graph convolution operation.

Graph Pooling Operation

The graph pooling operation aims to aggregate the features
of joints H into the features of body parts Hp ∈ R

Np×F ,
where Np denotes the number of body parts. However, dif-
ferent from the pooling operation in CNN, the graph pooling
operation has to consider the geometrical structure of graph.

Here, we regard the graph pooling operation as a process
of matrix multiplication. But what matrix is suitable for
graph pooling? We argue that it should be able to preserve
joint-level information of the skeleton, such that we can cap-
ture information of actions as much as possible. Moreover,
because of the requirement of capturing part-level relations,
it ought to automatically learn the connectivity of body parts
for down-stream GCN layers. We propose the following for-
mulation to represent a graph:

T =
n∑

i,j=1

‖hi − hj‖2aij = tr(HT (D −A)H) (2)

where T is a descriptor of the graph, hi ∈ R
F is the i-th

row of H . This formulation is widely used in manifold em-
bedding (Belkin and Niyogi 2002) which can represent the
local geometrical relations of the graph. Since the features
are fed to the Batch Normalization (BN) layer before graph
pooling, we remove the constraint for normalizing scale.

As stated in (Du et al. 2018), the pooling operation is simi-
lar to dimensionality reduction such as Principal Component
Analysis (PCA). Suppose ST ∈ R

N×Np is a matrix whose
columns are the principal components of the feature H . It is
expected that the reconstruction feature Ĥ = STSH can
keep the local geometrical relationships, i.e., keep the de-
scriptor T unchanged, as shown in Eq.(3):

T = tr(HT (D −A)H) ≈ tr(ĤT (D −A)Ĥ) (3)

If we substitute Ĥ with STSH , we have: (some steps are
omitted, refer to supplemental material for more details)

T = tr(HTSTS(D −A)STSH)

= tr((PH)T (D̄ − PAP T )(PH))

= tr(HT
p (D̄ − Â)Hp)

(4)

where P ∈ R
Np×N is a rectangular matrix whose rows are

mutually orthogonal, D̄ ∈ R
Np×Np is a diagonal matrix

and Â ∈ R
Np×Np is a symmetric matrix. It is easy to see

that the D̄ and Â have the similar characteristics with the
degree matrix D and the adjacency matrix A. Moreover, the
descriptor T is just slightly changed, indicating this opera-
tion can preserve information of the graph. Consequently, it
is reasonable that the graph pooling can be viewed as the
multiplication of P and H , and the matrix Â = PAP T

could demonstrate the connectivity of body parts.
Learning matrix for graph pooling. For the matrix P ,

we can view it as a weighted assignment matrix, which ag-
gregates body joints into body parts of size Np. The element
pij represents the proportion on how much of the j-th body
joint belongs to the i-th body part. Base on this observation,
we propose to generate it as:

P T = norm(softmax(HWf ), 2) (5)
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where Wf ∈ R
F×Np , the softmax operation is performed

along rows, and the L2-normalization is performed along
columns. Besides, we impose an orthogonal constraint on P ,
i.e., PP T = I . Under the joint effect of the function f(·, ·)
and the orthogonal constraint, the matrix P would approx-
imate to the one whose rows are weighted one-hot vectors,
as shown in Fig.2. In this way, the graph pooling operation
automatically divides the original graph into non-overlapped
subgraphs, which meet the definition of body parts. For the
sequence of skeletons, we learn different matrix P for dif-
ferent frames to represent the uniqueness of each frame.

Graph Unpooling Operation

After graph pooling, the graph of body joints is coarsened
to a graph of body parts. To preserve joint-level informa-
tion of actions, we argue that it is necessary to adopt the
graph unpooling operation. The graph unpooling operation
is for distributing the high-level features of body parts back
to the original graph. In other words, it yields aligned fea-
tures H̃ ∈ R

N×F ′
with regard to the features of body joints.

There are mainly two benefits of using the graph un-
pooling operation. (i) Preserving joint-level information.
The graph unpooling operation can reconstruct the joint-
level graph by the part-level information, which enables our
model to be compatible with the original joint-level graph
and thus preserves the joint-level information. (ii) Temporal
alignment. For the sequence of skeletons, different frames
have different matrices for graph pooling, which means that
the pooled graph is misaligned along the temporal dimen-
sion. Thus, we need the graph unpooling operation for fea-
ture alignment. Here, two different graph unpooling oper-
ations are devised for the proposed two blocks, which are
introduced in the following sections.

Part Relation Block

Our proposed Part Relation block (PR block) is inspired by
the hierarchical structures in CNNs which can model high-
level information of grid-shaped data. To obtain the part-
level representations Hrp, the graph is first forwarded to
the proposed graph pooling layer. We denote the matrix for
graph pooling of PR block as Pr. After graph pooling, we
employ a graph convolution operation with the learned ad-
jacency matrix Â for reasoning high-level relations between
body parts, which can be formulated as:

Hr = D̂− 1
2 ÂD̂− 1

2HrpW
r
c (6)

where Hr is the updated feature, and W r
c is the weight ma-

trix. Given the updated feature Hr, a corresponding graph
unpooling operation is utilized to project the features of part-
level relations back to the joint-level graph:

H̃r = QHr, Q = g(H,Wg) (7)

where g(·, ·) is the function for generating Q ∈ R
N×Np ,

and Wg is the corresponding weight matrix. For PR block,
we find that the matrix P T

r is enough to handle this task.
Discussion: The overall pipeline can be formulated as:

H̃r = P T
r (D̂− 1

2PrAP T
r D̂− 1

2 )(PrH)W r
c (8)

Graph Convolution

Nodes of body parts

Pooling Unpooling

Sum

Align

Figure 3: The framework of PA block. The graph pooling
operation aggregates body joints into body parts, and the
feature after graph convolution is utilized as a guidance for
aligning the nodes of body parts to the joint-level graph.

if we regard the matrices before the matrix H as a matrix Ȧ,
it is interesting to find that this matrix is also a symmetric
matrix, and thus the above formulation can also be viewed
as a graph convolution operation for the undirected graph.

However, the matrix Ȧ is un-normalized, which means
the scale of H will be changed. In order to avoid numerical
instability, we reform Eq.(8) as:

H̃r = D̈− 1
2 (P T

r PrAP T
r Pr)D̈

− 1
2HW r

c (9)

where D̈ is the corresponding degree matrix. Since the ma-
jor role of graph convolution is relation reasoning rather than
normalization, it is reasonable to remove the matrix D̂.

Part Attention Block

The framework of Part Attention block (PA block) is shown
in Fig.3. Here, we keep using the proposed graph pooling
operation, and we denote the matrix of graph pooling as
Pa ∈ R

Na×N . As stated above, the PA block aims to fo-
cus on the important body parts for better identifying ac-
tions, especially the fine-grained ones. To attend to salient
body parts, an attention-based graph unpooling operation
is developed. Formally, the graph unpooling operation can
be viewed as an alignment operation. A good way for fea-
ture alignment would be to choose features that need to be
aligned. Here, we utilize the softmax operation for graph un-
pooling operation because of its good capability of feature
selection. The corresponding matrix M ∈ R

N×Na can be
generated as:

M = softmax(HmWm) (10)

where Hm ∈ R
N×F ′

is the feature in the original space,
Wm ∈ R

F ′×Na is the parameters. The softmax operation is
implemented in a row-wise fashion. Taking account of the
topological structure of the graph, we set the matrix Hm as:

Hm = D̃− 1
2 ÃD̃− 1

2HW a
c (11)

where W g
c ∈ R

F×F ′
is the trainable parameters.

Discussion: Since the graph unpooling operation can be
viewed as a process of feature selection guided by the feature
Hm, it is reasonable that the unpooled features are comple-
mentary with the feature Hm. So we add the feature Hm to
the unpooled features. The pipeline is as follows:

H̃a = Hm +MPaHW a
c (12)
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However, this formulation is numerical instable. We intro-
duce an additional matrix to address this problem:

H̃a = Hm +MD−1
a PaHW a

c (13)

where the matrix Da ∈ R
Na×Na is similar to the degree

matrix, whose element da(ii) =
∑

j pa(ij).
We can find that both of the matrices M and D−1

a Pa are
generated from the input feature of body joints H , and the
multiplication of M and D−1

a Pa is the interaction between
body joints. The matrix MD−1

a Pa can be also viewed as
an asymmetrical adjacency matrix, which corresponds to a
densely connected graph. Consequently, the PA block cap-
tures joint-level relations and part-level information, i.e., the
importance of body parts, which makes it effective in iden-
tifying actions, especially the fine-grained ones.

Part-Level GCN

The proposed PR block and PA block can be easily plugged
into the existing GCN architectures due to their residual na-
ture. Here, we present a novel network, namely Part-Level
Graph Convolutional Network (PL-GCN), which integrates
the two blocks. The main block of PL-GCN is shown in
Fig.4(a). After several blocks, a global average pooling layer
is employed and the final output is fed to a softmax layer to
get the prediction ŷ. More details about the network are pre-
sented in the supplementary material.

The total loss is formulated as follows:

L =−
C∑

c=1

yclogŷc + λr

S∑
s=1

F((P T
rsPrs ◦ (1− I))

+ λa

S∑
s=1

F((P T
asPas) ◦ (1− I)) + λω‖W ‖

(14)

where C denotes the number of classes, and S denotes the
number of layers. 1 ∈ R

Nb×Nb and I ∈ R
Nb×Nb are

a matrix of all ones and an identity matrix respectively,
◦ is element-wise multiplication. F(·) is the operation of
quadratic sum of elements. λr, λa and λω are the coeffi-
cients for orthogonal loss of the PR block, orthogonal loss
of the PA block and weight decay, respectively.

Experiments

Datasets

We evaluate our method on two challenging datasets,
namely NTU RGB+D (Shahroudy et al. 2016) and SYSU
3D HOI (SYSU) (Hu et al. 2015).

NTU RGB+D. This dataset consists of 56880 actions
with 60 classes. The benchmark evaluations include Cross-
Subject (CS) and Cross-View (CV). In the CS evaluation,
training samples come from one subset of actors and net-
works are evaluated on samples from remaining actors. In
the CV evaluation, samples captured from cameras 2 and 3
are utilized for training, while samples from camera 1 are
employed for testing.

SYSU. This dataset contains 12 actions performed by 40
subjects. We follow the protocols proposed by (Hu et al.
2015) to evaluate the performance. For setting 1, for each

PA block

T GCN

PR block

T GCN

(a)

PA block

T GCN

(b)

S GCN

T GCN

PR block

T GCN

(c)

sum sum sum

Figure 4: The overview of different variants of the block. S-
GCN means spatial GCN and T-GCN means temporal GCN.
(a) The used block in PL-GCN, which contains a PR block
and a PA block. (b) A block contains a PR block and a
spatial-temporal GCN. (c) A block only contains a PA block.

activity class, half of the samples are used for training and
the rest for testing. For setting 2, half of the subjects are used
for training and the rest for testing. For each setting, we em-
ploy the 30-fold cross-subject validation.

Implementation Details

The proposed PL-GCN is the stack of nine blocks. Follow-
ing (Thakkar and Narayanan 2018), we concatenate joint lo-
cations Jloc, relative coordinates DR and temporal displace-
ment DT as the input to improve the performance. We set
the number of body parts as 6 for the two blocks. The pro-
posed model is implemented by Pytorch (Paszke et al. 2017).
We use SGD to optimize the model with a mini-batch size
of 64. The learning rates for both datasets are 0.1 initially,
multiplied by 0.1 after 20 epochs and 50 epochs. The train-
ing procedure stops at 80 epochs. Other details are provided
in the supplemental material.

Comparison with The State-of-the-art

We evaluate our method by comparing it with the state-
of-the-art approaches. Tab.1 and Tab.2 demonstrate the re-
sults on two datasets. For fair comparisons, we label the
two-stream methods which take the joint locations Jloc and
temporal displacement DT as input. We first compare our
method with a traditional method, i.e., Lie Group (Vemula-
palli, Arrate, and Chellappa 2014) that is based on hand-
crafted features. As we can see, our method significantly
outperforms this approach, which shows the superiority of
deep learning methods over hand-crafted approaches. Then
our method is compared with recent deep learning methods.
We can see that our method outperforms all the state-of-
the-art methods on CS setting. Even our method utilizes the
same features as those two-stream methods (Si et al. 2018;
Shi et al. 2019), we also achieve comparable performance
with the newest method. Moreover, our method significantly
outperforms the baseline model ST-GCN (Yan, Xiong, and
Lin 2018) by 7.7% and 6.7% using CS and CV protocols on
the NTU RGB+D, and improves the accuracy by 3.0% and
2.3% using setting-1 and setting-2 protocols on the SYSU.
When only using the joint locations Jloc, the PL-GCN still
outperforms the ST-GCN by 2.5% and 2.2% using CS and
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Table 1: Comparison on NTU RGB+D dataset (%). T and
C represent the two-stream methods and the methods which
take the concatenation of signals as input.

Methods CS CV
Lie Group (Vemulapalli, Arrate, and Chellappa 2014) 50.1 82.8
HBRNN (Du, Wang, and Wang 2015) 59.1 64.0
Part-aware LSTM (Shahroudy et al. 2016) 62.9 70.3
Geo Features (Zhang, Liu, and Xiao 2017) 70.3 82.4
Two-Stream CNN (T) (Li et al. 2017) 83.2 89.3
Deep STGCK (Li et al. 2018b) 74.9 86.3
ST-GCN (Yan, Xiong, and Lin 2018) 81.5 88.3
SR-TSL (T) (Si et al. 2018) 84.8 92.4
HCN (T) (Li et al. 2018a) 86.5 91.1
PB-GCN (C) (Thakkar and Narayanan 2018) 87.5 93.2
2s-AGCN (T) (Shi et al. 2019) 88.5 95.1

PL-GCN 84.0 90.5
PL-GCN + Jloc‖DT 88.6 94.2
PL-GCN (C) 89.2 95.0

Table 2: Comparison on SYSU dataset. (%)
Methods Setting-1 Setting-2
Dynamic Skeleton (Hu et al. 2015) 75.5 76.9
LAFF (SKL) (Hu et al. 2016) 54.2 -
ST-LSTM (Liu et al. 2016) 76.5 -
VA-LSTM (Zhang et al. 2017) 76.9 77.5
DPRL (Tang et al. 2018) 76.9 -
SR-TSL (Si et al. 2018) 80.7 81.9
PL-GCN 83.7 84.2

CV protocols respectively, which means our method indeed
can capture richer information of skeletons to improve the
action recognition accuracy.

Discussion

To validate the effectiveness of the proposed blocks as well
as the PL-GCN, extensive experiments are conducted on the
NTU RGB+D dataset. More experimental results such as the
number of parameters, FLOPs of the proposed blocks are
reported in the supplemental material.

(a) Comparison with variants of PR block. The results
of different variants of PR block are shown in Tab.3(a).
For learning both part-level and joint-level relations, the PR
block should be used with a spatial-temporal graph convo-
lutional network, denoted as ST-GCN + PR block, which is
shown in Fig.4(b). As we can see, the ST-GCN + PR block
significantly outperforms the ST-GCN (distance partition-
ing) (Yan, Xiong, and Lin 2018) by 10.1% and 8.3%. Even
the ST-GCN takes the same input as ours, the ST-GCN +
PR block still surpasses it by 4.1% and 3.6%, demonstrating
that the PR block can capture relations which cannot be eas-
ily captured by regular graph convolution layers. Then, we
remove the ST-GCN and keep the PR block, denoted as PR
block. After the removal of ST-GCN, the performance drops,
indicating that joint-level information is also important for
action recognition. Unless stated, we utilize the ST-GCN +
PR block in the following experiments of PR block.

To evaluate the effectiveness of PR block, two more ques-
tions must be considered. The first question: Dose the

Table 3: Ablation study on NTU RGB+D dataset (%). (a)
Evaluation of variants of PR block. (b) Evaluation of vari-
ants of PA block. (c) Evaluate the effectiveness of graph un-
pooling operation.

Methods CS CV
ST-GCN Distance Partition 78.0 85.1
ST-GCN Distance + Jloc‖DR‖DT 84.0 89.8

(a)

ST-GCN + PR block 88.1 93.4
PR block 84.2 90.2
Double ST-GCN 86.5 91.8
Learnable Matrix 84.9 91.0
Pooling Matrix w/o Constraint 85.0 91.2
Fixed Pooling Matrix 87.1 92.2

(b)

PA block 88.3 93.5
PA block w/o Normalization 87.2 92.0
Orthogonal Unpooling 87.0 91.0

(c) Hierarchical Pooling 86.7 92.3
Hierarchical Pooling (Misalignment) 84.7 90.3

effectiveness is from the methodology or the increase of
parameters? The second question: Does the improvement
comes from the learnable property or the pooling property?

To answer the first question, we replace the PR block in
ST-GCN + PR block with a ST-GCN, denoted as Double
ST-GCN. The number of parameters of Double ST-GCN is
almost the same as the one of ST-GCN + PR block. We can
see that the accuracy of Double ST-GCN drops by 1.6% in
CS and 1.6% in CV, indicating that the effectiveness of PR
block indeed comes from part-level information learning.

As for the second question, three experiments are con-
ducted as shown in Tab.3(a). In the first experiment, we re-
place the matrix P TP with a learnable matrix M , indi-
cating the PR block is learnable but not in a pooling way,
denoted as Learnable Matrix. In the second experiment,
we learn the pooling matrix without orthogonal constraint,
which means the learned body parts may be overlapped,
denoted as Pooling Matrix w/o Constraint. In the third ex-
periment, we substitute the pooling matrix P for a fixed
matrix, which aggregates body joints into two arms, upper
torso, lower torso and two legs, denoted as Fixed Pooling
Matrix. We find that the performance of Learnable Matrix
drops by 3.2% and 2.4%, indicating the importance of pool-
ing property. However, the performance of Pooling Matrix
w/o Constraint presents a fact that an effective graph pooling
operation should be based on an orthogonal pooling matrix.
Besides, even the fixed matrix is consistent with common
sense, the performance of Fixed Pooling Matrix drops obvi-
ously, demonstrating the importance of learnable property.

(b) Comparison with variants of PA block. Similarly,
we also evaluate different variants of PA block, and the re-
sults are shown in Tab.3(b). The basic model is shown in
Fig.4(c), denoted as PA block.

In the first experiment, we remove the normalization ma-
trix Db, denoted as PA block w/o Normalization. We observe
that the performance of PA block w/o Normalization drops
by 0.9% in CS and 1.5% in CV. Besides, in our experiment,
we find that the model is prone to collapse after removing
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Figure 5: Visualize the matrices learned by two blocks. (a)
Adjacency matrix learned by PR block. (b) Matrix Pa for
graph pooling of PA block. (c) Matrix M for graph unpool-
ing of PA block.

Db, indicating the importance of normalization. Besides, we
also design a combination of graph pooling and unpooling
operation for the PA block, namely Orthogonal Unpooling.
The Orthogonal Unpooling is the same as what used in the
PR block. Since the Orthogonal Unpooling neither captures
part-level relationships nor focuses on important body parts,
the accuracy drops evidently by 1.3% in CS and 2.5% in CV.

(c) Is the graph unpooling operation necessary? The
role of graph unpooling operation in two blocks is well
demonstrated in the above experiments. To verify the role
of graph unpooling operation in preserving joint-level infor-
mation and temporal alignment, two extensive experiments
are conducted in Tab.3(c).

Both of the experiments are based on a network with suc-
cessive graph pooling operation and without graph unpool-
ing. In the first experiment, we employ the same pooling ma-
trix for all frames to avoid temporal misalignment, denoted
as Hierarchical Pooling. By contrast, we learn different ma-
trices for different frames in the second experiment, denoted
as Hierarchical Pooling (Misalignment). Compared with the
second experiment, the Hierarchical Pooling achieves 2.0%
gain in CS and 2.0% gain in CV, indicating the importance
of temporal alignment, which is achieved by the graph un-
pooling operation. Moreover, we find that the Hierarchical
Pooling is superior to the ST-GCN but still inferior to the ST-
GCN + PR block, indicating that the joint-level information
is important for action recognition, and the graph unpooling
operation makes it possible to capture both part-level and
joint-level information of actions for better performance.

Going Deeper with The Blocks

Visualization. To attain further insights of the two blocks,
we present some visualizations of the PR block and the
PA block. As stated above, we view the pipeline of the
PR block as a process of learning a new adjacency matrix
P TPAP TP . The learned adjacency matrix of the action
of take off a shoe is shown in Fig.5(a). As we can see, some
joints are connected with other joints breaking the constraint
of human body structure. For example, the node of the left
hand is connected with the node of the right foot, which is
reasonable for the action of take off a shoe.

Figure 6: Class-specific gains on NTU RGB+D. The base-
line model is ST-GCN with concatenation of three features.

Then we visualize the learned matrices of the PA block.
As we can see, the graph pooling operation divides the orig-
inal graph into six meaningful body parts. For example, the
fifth body part contains most of the joints of two legs. More-
over, as shown in Fig.5(c), the learned matrix for graph un-
pooling mainly focuses on the fifth body part, which is quite
reasonable for the action of one foot jumping.

Class-specific improvement. To deeper investigate the
effectiveness of the two blocks, class-specific accuracy gains
are computed. The baseline method is ST-GCN with the con-
catenation of three signals. We list the top-5 actions with the
gains. We can see that the actions such as cross hands in
front, which need co-operation of body parts have evident
gains. Besides, the fine-grained actions such as reading and
writing also have gains, demonstrating the effectiveness in
modeling both part related actions and fine-grained actions.

Conclusion

In this paper, we have proposed a novel Part-Level Graph
Convolutional Network (PL-GCN) for skeleton-based action
recognition. The construction of PL-GCN is mainly based
on two blocks, i.e., Part Relation block (PR block) and Part
Attention block (PA block). The PR block aims at learning
part-level relations while the PA block aims at highlighting
important body parts. We have evaluated our PL-GCN on
two benchmark datasets and achieved state-of-the-art perfor-
mance. In the future, we plan to further improve our method
for automatically learning the number of body parts and fo-
cus more on modeling temporal dynamics of actions.
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