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Abstract

Most advances in medical lesion detection network are lim-
ited to subtle modification on the conventional detection net-
work designed for natural images. However, there exists a
vast domain gap between medical images and natural images
where the medical image detection often suffers from several
domain-specific challenges, such as high lesion/background
similarity, dominant tiny lesions, and severe class imbalance.
Is a hand-crafted detection network tailored for natural image
undoubtedly good enough over a discrepant medical lesion
domain? Is there more powerful operations, filters, and sub-
networks that better fit the medical lesion detection problem
to be discovered? In this paper, we introduce a novel Elixir-
Net that includes three components: 1) TruncatedRPN bal-
ances positive and negative data for false positive reduction;
2) Auto-lesion Block is automatically customized for med-
ical images to incorporates relation-aware operations among
region proposals, and leads to more suitable and efficient clas-
sification and localization. 3) Relation transfer module incor-
porates the semantic relationship and transfers the relevant
contextual information with an interpretable graph, thus al-
leviates the problem of lack of annotations for all types of
lesions. Experiments on DeepLesion and Kits19 prove the ef-
fectiveness of ElixirNet, achieving improvement of both sen-
sitivity and precision over FPN with fewer parameters.

Introduction

Lesion detection in medical CT images is an impor-
tant prerequisite for computer-aided detection/diagnosis
(CADe/CADx). Recently, remarkable progress has been
brought to the application of deep learning paradigms, espe-
cially Convolutional Neural Network (CNN) (Krizhevsky,
Sutskever, and Hinton 2012), to CADe/CADx (Yan,
Bagheri, and Summers 2018; Wang et al. 2017; Greenspan,
Van Ginneken, and Summers 2016). Most of the works in
this area directly use the natural image detection pipelines
without adapting to the medical imaging domain. (Shin et
al. 2016) transfers the CNN model with pre-trained Ima-
geNet to medical images detection directly. (Jaeger et al.
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Figure 1: A vast domain gap between medical and natural
images. FPN works well on MSCOCO (a), while it fails on
DeepLesion (b) with the tiny-size lesion, identical nearby re-
gions and overmuch false positive (ground-truth is red box).

2018) fuses RetinaNet detector (Lin et al. 2017b) with the
U-Net (Ronneberger, Fischer, and Brox 2015) architecture
to improve detection performance with full segmentation
supervision. Moreover, (Yan, Bagheri, and Summers 2018)
sends multiple neighbouring slices into the R-FCN (Dai et
al. 2016) to generate feature maps separately, which are
then aggregated for final prediction. Those methods finetune
common detection framework on medical datasets without
designing a special network for medical images. Different
from natural images, only one to three lesions exist in a med-
ical image and look similar to the nearby non-lesions. Also,
lesions are usually tiny-sized and severe class imbalanced,
illustrated in Figure 1. Using the conventional detection net-
work for natural images directly is inefficient and will lead
to a performance drop in those scenarios. Thus, customizing
networks for medical lesion detection is in great need.

Conventional natural images detection pipelines most
consist of three components: feature extractor; region pro-
posal network (RPN) and RCNN head for processing pro-
posals feature. While it is well-known that ImageNet pre-
trained feature extractor (Russakovsky et al. 2015) is ben-
eficial to medical images networks (Tajbakhsh et al.; Shin
et al. 2016; 2016), RPN and RCNN head designed for nat-
ural images are inconsistent for medical images. To main-
tain a sufficiently high recall for proposals in natural im-
ages, uniformly sampling anchors over the whole localiza-
tion in RPN leads to severe false candidates in medical im-
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Figure 2: An overview of ElixirNet. TruncatedRPN is introduced to avoid overmuch false. Auto-lesion Blocks (ALB and
ALBr) are found by differentiable NAS to capture proposals representation and relation E . Relation transfer module encodes
more contextual information and transfers lesion presence embeddings M to enhanced proposal feature by learned relation E .

ages. (Roth et al. 2015) trained classifiers on the aggre-
gation of multiple 2D slices for false positive reduction,
but it has two stages and is not end-to-end. We introduce
TruncatedRPN (TRPN) to adaptively localize the lesion ob-
ject for different input. RCNN heads in (Lin et al. 2017a;
Ren et al. 2015) are too simple to exact discriminate lesion
from the similar nearby non-lesion region. (Liu, Huang, and
others 2018) considers various receptive fields to mimic hu-
man visual systems but its neglect of relational interaction.
Relation Network (Hu et al. 2018) designed an adapted at-
tention head to incorporate relationships from relevant pro-
posals of which performance is limited by a single receptive
field.

Recently neural architecture network search (NAS) has
achieved much success in developing architectures that out-
perform hand-craft architectures on image classification and
semantic segmentation task (Nekrasov et al.; de Moor et
al.; Zoph et al. 2019; 2018; 2018). Different from (Zoph
et al. 2018) on natural object detection that only transfers
searched classification architecture as feature extractor and
suffers from the large cost of GPU hours, we propose a
novel search space for medical images following differen-
tiable NAS (Liu, Simonyan, and Yang 2019), which opti-
mizes architecture parameters based on the gradient descent.
In this paper, we automatically customize an Auto-lesion
block (ALB) as RCNN head substitute, which includes flex-
ible receptive fields to locate the tiny-size lesion, relation
context to identify similar regions and enough complexity to
capture good feature representation.

Current lesion detection methods generally target one par-
ticular disease or lesion. Yet multiple types of lesions may
appear on the same CT slice, e.g. abdomen/liver/kidney are
neighboring types. Multiple correlated findings can help for
better prediction and are crucial to building an automatic
radiological diagnosis and reasoning system. However, it
remains a challenge to develop a universal multi-purpose
CAD framework due to rare annotations for all types of
lesions, capable of detecting multiple disease types seam-
lessly. Compared with finetuning a new multi-type classifier,
we introduce Relation Transfer Module (RTM) to incorpo-
rate the semantic relation learned by ALB and transfers the
relevant contextual information with an interpretable graph
in the end-to-end training. In a word, our ElixirNet consisted
of TruncatedRPN, Auto-lesion block and relation transfer
module can alleviate problems on medical lesion domain

and enable a unified lesion detection network seamlessly.
In our experiments on DeepLesion (Yan et al. 2018a), we

observe consistent gains on the 3 different common feature
extractor with reducing almost one-third of the parameters.
The search is very efficient even for 512 × 512 input and
only takes about 2 days on 4 GTX1080. The sensitivity of
lesion detection with 3 false positives per image has about
2.3% improvement based on FPN. And for multi-type lesion
detection, consistent improvement of sensitivity on all kinds
of lesion can be found.

Related Work

Automated Lesion Detection. The detection of lesions in
images is a key part of diagnosis and is one of the most
labor-intensive for clinicians. Typically, the tasks consist
of the localization and identification of small lesions in
the full image space. Different from common object de-
tection, lesion detection needs to consider 3D context in-
formation while facing more challenging problems about
serve imbalance of categories and tiny-size objects. Re-
cently, great progress has been brought to medical imag-
ing analysis by deep learning methods (Liao et al.; Yan et
al.; Yu et al. 2019; 2018b; 2018). Many conventional meth-
ods which are based on hand-crafted local features have
been replaced by deep neural networks, which typically pro-
duces higher detection accuracy (Greenspan, Van Ginneken,
and Summers 2016). However, most lesion detection (Jaeger
et al.; Wang et al.; Yan, Bagheri, and Summers; Yan et al.
2018; 2017; 2018; 2018a) enhanced by CNN directly extend
existing detection frameworks, which are typically designed
for natural images, to process volumetric CT data. (Liao et
al. 2019) uses small 3D patches of CT data as the input of the
region proposal network (RPN) (Ren et al. 2015). Another
method (Yan, Bagheri, and Summers 2018) sends multiple
neighboring slices into R-FCN (Dai et al. 2016) to gener-
ate feature maps separately, which are then aggregated for
final prediction. These methods do not focus on designing
specific network for medical lesion detection.

Neural Architecture Search Method. Neural Architec-
ture Search (NAS) aims at automatically designing finding
the optimal architecture in a given search space such that the
validation accuracy is maximized on the given task. Con-
ventional architecture search methods can be categorized as
random with weights prediction (Brock et al. 2017), evo-
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Figure 3: The detailed architecture of ALB and ALBr. ALB keeps the same spatial resolution and output channels with input
including flexible dilated convolution to locate tiny-size lesion and Non-local operator to incorporate relation-aware information
among lesions. To deepen network, an inception-like block ALBr is designed for double channels and resolution reduction.

lution (Miikkulainen et al. 2019), and reinforcement learn-
ing (Zoph and Le 2017; Zoph et al. 2018) , which have
achieved highly competitive performance on image classifi-
cation . Only few of them focus on object detection. DetNAS
(Chen et al. 2019) use the one-shot NAS to design a new fea-
ture extractor, while ImageNet pretrained feature extractor
is beneficial to medical image networks. NAS-FPN (Ghiasi,
Lin, and Le 2019) only focuses on feature fusion connection
in the feature extractor and uses RL-based search algorithm.
The search is very time-consuming even though a proxy task
with ResNet-10 backbone. More efficient solutions for NAS
have been recently proposed. Instead of searching over a
discrete set of candidate architectures, (Liu, Simonyan, and
Yang 2019; Liu et al. 2019) relax the search space to be con-
tinuous, so that the architecture can be optimized concerning
its validation set performance by gradient descent. Our work
follows the differentiable NAS formulation and extends it
into the specific medical lesion detection setting.

The Proposed Approach

Our ElixirNet is based on two stage detection pipeline with
feature pyramid extractor. Since lesion detection relies on
3D context information and current detectors are mostly
designed with a three channels input (RGB), we naturally
group the neighboring three slices to 3-channel images and
thus implement current detection backbone with pretrained
weights on ImageNet (Russakovsky et al. 2015). As shown
in Figure 2, we introduce TruncatedRPN to avoid overmuch
false positive prediction by restraining some regions where
lesions are unlikely to exist. Then the output of RoIAlign
is feed into Auto-lesion block (ALB) , which is found by
differentiable NAS according to a novel search space based
on observation of many popular designs and medical images
characteristics. After aggregating information from various
receptive fields and learning a region-to-region undirected
graph G : G =< N , E > in ALB, we further propose a
relation transfer module to encode more contextual infor-
mation and transfer coarse embeddings of lesion exsiting to
enhance proposal feature by learned relation E . In what fol-
lows, we describe the structure of the above mentioned three
modules and explain their implementation in detail.

TruncatedRPN

RPN is basis in two-stage nature image object detection
pipelines, which takes image feature from feature extractor

and outputs a set of rectangular object proposals with ob-
jectness score by sliding-window at each location. And it
supposes a uniform distribution of anchor localization for
all input. This method is inefficient for medical images, as
rare lesion objects exist on the image and many of anchors
are placed in regions where lesion objects are impossible to
arise. In this work, we aims to develop a more efficient and
suitable TruncatedRPN (TRPN) for lesion detection which
can adaptively localize the lesion object for different input.

Denote I as the images feature extracted from the input
image, (i, j) as specific location in I, original RPN can be
formulate as F(I(i, j)|k), k is anchor prior related to lo-
cation (i, j) like scale and aspect ratio settings. Following
this formulation, TRPN introduces a module to predict dis-
tribution of anchor localization p(I(i, j)) and truncates the
localition whose predicted confidence are below predefined
threshold ε, as follows:

TRPN = F([p(I(i, j)) · I(i, j)]p(I(i,j))>ε|k) (1)

We empirically apply 1× 1 convolution with an element-
wise sigmoid function as p. And we set mean of predicted
distribution as ε. This mechanism can filter out half of the
regions and avoid redundant information.

Auto-lesion Block

The proposed Auto-lesion Block (ALB) is a medical data-
friendly block with hybrid receptive fields and kernel size.
The Figure3 shows the detailed architecture of ALB with
keeping the same spatial resolution and output channels with
input, and ALBr with reducing the half of spatial resolution
and increasing double channels. In ALB, dilated convolution
with flexible receptive fields can locate the tiny-size lesion,
and Non-local operator captures relation-aware information
to distinguish lesions with similar no-lesion regions. And
ALBr is a inception-like block, mentioned in (Szegedy et al.
2016), e.g. 3 × 3 convolution is composed in a asymmetric
1× 3 and 3× 1 convolution. It also uses large kernel depth-
wise convolution and average pooling to keep a trade-off
between computational overhead and network complexity.
These two blocks are customized by medical data-oriented
NAS with the same search space and strategy.

Search Space for ALB Assume that ALB is a directed
acyclic graph consisting of B branches, each branch has
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Method Sensitivity IoU (%) mAP Speed #.param
0.5 1 2 3 4 6 8 (%) (img/ms) (M)

3DCE, 3 slices (Yan, Bagheri, and Summers 2018) 56.49 67.65 76.89 80.56 82.76 85.71 87.03 25.6 42 17.2
3DCE, 9 slices (Yan, Bagheri, and Summers 2018) 59.32 70.68 79.09 82.78 84.34 86.77 87.81 27.9 56 19.2
3DCE, 27 slices (Yan, Bagheri, and Summers 2018) 62.48 73.37 80.70 83.61 85.65 87.26 89.09 29.2 114 25.2

FRCNN, 3 slices (Ren et al. 2015) 55.94 66.25 74.69 79.17 79.87 79.87 79.87 27.9 54 33.0
FPN, 3 slices (Lin et al. 2017a) 60.57 70.34 77.65 81.51 83.55 85.67 85.67 31.5 68 41.4

Deformv2, 3 slices (Zhu et al. 2019) 63.16 72.35 81.04 84.47 86.52 87.76 87.76 34.3 74 42.2
ElixirNet, 3 slices 60.43+4.49 69.38+3.13 77.20+2.51 80.52+1.35 82.72+2.85 83.74+3.9 83.74+3.9 30.8+2.9 78 19.9

ElixirNet w FPN, 3 slices 66.39+5.82 75.41+5.07 82.05+4.4 86.63+4.12 87.75+4.2 88.36+2.69 88.36+2.69 35.2+3.7 90 28.4
ElixirNet w Deformv2, 3slices 65.64+2.48 75.84+3.49 83.70+2.66 86.92+2.45 88.91+2.39 91.37+3.61 91.37+3.61 36.3+2.0 102 29.3

Table 1: Comparison with state-of-the-art object detection on DeepLesion. Sensitivity at various FPs per image on the test set
of the official data split of DeepLesion. IoU criteria and 3 slices input (one key slice and two neighbor slices ) are used.

2 inputs from previous branches and outputs 1 tensor fol-
lowing (Liu, Simonyan, and Yang 2019), and initial chan-
nels of each branch is D. Branch b can be specified as a
5-tuple (X1, X2, OP1, OP2, Yb), where X1, X2 ∈ Xb spe-
cific input tensors, OP1, OP2 ∈ OP specific operations to
apply to the corresponding inputs. The output Y concate-
nates with all branches outputs Y = concat(Y1, Y2, ..., Yb)
with B × D channels. In most of the image classification
NAS frameworks (Zoph and Le 2017; Zoph et al. 2018;
Liu, Simonyan, and Yang 2019), similar candidate oper-
ations for OP are considered. These pre-defined opera-
tions sets may be reasonable in the natural image classifi-
cation task, while medical lesion object detection depends
on semantic relation among proposals and flexible receptive
fields. In addition, (Liu, Huang, and others 2018) show the
relationship between the size and eccentricity of receptive
fields can enhance the discriminability and robustness of the
feature representation. Inspired by the above methods, we
consider 9 operators as the set of candidate operations in
OP:
◦ no connection ◦ 3× 3 depthwise-separable conv
◦ skip connection ◦ 5× 5 depthwise-separable conv
◦ 3× 3 average pooling ◦ 3× 3 atrous conv w dilate rate 3
◦ Non-local ◦ 3× 3 atrous conv w dilate rate 5
◦ 1× 3 and 3× 1 depthwise-separable conv
All operations are of stride 1 and the convolved feature

maps are padded to preserve their spatial resolution. We use
the ReLU-Conv-BN order for convolutional operations. Our
search space contains 3× 10−9 structures.

Non-local Operator. The Non-local operator aims to en-
code semantic relation between region proposals which is
relevant to the object detection. We formulate the relation
as a region-to-region undirected graph G : G =< N , E >,
where each node in N corresponds to a region proposal and
each edge ei,j ∈ E encodes relationship between two nodes.
Formally, the input of non-local operator is the proposal fea-
tures X ∈ R

N×D from previous branches. The adjacency
matrix for the undirected graph G with self-loops can be
then calculated by a matrix multiplication as:

E = softmax(φ(X)φ(X)T ), (2)
where φ(.) is non-linear transformation with ReLU acti-

vation. Then we use a layer GCN (Kipf and Welling 2017)
for the propagation of each node in the graph E . A simple
form is Y = σ(Eψ(X)W ), where W and ψ(.) are non-
linear transformation, and σ is active function. In this paper,

we consider a fully-connected layer with ReLU activation
as the non-linear function and output dimension is D

2 . For
the output of this operation, we use another fully-connected
layer g to keep the shape of the input tensor. The final output
of the Non-local operator is g(Y ).

Differentiable Search Strategy The search strategy of
ALB builds on a continuous relaxation of the discrete ar-
chitectures described in (Liu, Simonyan, and Yang 2019).
The branch’s output tensor Yi is a weighted mixture of the
operations with |OP| parallel paths which are connected to
all elements in Xi:

Yi =
∑

Yj∈Xi

∑

OPk∈OP
αk
ijOPk(Yj) (3)

where the weight
{
αk
ij

}
are the architecture param-

eters calculated by applying softmax to |OP|, kis in
{ALB,ALBr}. After the continuous relaxation, the task of
architecture search reduces to learning a set of continuous
variables

{
αk
ij

}
. Therefore they can be optimized efficiently

using stochastic gradient descent (SGD). We randomly split
training data into two disjoint sets, and the loss function
includes cross-entropy about classification and smooth L1
loss about location, calculated on these sets are denoted by
Ltrain and Lval. The optimization alternates between:
1. Update network weights ω by ∇ωLtrain(ω, α)

2. Update architecture weights α by ∇αLval(ω, α)

At the end of search, a discrete architecture is obtained by
replacing each mixed operation OPij with the most likely
operation by argmax: OPij = argmaxOPk∈OPαk

ij .

Relation Transfer Module

To develop a universal multi-purpose CAD framework, we
introduce Relation Transfer Module (RTM) to endow multi-
type lesion detection. Rather than simply finetuning a new
multi-type classifier, we transfer coarse embeddings of le-
sion existing to fine lesion types information and try to prop-
agate semantic embeddings among proposals by learned re-
lation E in ALB.

In some zero/few-shot problems, (Salakhutdinov, Tor-
ralba, and Tenenbaum 2011; Gong et al. 2018) use the classi-
fier’s weights as the high-level semantic embedding or rep-
resentation of category. Thus the collection of the weights
M ∈ R

2×(P+1) of original binary classifier (including the

11096



Method Sensitivity IoBB (%)
0.5 1 2 3 4 6 8

3DCE, 3 slices (Yan, Bagheri, and Summers 2018) 58.43 70.95 80.64 85.12 87.30 90.72 92.37
3DCE, 9 slices (Yan, Bagheri, and Summers 2018) 62.64 74.37 83.29 86.99 89.15 91.61 92.90

3DCE, 27 slices (Yan, Bagheri, and Summers 2018) 64.01 75.69 83.71 87.52 88.25 91.47 92.85
FRCNN, 3 slices (Ren et al. 2015) 57.59 68.46 77.36 81.96 82.43 82.43 82.43

FPN, 3 slices (Lin et al. 2017a) 62.17 72.35 80.29 83.82 86.03 87.68 87.68
Deform, 3 slices (Zhu et al. 2019) 65.09 74.49 83.34 86.84 88.86 89.71 89.71

ElixirNet, 3 slices 63.36+5.77 73.21+4.75 81.38+4.02 85.06+3.10 86.53+4.10 87.50+5.07 87.50+5.07

ElixirNet w FPN, 3 slices 68.67+6.50 77.93+5.58 84.83+4.54 88.62+4.80 90.59+4.56 91.77+4.09 91.77+4.09

ElixirNet w Deformv2, 3slices 67.33+2.24 77.89+3.40 86.00+2.66 90.13+3.29 91.66+2.80 93.55+3.84 93.55+3.84

Table 2: Sensitivity with IoBB overlap criteria at various FPs per image on the test set of the official data split of DeepLesion.

Method Sensitivity IoU (%) mAP (%)0.5 1 2
FPN (Lin et al. 2017a) 53.68 56.71 58.46 21.1

Deformv2 (Zhu et al. 2019) 67.18 68.31 71.21 32.9
ElixirNet w FPN 54.69+1.01 57.93+1.22 61.20+2.74 29.6+8.5

ElixirNet w Deformv2 67.28+0.10 69.02+0.71 80.05+2.4 33.6+0.7

Table 3: Comparison on Kits19 with 3 slices input.

% Lesion Type
BN AB ME LV LU KD ST PV

FPN w finetune (Lin et al. 2017a) - 79.58 71.34 78.05 83.32 - 57.96 72.21
ElixirNet w/o RTM 56.52 84.14 83.41 82.99 87.10 60.70 75.67 80.64

ElixirNet 57.38 85.41 84.62 83.94 88.72 65.51 77.24 83.07

Table 4: Multi-type lesion detection of sensitivity at 3 FPs
per image on the test set. The abbreviations of lesion types
stand for bone, abdomen, mediastinum, liver, lung, kidney,
soft tissue, pelvis and bone, respectively. IoU as overlap
computation criteria is used. “FPN w finetune” and “Elixir-
Net w/o RTM” finetune new multi-type classifier on valida-
tion datasets. “-” means too low recall to evaluate sensitivity.

bias) is regarded as category-wise semantic embeddings, P
is the output dimension of the ALBr. Since our graph G
is a region-to-region graph extracted from Non-local oper-
ator in ALB, we need to find most appropriate mappings
from category-wise semantic embeddings to region-wise
representations of node fi ∈ f (the input of RTM). For
avoiding bias produced by original binary classification, we
use a soft-mapping which compute the mapping weights
γM→xi

∈ Γs as γM→xi
=

exp(sij)∑
j exp(sij)

, where sij is the
classification score for the region i towards category j from
the previous binary classification layer, denoted “FC 2-cls”
in Figure 2. Then the process of graph reasoning can be
solved by matrix multiplication: fE = EΓsMWE , where
WE ∈ R

N×E is a transformation weight matrix and E is the
output dimension of the RTM module. Finally, the enhanced
feature fE is concatenated to the original region features f
to improve both classification and localization of the multi-
type lesion.

Experiments

Datasets and Evaluations. We conduct experiments on
the DeepLesion (Yan et al. 2018a) and Kits19 (Heller et
al. 2019) datasets. DeepLesion is a large-scale dataset on

876,934 axial CT slices (mostly 512 × 512) from 10,594
CT studies of 4,427 unique patients. DeepLesion contains a
variety of lesions (Yan et al. 2018b). However, only 32,120
axial slices have bounding boxes annotation. There are 1–3
lesions in each axial slice, totally 32,735 lesions. We select
30% as validation (4889 lesions) and test (4927 lesions),
while the rest is regarded as the training set (22919 images)
following the official division (Yan, Bagheri, and Summers
2018; Yan et al. 2018a). The lesions in validation and test
sets are all labeled with specific types, and have been cate-
gorized into the 8 subtypes of lung (2394 lesions), abdomen
(2176 lesions), mediastinum (1672 lesions), liver (1284 le-
sions), pelvis (681 lesions), soft tissue (867 lesions), kid-
ney (495 lesions), and bone (247 lesions). The lesions in the
training set are annotated by bounding box but without la-
bels of lesion types. To validate the generalization capabil-
ity of the model, we conduct experiments on Kits19 (Heller
et al. 2019) which is a kidney tumor semantic segmentation
challenge. We random split 80% patients (totally 210 kidney
cancer patients) as our training set (13147 images) and the
left as testing set (3209 images). Since Kits19 is a segmen-
tation dataset, we convert segmentation masks to bounding
boxes for all lesion.

For all the evaluation, we adopt mean Average Precision
(mAP) across IoU 0.5-0.9 as evaluation, which is designed
for natural images detection following (Lin et al. 2017a).
Sensitivity (IoU ≥ 0.5) with different false positives per im-
age is a commonly used metric in medical detection (Yan,
Bagheri, and Summers 2018). Considering the prediction
may still be viewed as a true positive (TP), it can also help
the radiologists when IoU is less than 0.5. To overcome this
evaluation bias, we also utilized the intersection over the de-
tected bounding-box area ratio (IoBB) as another criterion,
following (Yan, Bagheri, and Summers 2018).

Implementation Details. We conduct all experiments on
a single server with 4 GTX1080 cards in Pytorch (Paszke
et al. 2017). Three widely-adopted natural images detec-
tion methods i.e. FRCNN (Ren et al. 2015), FPN (Lin et
al. 2017a) and Deformv2(Zhu et al. 2019) are regarded as
baseline network to show the generalization ability of our
ElixirNet. Unless otherwise noted, settings are the same for
all experiments.

TruncatedRPN. Based on the original RPN, we empiri-
cally apply 1× 1 convolution with an element-wise sigmoid
function on RPN feature map to obtaining the confidence

11097



33D
CE

, 2
7 

sli
ce

s
FFP

N
, 3

 sl
ic

es
EEl

ix
irN

et
ww

 F
PN

, 3
 sl

ic
es

Figure 4: Qualitative results on DeepLesion among 3DCE with 27 slices, FPN and our ElixirNet with FPN. Detection results
with higher confidence, precise location and less false positive can be achieved by our method. The prediction with confidence
score > 0.3 is visualized. The location of ground-truth (red box) is shown for easy identification.

map of the locations. Region proposals are then generated at
the locations where the confidence is greater than the mean
of the confidence map. Five anchor scales (2, 3, 4, 6, 12) and
three aspect ratios of (0.5, 1, 2) are used in TRPN following
(Yan, Bagheri, and Summers 2018).

Auto-Lesion Block Search. Owing to memory restric-
tion, feature extractor and RPN are frozen with initializing
pretrained baseline network on DeepLesion. We consider the
branch B = 4 and the initial channels D of each branch
is 16. To carry out architecture search, we split half of the
DeepLesion training data as the val set. Network weights ωis
updated after training 15 epochs with batch size =16 (same
with validation sets). We choose momentum SGD with ini-
tial learning rate 0.02 (annealed down to zero following a co-
sine schedule), momentum 0.9, and weight decay 3 × 10−4

as an optimizer for weights ω, while architecture weights α
are optimized by Adam with initial learning rate 3× 10−4 ,
momentum 0.999 and weight decay 10−3.

ElixirNet. Series connection of feature extractor, TRPN,
1 ALB, 2 ALBr and RTM forms our final ElixirNet. The de-
tailed architecture of ALB and ALBr can be found in Figure
3 and we double initial channels D in Auto-Lesion Block
Search as channels of each operator, and use a 3× 3 convo-
lution to reduce output feature channels to 128 before feed-
ing to ALB. And we set P = 512, E = 128 in RTM. For
network training, stochastic gradient descent (SGD) is per-
formed on 4 GPUs per 2 images for 12 epochs. ResNet-50
(He et al. 2016) pretrained on ImageNet (Russakovsky et al.
2015) is used. The initial learning rate is 0.02, reduce three

Figure 5: Visualization of learned relationG from ALB. The
centers of regions are plotted and connected by the learned
edges E . Edges thickness correspond to the strength of the
graph edge weights. Note other regions are linked to regions
which are close to ground-truth (red box) location.

times (×0.01); 10−4 as weight decay; 0.9 as momentum.

Comparison with state-of-the-art

Single Lesion Detection Benchmarks. The results of Le-
sion Detection are presented in Table 1 and Table 2. We
compare with 3DCE (Yan, Bagheri, and Summers 2018),
FRCNN (Ren et al. 2015), FPN (Lin et al. 2017a) and
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% TRPN ALB RTM input 3 FPs (IoU) mAP9 slices sensitivity
FPN (Lin et al. 2017a) 81.51 31.5√

83.61 33.9√
83.88 34.1√ √
84.19 34.0√ √
84.72 34.8√ √
85.43 34.4

ElixirNet
√ √ √

86.63 35.2

Table 5: Ablation Studies on sensitivity and mAP. The im-
pact of different modules and input slices is explored.

Deformv2 (Zhu et al. 2019) with FPN backbone. Notably,
ElixirNet achieved significant improvements than all natural
images baselines with fewer parameters. Our ElixirNet im-
proves around 10.3% for FRCNN, 11.7% for FPN and 5.8%
for Deformv2 on mAP respectively. And the result shows
ElixirNet works mostly on small false positive per images
(improving 5.82% of IoU overlap 6.50% of IoBB overlap
sensitivity at 0.5 FPs on FPN). Our method with high accu-
racy at low error rates is consistent with the needs of radiol-
ogists. The parameter size of ElixirNet is about 60%-70% of
the baseline detection network. Without optimization of par-
allel structure in Pytorch, inference speed is slightly slower
than baseline. We also evaluate Kits19(Heller et al. 2019) to
compare with FPN (Lin et al. 2017a) and Deformv2 (Zhu
et al. 2019) with FPN backbone. The results can be found
in Table 3. As can be seen, our method outperforms 40.3%
and 2% than FPN and Deformv2 on mAP, and has to con-
tinue improvements on sensitivity with IoU. Figure 4 shows
quality results comparison of the 3DCE with 27 slices in-
put, FPN and our ElixirNet with FPN on DeepLesion. Our
method is more accurate than the 3DCE and baseline FPN
due to relation-aware architecture adaptation for medical im-
ages. The graph structure learned from ALB is in Figure 5.
The proposed ALB learned interpretable relation among re-
gions. Other regions are linked to regions which are close
to the ground-truth location. The relation-aware knowledge
helps improve proposals feature thus leading to better de-
tection performance. Multi-type Lesion Detection. Differ-
ent lesion types of labelling are provided only in the test
and validation set of DeepLesion (Yan et al. 2018a). A sim-
ple solution is replacing binary classifier and bounding-box
regression with new multi-type classifier and bounding-box
regression, denoted as “FPN w finetune” and “ElixirNet w/o
RTM”. During the training phase, feature extractor and RPN
are frozen, while RCNN head and our ALB finetune for 6
epochs with 0.002 learning rate on the validation set. The
results in Table 4 show that our “ElixirNet w/o RTM” far
outperforms FPN on generalization and robustness of multi-
type lesion detection. Furthermore, the results with RTM
achieve an average 2% sensitivity of all types with only in-
creasing 0.2% parameters.

Ablative Analysis. To analyze the importance of different
modules in Table 5, ablation studies are conducted on FPN
(Lin et al. 2017a) baseline. All results are on sensitivity with
IoU overlap criteria at 3 FPs per image and mAP. 1) ALB
is the most vital component with relation-aware adaptation

Method and Modifications sensitivity (%) mAP (%)
ElixirNet 83.88 34.1

ALB w/o our search space 81.06−2.82 32.1−2.0

(Liu, Simonyan, and Yang 2019)
random ALB (Li and Talwalkar 2019) 81.84−2.04 32.1−2.0

Table 6: Comparison of different search space and strategy.
The input with 3 slices and evaluation on sensitivity at 3 FPs
(IoU criteria) and mAP are used for all methods. “w/o our
search space” means using the search space in image clas-
sification NAS works directly. “random ALB” replaces ran-
dom search strategy with our differentiable search strategy.

for medical images. 2) TRPN can improve performance for
false positive reduction and outperforms focal loss (Lin et al.
2017b) with replacing the cross-entropy loss in RPN whose
sensitivity at 3 FPs (with IoU criteria) is 82.66%. 3) The
usage of RTM further improves the sensitivity by 1.91%
and mAP by 0.4%. 4) More slices are considered following
(Yan, Bagheri, and Summers 2018); the performance of the
9 slices is slightly higher than the 3 slices. Since 72% of le-
sions can be covered by 3 slices input in DeepLesion dataset,
our final model uses 3 slices input. Search space and strat-
egy in ALB. The comparison from Table 6 shows that the
proposed novel search space is most significant for design-
ing specific architecture for medical images. Original search
space in previous NAS work causes 2.82% sensitivity falloff
and 2% decrease on mAP. Also, differentiable search strat-
egy searching architectures based on the gradient descent is
a benefit for medical lesion detection.

Conclusion

In this work, we proposed a novel ElixirNet which is cus-
tomized for medical lesion detection with a composition
of TruncatedRPN, Auto-lesion Block and Relation transfer
module. It can adaptively suppress anchor location with in-
terested lesion absence and captures the semantic context of
a key proposal from relation-aware neighbourhoods, lead-
ing to more suitable and efficient prediction and false pos-
itive reduction. The stable and consistent performance of
our ElixirNet on all evaluation criteria of DeepLesion and
Kits19 outperforms current methods with fewer parameters.
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