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Abstract

Understanding questions and finding clues for answers are
the key for video question answering. Compared with im-
age question answering, video question answering (Video
QA) requires to find the clues accurately on both spatial and
temporal dimension simultaneously, and thus is more chal-
lenging. However, the relationship between spatio-temporal
information and question still has not been well utilized in
most existing methods for Video QA. To tackle this problem,
we propose a Question-Guided Spatio-Temporal Contextual
Attention Network (QueST) method. In QueST, we divide
the semantic features generated from question into two sepa-
rate parts: the spatial part and the temporal part, respectively
guiding the process of constructing the contextual attention
on spatial and temporal dimension. Under the guidance of
the corresponding contextual attention, visual features can
be better exploited on both spatial and temporal dimensions.
To evaluate the effectiveness of the proposed method, ex-
periments are conducted on TGIF-QA dataset, MSRVTT-
QA dataset and MSVD-QA dataset. Experimental results and
comparisons with the state-of-the-art methods have shown
that our method can achieve superior performance.

Introduction

Recently, the visual question answering (VQA) task (Antol
et al. 2015) has captured great attention due to the wide use
in different areas, such as education, robot and intelligent
assistant. The VQA task can be mainly divided into Image
Question Answering (Image QA) and Video Question An-
swering (Video QA), targeting on answering a natural lan-
guage question related to different visual material.

Generally, understanding the question and finding clues
of the answer to the question in the given visual material
is the key to VQA. For Image QA, there have been ex-
tensive efforts concentrated on (Yang et al. 2016; Xu and
Saenko 2016; Wu et al. 2016; Kazemi and Elqursh 2017;
Anderson et al. 2018; Gao et al. 2016; Fukui et al. 2016;
Ben-Younes et al. 2017) in the last decade. For example,
CBP (Gao et al. 2016), MCB (Fukui et al. 2016) and MU-
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Figure 1: The key to Video QA is understanding question
and finding clues of answer from both spatial and tempo-
ral dimensions in a video under guidance of question. For
Video QA, information from video and question can both be
divided into two dimensions, time and space.

TAN (Ben-Younes et al. 2017) focus on finding better meth-
ods on fusing visual features with language features, which
help the network to understand the question and visual ma-
terial accurately. Attention mechanisms (Xu et al. 2015;
Singh, Ying, and Nutkiewicz 2018; Anderson et al. 2018)
have also been used to inform neural network “where are
the clues of answer”.

Compared to Image QA, Video QA is more challeng-
ing. In Image QA, most of the clues for the answer can be
found from the spatial feature and the question is primarily
based on the appearance feature of an image. In Video QA,
however, a correct answer requires accurately locating the
clues in not only spatial but also temporal dimension at the
same time. Besides, there are more complex scene changes
in video material, leading to high requirements on reason-
ing ability from both spatial dimension and temporal dimen-
sion. Most existing Video QA methods (Jang et al. 2017;
Xu et al. 2017; Yu, Kim, and Kim 2018; Gao et al. 2018;
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Li et al. 2019; Fan et al. 2019) first generate a question
embedding and then fuse it with video features to gen-
erate a joint representation for question answering. (Jang
et al. 2017) utilize LSTM to encode question into single
embedding for generating both spatial and temporal atten-
tion for video. (Gao et al. 2018) focus on jointly modeling
motion and appearance information and building motion-
appearance co-memory network. (Li et al. 2019) employ at-
tention mechanism, instead of LSTM or GRU, to generate
question embedding and video feature embedding.

Although Video QA methods have been investigated re-
cently, it is still challenging. Question reasoning and locat-
ing answer clues in visual features are the key to VQA. For
locating answer clues, different from images, videos have
two dimensions in visual level, i.e., space and time, lead-
ing to the inconsistency of the keypoint to the clues on both
spatial and temporal dimension. As shown in Figure 1, given
the question “What does the man do after open the door”, the
keypoints in spatial dimension are “man” and “door” while
the keypoint in temporal dimension is “after open the door”.
Therefore, exploiting information in both spatial and tem-
poral dimensions appropriately is significant in Video QA
in order to excavate clues from videos. A group of existing
methods (Gao et al. 2018; Li et al. 2019) focus on utilizing
the temporal context information in video, but fail to exploit
the feature on spatial dimension. Other methods (Jang et al.
2017) try to apply spatio-temporal attention on videos, but
show even worse performance compared to temporal-only
attention probably due to the lack of the guidance of ques-
tion from both spatial and temporal dimensions. Under such
circumstance, how to effectively exploit the spatio-temporal
information in videos is important for Video QA.

To tackle the problems mentioned above, in this paper, we
propose a Question-Guided Spatio-Temporal Contextual At-
tention Network (QueST) for Video QA, which divides the
information of video and question into two separate parts:
the spatial part and the temporal part. Then, it learns the re-
lationship between video and question in each part.

In QueST, Video-Guided Question Attention (VGQA)
encodes the question into two different question embed-
dings (spatial question embedding and temporal question
embedding) first. Then, Question-Guided Contextual Atten-
tion Blocks (CABs) are introduced in the spatial and tem-
poral dimension of the video sequentially to model context-
aware visual features and excavate visual clues related to an-
swer in the specific dimension of video under the guidance
of corresponding question feature.

The contributions of this paper are as follows:

• We propose the Video-Guided Question Attention Block
(VGQA), which introduces visual information to co-
model the question information from both spatial and
temporal dimensions.

• We introduce the Contextual Attention Block (CAB),
which excavates the key information related to the answer
in the context-aware visual feature. Based on CAB, Spa-
tial CAB (SCAB) and Multi-Scale Temporal CAB (MS-
TCAB) are designed for learning Video QA better by uti-
lizing the interaction between visual features and corre-

sponding question embedding on spatial and temporal di-
mensions respectively.

• Based on VGQA and CAB, we propose Question-Guided
Spatio-Temporal Contextual Attention Network (QueST).
We have conducted experiments on three Video QA
datasets, i.e., TGIF-QA dataset, MSRVTT-QA dataset and
MSVD-QA dataset. The experimental results demonstrate
the superior performance of our proposed QueST on the
Video QA task.

Related Work

In this section, we briefly review some recent works related
to Video QA. Given a question and an image or video re-
garding the question, Visual Question Answering is a task of
providing accurate natural language answers. Multi-modal
reasoning over visual and textual data is essential for solv-
ing VQA problem. For Image QA, most early approaches
focus on fusing textual and visual information, which are ex-
tracted by a LSTM network and a CNN based model respec-
tively. (Yang et al. 2016) proposes a Stacked Attention Net-
works(SAN) that queries an image multiple times to infer
the answer progressively. (Fukui et al. 2016) presents Mul-
timodal Compact Bilinear pooling(MCB) method to capture
high-level interaction between visual and textual informa-
tion. Dynamic Memory Network(DMN) (Kumar et al. 2016)
has exhibited certain reasoning capabilities on many lan-
guage tasks. (Xiong, Merity, and Socher 2016) applies DMN
to image question answering by proposing improvements to
the memory and input modules of DMN. To calculate at-
tention at the levels of objects and other salient image re-
gions, (Anderson et al. 2018) utilizes Faster R-CNN (Ren
et al. 2015) features and designs a bottom-up and top-down
attention mechanism.

Different from Image QA, Video QA methods (Jang et
al. 2017; Xu et al. 2017; Gao et al. 2018; Li et al. 2019;
Yu et al. 2019; Fan et al. 2019) introduce extra tempo-
ral reasoning modules to answer questions which involve
changing on temporal dimension like action or state tran-
sition. (Jang et al. 2017) presents a dual-LSTM based ap-
proach with spatio-temporal contextual attention, which uti-
lizes a sentence-level question embedding generated by
LSTM to apply spatio-temporal attentions to video. (Xu et
al. 2017) introduces an end-to-end model that gradually re-
fines temporal attention on appearance and motion features
via question guidance. (Gao et al. 2018) proposes a motion-
appearance co-memory network that utilizes co-memory at-
tention mechanism to capture temporal information both
from motion and appearance. Compared with temporal in-
formation, spatial information are not well utilized in most
recent methods. In (Jang et al. 2017), spatio-temporal at-
tention model performs even worse than temporal atten-
tion only model. Therefore, both spatial and temporal infor-
mation have not been sufficiently exploited in the existing
Video QA methods.

Approach

In this section, we give a detailed introduction to the pro-
posed Question-Guided Spatio-Temporal Contextual Atten-
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Figure 2: Overview of the proposed QueST model. First, information in question embedding are divided into spatial and
temporal dimension in VGQA. Then under the guidance of the corresponding question embedding generated in VGQA, SCAB
and MS-TCAB respectively excavate the spatial and temporal visual clues of answers inside the visual features to generated
global video embedding. After fusing the global video embedding and question embedding, answers are finally generated.

tion Network (QueST) for Video QA. The input to QueST
contains two modalities: video and question in natural lan-
guage.

In QueST, the raw inputs are first fed into Feature Ex-
traction module to obtain video embedding V and question
embedding Q. Next, as Figure 2 shows, the Video-Guided
Question Attention Block (VGQA) is employed in ques-
tion embedding to generate spatial question embedding and
temporal question embedding. The two new embeddings fo-
cus on the information from corresponding dimension in the
initial question embedding. Based on the new question em-
beddings, we introduce Question-Guided Contextual At-
tention Block (CAB) to obtain visual features related to
the question from spatial and temporal dimensions. Then,
we combine both spatial and temporal question embeddings
with the video features generated by CABs to obtain a Joint
Representation of the video and the question. At last, the
answer is generated in Answer Module by the classification
or regression branch.

Detailed descriptions of the aforementioned 5 procedures
are provided as follows.

Feature Extraction

In the subsection, we describe the feature extraction method
in QueST, which converts the input raw video and raw natu-
ral language data into feature embeddings.

Video. Most recent methods in Visual QA (Anderson et
al. 2018; Jang et al. 2017; Gao et al. 2018; Li et al. 2019;
Fan et al. 2019) adopt CNN methods, such as Faster R-CNN
(Ren et al. 2015), ResNet (He et al. 2016), C3D (Tran et al.
2015), flow CNN, as the visual feature extractor. In QueST,
for a given video, the features generated by these CNN meth-
ods are denoted as V = [v1, v2, ..., vN ], where N is the num-
ber of frames sampled in the video. v ∈ R

H×W×Cv is the
feature of each frame, where H,W and Cv are height, width
and channel dimension of v’s feature map, respectively.

Question. A question can be represented as a sequence
of words. We split the question with delimiter to acquire
words. Then, a pre-trained GloVe (Pennington, Socher, and
Manning 2014) is used to convert each word into a 300-D
feature vector. In order to utilize the relation among words,
the word embeddings are fed into LSTM (Hochreiter and
Schmidhuber 1997) and the hidden state of each time step is
used as the new word embedding and is collected to obtain
the question embedding Q = [q1, q2, ..., qT ], where T is the
number of words and qi ∈ R

Cq is the feature of each word.

Video-Guided Question Attention Block

In this subsection, we introduce the Video-Guided Question
Attention Block (VGQA) for understanding the question
considering the video structure. Figure 3 demonstrates the
VGQA module. We first fuse the video features and ques-
tion embeddings to generate Word Attention to highlight
the information related to video in the question. Then, we
introduce self-attention mechanism and Diversity Loss(Liu,
Jiang, and Wang 2019) to generate spatial question embed-
ding and temporal question embeddings.

Fusion of Video Features and Question Embeddings.
The inputs of VGQA are the video feature V and the initial
question embedding Q. The procedure of VGQA is illus-
trated in Figure 3. We first average video features along spa-
tial and temporal dimensions to obtain a global video feature
vg . Then, we fuse the video features with the initial question
embedding in order to acquire a joint feature for attention
generation. A linear layer is used to project the Cv chan-
nel video feature vg to a Cq

inter channel vector and each
word embedding in Q is also projected to a Cq

inter chan-
nel vector by linear layers. Next, element-wise multiplica-
tion is adopted to generate a joint feature of the global video
feature and each word embedding. This process for the i-th
word can be formulated as:

Jq
i = Fuse(vg, qi) = W q

v v
g �W q

q q
i (1)
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Figure 3: Video-Guided Question Attention Block (VG-
QA). It takes the video feature and initial question embed-
ding as input. The video feature is fused with question em-
bedding to guide the word attention on question embedding.
Then by self-attention and Diversity Loss, the enhanced
question embedding generate two new question embedding:
spatial question embedding and temporal question embed-
ding.

where W q
v , W q

q are learnable weights in R
Cq

inter×Cv ,
R

Cq
inter×Cq respectively.

Word Attention on Question (WA). Based on the joint
embedding Jq obtained as (1), we adopt a convolution layer
to generate a weight score sqw for each word. The weight
score is applied in each word embedding to re-weight it by
the significance of the word in the relation between question
and video. To avoid the loss of important features during
the attention operation, we add a residual connection to the
output of WA to obtain enhanced question embedding Qw.

sqwi =
exp(W q

wJ
q
i )∑T

i=1 exp(W
q
wJ

q
i )

qwi = sqwi qi + qi

Qw = [qw1 , q
w
2 , ..., q

w
T ]

(2)

where sqwi denotes the importance score assigned to each
word and W q

w is learnable weights.
Spatial and Temporal Question Embedding. After the

above attention blocks, the video-related parts in question
embedding have been enhanced in Qw. Then self-attention
mechanism is employed on Qw here to generate two dif-
ferent question attention masks, denoted as Masks and
Maskt. The Masks and Maskt are designed for highlight
the different parts of the question feature and then used to
generate the spatial question embedding and temporal ques-
tion embedding respectively. For instance, the spatial ques-
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Figure 4: Question-Guided Contextual Attention Block.

tion embedding qs is generated by:

masksi =
exp(W q

s q
w
i )∑T

i=1 exp(W
q
s qwi )

Masks = [masks1,masks2, ...,masksT ]

qs =

T∑
i=1

masksi q
w
i

(3)

where W q
s is the learnable weights.

In order to avoid the spatial question embedding and tem-
poral question embedding focusing on the same parts of
the question feature, We introduce Diversity Loss here. Di-
versity Loss maximizes the cosine similarity distance of
Masks and Maskt and help them concentrate on different
parts of the question feature.

Ldiv =
Masks ·Maskt

‖Masks‖‖Maskt‖ (4)

Question-Guided Spatio-Temporal Contextual
Attention Block

In this subsection, we describe the Question-Guided Spatio-
Temporal Contextual Attention Block (CAB). As Figure 2
shows, CABs are employed to attend to spatial visual fea-
tures and temporal visual features related to answer sequen-
tially under the guidance of the corresponding question em-
bedding generated from VGQA.

As shown in Figure 4, The inputs to CAB consist of three
parts: the visual feature vc, the context feature cc, corre-
sponding question embedding qc. At first, we repeat the con-
text feature and concatenate it with the feature of each posi-
tion of visual features vc. Next, we fuse the corresponding
question embedding (spatial question embedding or tempo-
ral question embedding) and the context-aware visual fea-
ture to generate attentions. Then, we use the attentions to
excavate the visual features related to answer. The procedure
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can be formulated as:

ṽi = Concatenate(vci , c
c)

Jc = W c
v ṽi �W c

q q
c

sci =
exp(W c

aJ
c
i )∑N

i=1 exp(W
c
aJ

c
i )

va =

N∑
i=1

sciv
c
i

(5)

where W c
v , W c

q and W c
a are learnable weights and i is the

index of position in visual features. va is the output of the
CAB.

Spatial Attention with CAB (SCAB). For the SCAB, we
use the video feature V , extracted from CNN as the input
visual feature. Next we average the V along spatial dimen-
sion to obtain the global feature for each frame as the input
context feature and use the spatial question embedding as
the input question embedding. Then the SCAB is applied in
the spatial dimension and selects the question-related spa-
tial region in each frame under guidance of spatial question
embedding.

Temporal Attention with CAB (TCAB). There are some
differences between the SCAB and the TCAB. As Figure 5
shows, we feed the output feature of the SCAB into a 1D
temporal convolutional layer and use the output of convo-
lutional layer as input visual feature. The context feature in
the TCAB is modeled by LSTM model. Then, with temporal
question embedding as input question feature, TCAB selects
the question-related temporal region in the input visual fea-
ture under guidance of temporal question embedding.

We find that answering different questions require the
temporal visual information of different durations. There-
fore, based on CAB, we design a Multi-Scale TCAB (MS-
TCAB) and adopt it in our QueST model. The MS-TCAB
consists of K parallel TCAB heads and concatenate all the
output of them as output of the MS-TCAB. Different dila-
tion rates (Yu and Koltun 2015) are adopted for the 1D tem-
poral convolutional layers in different TCAB heads, which
can models the temporal visual information of different du-
rations explicitly and helps to find the clues of answer more
accurately.

Joint Representation

Through the attention mechanism on question, we obtain the
spatial question embedding and the temporal question em-
bedding. Now we combine them by concatenation to acquire
global question embedding, denoted as qf . The output visual
feature of the sequent SCAB and MS-TCAB on initial video
feature V is denoted as vf . Then the global question em-
bedding qf and video embedding vf are fused to generate a
joint feature Jf for question answering.

Jf = W f
v v

f �W f
q q

f + bf (6)

where W f
v , W f

q and bf are learnable parameters.

Answer Module

For most tasks in Video QA, the questions can be divided
into three types: multi-choice, open-ended words and open-
ended numbers.

For the open-ended words task, they are formulated as a
classification task. A fully connected layer (FC) followed by
a softmax function is employed on the joint embedding Jf

to generate score for each answer. Then, a cross entropy loss
is used to train the network.

For the multi-choice task, the question is attached with
some candidate answers. We first model each candidate an-
swer as same as the way initializing question embedding
Q and generate candidate answer embedding, which is a
vector of the same dimension with output joint embedding
Jf of QueST. Then, joint embedding Jf is element-wise
multiplied by each candidate answer embedding to generate
the new joint embedding for each candidate answer. Next,
a sharing weight FC is employed to project the new joint
embedding to a real number. At last a softmax function is
adopted to normalize the score along the candidate answers
to predict the probability for each answer. Cross entropy loss
is adopted here.

For the open-ended numbers task, such as counting, it is
formulated as a regression task. A FC is used to predict a
real number for answering and the Mean Square Error loss
is used to train the network.

During training phase, we combine the losses described
above with the Diversity Loss (described in Equation (4))
with a coefficient λ to train our QueST model. The λ is set
to 0.25 in the experiments.

Experiments

In this section, we evaluate the proposed QueST on three
standard Video QA datasets: TGIF-QA, MSRVTT-QA and
MSVD-QA. We first present the experimental results and
comparisons with the state-of-the-art methods on TGIF-QA.
Then, we provide the ablation studies to investigate the pro-
posed attention modules in QueST. At last, we report results
and comparisons on MSRVTT-QA and MSVD-QA.

Experiments on TGIF-QA

TGIF-QA (Jang et al. 2017) is a large-scale dataset for
Video QA, which consists of 165,165 question-answer pairs
collected from 71,741 GIFs. In TGIF-QA, there are 4 types
of tasks: repetition action, state transition, frame QA and
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Table 1: Details of TGIF-QA dataset.
QA pairs Action Trans. Frame QA Count

Training 20,475 52,704 39,392 26,843
Testing 2,274 6,232 13,691 3,554
Total 22,749 58,936 53,083 30,397

Table 2: Comparisons with the state-of-the-art method on
TGIF-QA dataset. R denotes ResNet152 feature, C denotes
C3D feature and F denotes additional modality feature of
optical flow.

Method Action Trans. FrameQA Count

ST-S.-T.(R+C) 57.0 59.6 47.8 4.56
ST-TP(R+C) 60.8 67.1 49.3 4.40

Co-Mem(R+F) 68.2 74.3 51.5 4.10
PSAC(R) 70.4 76.9 55.7 4.27

HME(R+C) 73.9 77.8 53.8 4.02

QueST(R) 75.9 81.0 59.7 4.19

repetition count. Repetition action and state transition are
multiple choice tasks. Question is attached with five options.
Frame QA is similar to Image QA and is an open-ended
word task. Repetition count requires the model to count the
number of repetitions of a certain action.

Experiment Settings. In experiments, we use the stan-
dard training/testing splitting as provided in (Jang et al.
2017) and the details for each task are shown in Table
1. Given a gif in TGIF-QA, we evenly sample 10 frames
to represent the video. Then the output of res4c layer (∈
R

14×14×1,024) in ResNet-152 followed an average pooling
with a stride of 2 is selected as the visual feature for each
frame, which contains more appearance information than the
deeper layers in ResNet. Given a question, a pre-trained 300-
D GloVe embedding is used to convert each word to word
embedding. Then, we train our QueST model with Adam
(Kingma and Ba 2014) optimizer for each task. Normally,
we set the size of minibatch as 64 and the initial learning
rate as 0.001.

Comparisons with the State-of-the-art Methods. Our
proposed QueST method has been compared with recent
state-of-the-art methods and the results are shown in Ta-
ble 2. The results show that QueST outperforms the state-
of-the-art methods (i.e. HME (Fan et al. 2019) and PSAC
(Li et al. 2019)) by 2.0%, 3.2% and 4.0% of accuracy on
action, transition and frame QA tasks. For count task, our
model also obtains better performance with other methods
by only using ResNet features. It is noted that, QueST only
uses RGB-ResNet features as visual input and still obtains
superior performance than some other multi-modality meth-
ods, i.e., ST-SP-TP (ST-S.-T.) and ST-TP (Jang et al. 2017),
Co-Mem (Gao et al. 2018) and HME(Fan et al. 2019), on
most of the tasks.

Ablation Study on Video-Guided Question Attention.
We further investigate the effectiveness of Video-Guided
Question Attention (VGQA). In the VGQA, we utilize the

Table 3: Ablation experiments on the VGQA Module.
Setting Action Trans. Frame QA Count

w/o WA 75.0 80.7 58.5 4.36
w/o DL 74.6 79.3 57.3 4.17
ST-VQA 74.7 78.5 56.8 4.33

Full 75.9 81.0 59.7 4.19

Table 4: Ablation experiments on the CAB Module.
Setting Action Trans. Frame QA Count

ST-VQA 73.9 78.6 56.6 4.28
ST-CAB 74.1 79.1 59.0 4.23

MS-ST-CAB 75.9 81.0 59.7 4.19

global visual features to refine the initial question embed-
ding via attention on word dimensions. Then, we introduce
Diversity Loss and self-attention to generate spatial ques-
tion embedding and temporal question embedding. Here we
remove the word attention (WA) and Diversity Loss in the
VGQA respectively to investigate the effectiveness of these
modules. And we also design a model setting named ST-
VQA where VGQA generates only one question embedding
as the way used in (Jang et al. 2017). The experimental
results is shown in Table 3. We can observe that remov-
ing word attention from the full model can lead to perfor-
mance degeneration. The reason is that word attention intro-
duces visual information to co-model the question and high-
light the information related to video. From the results, we
can find that the performance of QueST without Diversity
Loss is lower than full model on most tasks and is similar
to QueST with single question embedding, i.e. the model
setting of ST-VQA, which suggests the Diversity Loss can
help to divide the question information into two parts and is
beneficial for modeling question in the spatial and tempo-
ral aspects respectively. Compared with ST-S.-T. in Table 2,
which also applies spatio-temporal attentions on videos but
obtains even worse performance than temporal-only atten-
tion model, our VGQA can construct better spatio-temporal
attentions and achieve superior performance.

Question (repetition action):  What does the girl do 8 times? 
Answer:  clap hand                              Prediction: clap hand                                   

Question (state transition):  What does the woman do after wave hand? 
Answer: leave from the screen            Prediction: leave from the screen

Figure 6: Visualization of results of QueST in TGIF-QA.
For each QA pair, we visualize weights of the SCAB and at-
tach weights of TCAB under each frame. Take the sample in
first row as example, the attention focuses on the key regions
about the action.
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Table 5: Details of MSRVTT-QA dataset.
QA pairs what who how when where

Training 108,792 43,592 4,067 1,626 504
Val. 8,337 3,439 344 106 52

Testing 49,869 20,385 1,640 677 250
Total 166,998 67,416 6,051 2,409 806

Table 6: Details of MSVD-QA dataset.
QA pairs what who how when where

Training 19,485 10,479 736 161 72
Val. 3,995 2,168 185 51 16

Testing 8,149 4,552 370 58 28
Total 31,629 17,199 1,291 270 116

Ablation Study on Contextual Attention on Video.
Here we conduct the ablation experiments on the Question-
Guided Contextual Attention (CAB) including SCAB and
TCAB. The experimental results are listed in Table 4.

ST-VQA denotes attention methods in (Jang et al. 2017)
are used in QueST instead of our proposed CABs. ST-CAB
denotes question-guided contextual spatio-temporal atten-
tions (SCAB+TCAB) are adopted in QueST and MS-ST-
CAB denotes SCAB and multi-scale TCAB (MS-TCAB)
are adopted in QueST.

Compared with ST-VQA, models with CABs obtain bet-
ter performance on all tasks. MS-ST-CAB improves the ac-
curacy of the tasks of action, transition and frame QA by
2.0%, 2.4% and 3.1% respectively and also reduces the MSE
loss. The results demonstrate that the contextual information
is important for the Video QA task and has not been suffi-
ciently utilized in existing spatio-temporal attention meth-
ods in Video QA. Compared with ST-CAB, MS-ST-CAB
model the temporal information in different duration with
CABs explicitly and obtains the gains of 1.8%, 1.9% and
0.7% of accuracy for the tasks of action, transition and frame
QA respectively.

Visualization. We visualize the attention weights of CAB
in Figure 6 to demonstrate the effectiveness of our QueST.
We can notice that both spatial and temporal attentions can
be accurately detected and thus lead to better Video QA per-
formance. In the given clapping hand example, although it
is somehow difficult to count the times of the action even for
human, the model can figure out that the action which the
woman do most times is clapping hands.

Experiments on MSRVTT-QA and MSVD-QA

To further evaluate the effectiveness of the proposed model,
we have also tested our QueST on other Video QA datasets:
MSRVTT-QA (Xu et al. 2017) and MSVD-QA (Xu et
al. 2017). The tasks in MSRVTT-QA and MSVD-QA are
open-ended word tasks and questions can be divided into
5 types, including what, who, how, when and where, by
the first word of the question. We list the details of train-
ing/validation/testing splitting for each task MSRVTT-QA

Table 7: Experiments on testing set of MSRVTT-QA.
Method what who how when where all

ST-VQA 24.5 41.2 78.0 76.5 34.9 30.9
GRA 26.2 43.0 80.2 72.5 30.0 32.5

Co-Mem 23.9 42.5 74.1 69.0 42.9 32.0
HME 26.5 43.6 82.4 76.0 28.6 33.0

QueST 27.9 45.6 83.0 75.7 31.6 34.6

Table 8: Experimental results on testing set of MSVD-QA.
Method what who how when where all

ST-VQA 18.1 50.0 83.8 72.4 28.6 31.3
Co-Mem 19.6 48.7 81.6 74.1 31.7 31.7

GRA 20.6 47.5 83.5 72.4 53.6 32.0
HME 22.4 50.1 73.0 70.7 42.9 33.7

QueST 24.5 52.9 79.1 72.4 50.0 36.1

and MSVD-QA in Table 5 and Table 6 respectively. We
compare our proposed QueST with recent methods, i.e., ST-
VQA (Xu et al. 2017), Co-Mem (Gao et al. 2018), GRA (Xu
et al. 2017), HME (Fan et al. 2019).

For MSRVTT-QA, the experimental results and compar-
isons with the state-of-art methods are listed in Table 7.
In these results, our QueST outperforms the state-of-the-art
methods, i.e. HME, by 1.6% overall accuracy on the testing
set. Our QueST can obtain the gains of 1.4%, 2.0%, 0.6%
on the question types of what, who and how respectively.
In other question types, our QueST also obtains compara-
ble performance. The performances on the whole dataset
and the question types with a relative large scale (like what,
who and how) can demonstrate the effectiveness of our
QueST method. For MSVD-QA, from the results shown in
8, QueST outperforms the state-of-the-art method, i.e. HME,
by 2.4% overall accuracy and obtains the best accuracy on
the three question types (what, who and when).

Conclusion

In this paper, we propose Question-Guided Spatio-Temporal
Contextual Attention Network (QueST) for Video QA, in-
cluding two modules: Video-Guided Question Attention
Block (VGQA) and Question-Guided Contextual Atten-
tion Blocks (CABs). Through applying VGQA and CABs,
QueST divides the information of question into spatial part
and temporal part, which helps to better interpret visual fea-
tures under the guidance of question information of corre-
sponding dimension. Experimental results on three bench-
mark Video QA datasets show that QueST can achieve sig-
nificant performance improvement on Video QA compared
with the state-of-the-art methods.
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