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Abstract

Depth has been shown beneficial to neural network models. In
this paper, we make an attempt to make the encoder-decoder
model deeper for sequence generation. We propose a mod-
ule that can be plugged into the middle between the encoder
and decoder to increase the depth of the whole model. The
proposed module follows a nested structure, which is divided
into blocks with each block containing several recurrent tran-
sition steps. To reduce the training difficulty and preserve
the necessary information for the decoder during transitions,
inter-block connections and intra-block connections are con-
structed in our model. The inter-block connections provide
the thought vectors from the current block to all the subse-
quent blocks. The intra-block connections connect all the hid-
den states entering the current block to the current transition
step. The advantages of our model are illustrated on the image
captioning and code captioning tasks.

Introduction

The general encoder-decoder framework is usually a frame-
work that learns a transformation of representations. In this
framework, an encoder is used to encode the input into a vec-
tor and a decoder generates the output based on the encoded
vector. Recently, the encoder-decoder framework has been
applied to the sequence learning problem based on recurrent
neural networks (RNNs) (Sutskever, Vinyals, and Le 2014).
The decoder for sequence learning is usually a RNN, but the
encoder can be a RNN or a convolutional neural network
(CNN), depending on the specific tasks.

It is known that deep feedforward neural networks are
more expressive than shallow neural networks (Bengio and
others 2009; Pascanu, Montufar, and Bengio 2014). How-
ever, deep neural networks are difficult to train. The gradi-
ent might vanish or explode. For recurrent neural networks,
long short-term memory (LSTM) (Hochreiter and Schmid-
huber 1997) was proposed to solve this problem by intro-
ducing information gates. Inspired by LSTM, skip connec-
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tions (He et al. 2016; Srivastava, Greff, and Schmidhuber
2015) were proposed to ease the training and has achieved
great success in convolution neural networks (CNNs). Re-
cently, dense connections among layers (Huang et al. 2017)
were found to be beneficial for the training of very deep con-
volutional neural networks.

In recurrent neural networks, increasing the “depth” can
also increase the expressive power (Pascanu et al. 2013;
Zilly et al. 2017). In (Pascanu et al. 2013), the authors
observed that the relationship between consecutive hidden
states and that between the hidden states and outputs are not
deep enough. And alternative RNNs were proposed by mak-
ing those shallow relationships to be modeled with deep neu-
ral networks. In addition to the methods mentioned above,
recurrent highway networks (RHN) (Zilly et al. 2017) made
the transition functions much deeper by adding more mi-
cro RNN steps and highway connections. Empirical evalu-
ation showed that deeper RNN provide better performance.
Hence, increasing the depth also makes RNNs more power-
ful.

For an encoder-decoder model, except adopting the depth
increasing techniques from RNN mentioned before, we can
also inserts several transition steps between the encoder and
decoder to make the whole model deeper. It is the strategy
proposed by Review Net (Yang et al. 2016), and the addi-
tional transition steps are called review steps. The review
steps processes the information from encoder and passes the
results to the decoder. The hidden states from review steps
are used as inputs of attention in the decoder. Hence, review
steps provide the decoder with better source representations
and attention inputs. For Review Net, the best number of
review steps selected on validation set is usually around
8 (Yang et al. 2016). And if the number of review steps is
larger than that, performance will not be improved further
by adding review steps.

In this work, we explore deep extensions of the encoder-
decoder model by increasing the number of non-linear trans-
formations from source to target, without changing the de-
signs of the encoder and decoder. Similarly to Review
Net (Yang et al. 2016), we insert an intermediate module
between the encoder and decoder, which contains several
RNN transition steps and learns a transformation for the en-
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coded vector. The module between the encoder and decoder
is called reviewer in this paper. The reviewer introduces ex-
tra transition steps and makes the whole encoder-decoder
model deeper. The total number of RNN steps in the re-
viewer is called review depth. In our model, the reviewer
follows a nested structure, which contains several blocks,
and each block consists of multiple RNNs. To ease the train-
ing process and preserve information of source for the de-
coder, inter-block connections and intra-block connections
are constructed to facilitate error propagation and reuse of
hidden states. These connections connect preceding hidden
states with subsequence RNN steps. With the novel archi-
tecture proposed, the review depth is increased from 8 (Re-
view Net) to 64. The advantages of our model are illustrated
on the image captioning and code captioning tasks.

Related Works

Depth has been shown beneficial for the feed-forward neu-
ral networks intuitively , theoretically and empirically . It
was shown in (Bengio and others 2009) that, deep sum-
product networks require exponentially less node to express
some families of polynomials compared to the shallow ones.
Deep neural networks with piecewise linear activation are
more expressive than shallow ones (Montufar et al. 2014;
Pascanu, Montufar, and Bengio 2014). Hence, to approxi-
mate the complex functions, the neural networks have to be
sufficiently deep. However, deep neural networks are diffi-
cult to optimize. Skip connections (He et al. 2016) and dense
connections (Huang et al. 2017) are proposed to ease the
training process. They both provide a better way for error to
propagate back to the shallow parts.

For RNNs, the traditional way to increase the depth is to
stack multiple layers of RNNs and performance improve-
ments were observed (Graves 2013). In (Chung et al. 2015),
extra connections between all state across consecutive time
steps in a stacked RNN were proposed. In (Pascanu et al.
2013), it was shown that in the traditional RNNs the hidden-
to-hidden, hidden-to-output and input-to-hidden functions
are shallow. Hence, to make RNNs deep, these functions are
needed to be replaced by deeper functions. Based on that ob-
servations, two extensions were proposed in (Pascanu et al.
2013) and promising performance are achieved on various
tasks. In (Zilly et al. 2017), the step-to-step transition func-
tions of RNN were made deep by combining the micro time
steps and highway connections.

For an encoder-decoder model, the depth is determined
by the types of the encoder and decoder. In order to make
the whole model deeper, an intermediate module can be in-
serted between the encoder and decoder. Review Net (Yang
et al. 2016) adopted such strategy and the intermediate step
inserted was called review step, which reviews the encoded
vector from the encoder and passes it to the decoder. Hence,
the review step reprocesses the information from encoder
and great improvements were achieved (Yang et al. 2016).
The review depth of Review Net is usually 8-10. In this pa-
per, we try to make reviewer much deeper.

Background

To provide a clear description of our method, we present a
short review of the encoder-decoder framework for sequence
generation in this section.

Long Short-Term Memory. RNN is the basic build-
ing block for the encoder-decoder based sequence learn-
ing model. In this paper, we use long short-term memory
LSTM (Hochreiter and Schmidhuber 1997) in our model.
Recall that a LSTM is a function that perform a state transi-
tion based on the current hidden state and current input. The
state transition of LSTM unit can be expressed as follows:⎛

⎜⎝
it
ft
ot

gt

⎞
⎟⎠ =

⎛
⎜⎝

σ
σ
σ

tanh

⎞
⎟⎠THt, (1)

ct = ft � ct−1 + it � gt, (2)
ht = ot � tanh(ct), (3)

where it, ft, ct, ot and ht are input gate, forget gate, memory
cell, output gate and hidden state of the LSTM, respectively.

Here, Ht =

[
xt

ht−1

]
is the concatenation of input xt for

the time step t and hidden state ht−1, T is a linear transfor-
mation operator. In this paper, we use the shorthand notation

[ht, ct] = LSTM(Ht, , ct−1) (4)

to express the above equations.
In (Bahdanau, Cho, and Bengio 2015; Xu et al. 2015), at-

tention mechanism was introduced into the decoder. At each
time step, the attention model performs attention on the set
of annotation vectors A = {a1, . . . ,aM} and the context
vector zt is obtained with an attention model. More specifi-
cally, the attention model can be expressed as

eti = sim(ai,ht−1), αti =
exp(eti)∑k
j=1 exp(etj)

, zt =

k∑

i=1

αtiai,

where sim(ai,ht−1) is a function to measure the similar-
ity between ai and ht−1 and is usually a multilayer percep-
tron (MLP). For LSTM with attention, the input for each

time step is Ht =

[
xt

ht−1

zt

]
. The LSTM equipped with at-

tention mechanism usually performs better than the vanilla
LSTM.

Encoder. In the encoder-decoder model, the encoder
transforms the input into a vector a and a set of annota-
tion vectors A. The vector a contains the information of the
whole input, and the vectors in A contains the information
of a certain part of the input. The encoder can be a RNN or
a CNN, depending on the particular tasks.

For tasks like machine translation, the goal is to translate
the source sequence into target sequence. To achieve that,
the source sequence is first encoded and then a target se-
quence is generated by the decoder based on the informa-
tion from the encoder. Hence, the encoder for such tasks is a
RNN. We denote the source sequence as (y1, y2, · · · , yM ),
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where M is the length. The source sequence is fed into the
encoder and the hidden states am at each time step form the
annotation vectors A = {a1, . . . ,aM}. The hidden state am
only contains the information of the prefix of length m. The
last hidden state encodes the information about the whole
input sequence, hence a = aM .

For tasks like image captioning, the goal is to translate
the source image into a natural sentence. A CNN trained for
image classification task is usually employed as an encoder,
which extracts the global representations and subregion rep-
resentations of the input image. The global representation is
usually the outputs of full connecting layers and subregion
representations are usually the outputs of convolutional lay-
ers. The extracted global representation and subregion rep-
resentations are denoted as a and A = {a1, . . . ,aM} re-
spectively, where M is the number of subregions.

Decoder. Given the representations a and A from the en-
coder, a decoder is employed to translate the encoded infor-
mation into target sequence, like natural sentence. In this pa-
per, we use LSTM equipped with soft attention mechanism
as the basic unit of the decoder. The aim of encode-decoder
model is to generate a sequence C = (y1, y2, · · · , yN ) for
given input. The objective adopted is usually to minimize a
negative log-likelihood:

L = − log p(C|I) = −
N−1∑
t=0

log p(yt+1|yt), (5)

where p(yt+1|yt) = Softmax(Wht) and ht is computed by
the LSTM unit setting xt = Eyt. Here, W is a matrix for
linear transformation, y0 is the sign for the start of sentences,
and Eyt denotes the distributed representation of the term
yt, in which yt is the one-hot representation for the word yt
and E is the word embedding matrix.

Reviewer. A reviewer contains several RNN steps and is
inserted between the encoder and decoder. The RNN unit
is usually a LSTM with attention mechanism and the input

at each time step is Ht =

[
ht−1

zt

]
. Note that the input

for the review step does not contain any information of tar-
get sequence. The hidden states of reviewer are outputted
as thought vectors and will be used as input of the attention
model for the decoder. The review step learns better anno-
tation vectors for attention model and better hidden states
for the decoder. It was observed that adding the reviewer
module provides promising performance on image caption-
ing and code captioning tasks (Yang et al. 2016).

The Proposed Model

In Review Net, the hidden states in the review step will be
used as input of the attention model in the decoder step.
Hence, the error from decoder can be propagated back to
the review step. However, the review depth of is usually
about 8 and the performance can not be improved further by
adding more RNN units. A Review Net with more review
steps is more expressive than one with less review steps.
The first reason for the performance can not be further im-
proved by adding more review steps might be that the model
with larger review depth is more difficult to optimize. The

training error of Review Net does not always decrease as the
number of review steps increase. The second reason might
be that the reviewer can not preserve enough information,
especially when review depth is large. If the hidden state
after the last step of reviewer can not preserve enough in-
formation about the input, the decoder will not decode prop-
erly. Hence, we need to design a structure that is easy to
optimize and preserve necessary information. In this paper,
we achieve that goal by adopting a nested structure and con-
structing inter- and intra-block connections.

Recurrent Nested Model

The framework of our model is shown in Fig. 1. We can see
that the reviewer contains several recurrent blocks, which
contains several transition steps. Each block generates a set
of thought vectors. The LSTM units are densely connected
in our model, and the connections can be categorized into
two types: inter-block connections and intra-block connec-
tions. In our framework, each review block takes the thought
vectors generated by all the preceding blocks as inputs of
the attention models and its thought vectors will be used
by attention models in all the subsequent review blocks,
which are inter-block connections. The inter-block connec-
tions provide the thought vectors from current block to all
the subsequence block. Hence, the thought vectors can be
utilized immediately after they are generated. Inside the re-
view block, the input at each time step contains the hidden
states from all previous steps in the same block. They are
variants of high-order RNN (Soltani and Jiang 2016). Hence,
the intra-block connections can better capture long term de-
pendency. The decoder takes only the thought vectors from
the last review block as the input for the attention model. By
the inter- and inter-block connections, the hidden states in
the reviewer are reused heavily, which helps propagate er-
ror and preserve necessary information about the input. We
provide formal and detailed descriptions as follows.

We denote the number of transition steps within the re-
view block as L and the number of review blocks as B.The
set of hidden states from encoder is denoted as A(0), and the
set of thought vectors from the b-th (b ≥ 1) review block
is denoted as A(b). The RNNs in the reviewer are all LSTM
units, and the i-th (i ≥ 1) LSTM in the b-th review block is
denoted as LSTM(b,i). Assume the global time step for the
i-th LSTM unit in the b-th block is t and the transition step
of is expressed as

[ht, ct] = LSTM(b,i) (Ht, ct−1) . (6)

It is a LSTM unit equipped with b attention models and we
denote the j-th (0 ≤ j ≤ b − 1) as f

(b,i,j)
review-att(A

(j),ht−1).
The input Ht is the concatenation of two vectors, which
represent intra- and inter-block connections. The first vec-
tor H(intra)

t is the concatenation of the preceding i hidden
states, which can be expressed as

H
(intra)
t =

⎡
⎢⎢⎣

ht−1

ht−2

...
ht−i

⎤
⎥⎥⎦ . (7)
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Figure 1: The diagrammatic illustration of our model. The reviewer contains recurrent blocks, each of which contains nested
transition steps. The purple lines represent the inter-block connections, which connect the thought vectors from preceding
blocks with attention models in the subsequent blocks. The blue lines represent the intra-block connections which connect the
preceding hidden states to the input of subsequent transition steps. The intra-block connections capture higher-order dependency
in the steps of reviewer. The decoder takes only the last thought vectors as input of the attention model.

For i = 1, H(intra)
t contains only one hidden state ht−1,

which is the one entering the current block from previous
block. For i > 1, H(intra)

t contains all the preceding states
within the same review block and the hidden state after the
last step of previous block. Hence, with H

(intra)
t , the LSTM

become a higher-order RNN (Soltani and Jiang 2016) and
can learn long term dependency in sequences.

The second vector H
(inter)
t is the concatenation of the

outputs of b attention models, which can be expressed as

H
(inter)
t =

⎡
⎢⎢⎢⎢⎣

f
(b,i,0)
review-att(A

(0),ht−1)

f
(b,i,1)
review-att(A

(1),ht−1)
...

f
(b,i,b−1)
review-att (A

(b−1),ht−1)

⎤
⎥⎥⎥⎥⎦ . (8)

With H
(intra)
t and H

(inter)
t , the input for the i-th LSTM in

the b-th block is expressed as Ht =

[
H

(intra)
t

H
(inter)
t

]
. Since

H
(intra)
t is for high-order connections and H

(inter)
t is for

connections from multiple attention models, our transition
unit is a higher-order LSTM with multiple attention models.

Discriminative Supervision

Discriminant supervision (Fang et al. 2015; Yang et al.
2016) is adopted in our model to further boost image cap-
tioning. Given a set of thought vectors A, a matrix A is
formed by selecting elements from V as column vectors.
A score vector s of words is then calculated as s(A) =
Row-Max-Pool (WA), where s(A) means s is vector de-
pending on A, W is a linear transformation matrix and
Row-Max-Pool(·) is a max pooling operator along the rows
of the input matrix. The i-th element of s is denoted si,
which represents the score for the i-th word. Adopting multi-
label margin loss, we obtain the loss function for discrimi-
nant supervision written as:

Ldis (A) =
∑
j∈W

∑
i/∈W

max (0, 1− (sj − si)) , (9)

where W is the set of all frequent words in the current sam-
ple. In this paper, we only consider the 1,000 most frequent
words in training set. With the above discriminant supervi-
sion loss function, the complete loss function of our model
is expressed as:

Lall = L+
λ

B

B∑
b=1

Ldis

(
A(b)

)
, (10)

where λ is a trade-off parameter.
The discriminative supervision can provide auxiliary su-

pervision signal for the hidden states from the review steps.
Hence, this technique can ease the training to some extent
and improve the quality of the thought vectors.

Connections to Review Net

Our model is a generalization of Review Net. If we remove
all the inter- and intra-block connections and set B = 1,
our model will be exactly the same as Review Net. The re-
viewer in Review Net only contains one review block and
can only generate one set of thought vectors. The effective
review depth is only about 8 for image captioning and code
captioning (Yang et al. 2016). However, with the inter- and
intra-block connections, our model can achieve better per-
formance with larger review depth.

Experiments

We illustrate the advantages of our model on two tasks,
i.e., image captioning and code captioning. The types of en-
coders are different for models on those two tasks. For im-
age captioning, the encoder is a CNN, while for the code
captioning, a RNN is employed.

Image Captioning

Dataset. The MS COCO dataset1 is the largest dataset for
the image captioning task. This dataset contains 82, 783,
40, 504 and 40, 775 images for training, validation and test

1http://mscoco.org/
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sets respectively. The captioning task on this dataset is chal-
lenging, because most images contain multiple objects in
complex scenes. Each image in this dataset has 5 captions
annotated by human. For offline evaluation, we following
the conventional evaluation procedure (Mun, Cho, and Han
2017; Yao et al. 2017; Yang et al. 2016), and employ the
Karpathy’s split (Karpathy and Fei-Fei 2015), which con-
tains 5,000 images for validation, 5, 000 images for test and
113, 287 images for training.

Training Settings. We use ResNet (He et al. 2016) as the
encoder for the image captioning task. Specifically, the out-
puts of the last convolutional layer (before pooling) are ex-
tracted as subregion features. The parameters for encoders
are fixed during the training encoder-decoder model. The
commonly used techniques including scheduled sampling,
label-smoothing regularization (LSR), dropout and early
stopping are adopted. For scheduled sampling, the proba-
bility of sampling a token from model is min(0.25, epoch

100 ),
where epoch is the number of passes sweeping over train-
ing data. For LSR, the prior distribution over labels is uni-
form distribution and the smoothing parameter is set to 0.1.
Dropout is only applied on the hidden states in reviewer
and decoder and the probability is set to 0.3. If the evalu-
ation measurement on validation set, specifically the CIDEr,
reaches the maximum value, we terminate the training pro-
cedure. The LSTM size is set as 512 for all LSTM units in
our model. The Adam (Kingma and Ba 2015) is applied to
optimize the network, and learning rate is set to 5 × 10−4

and decay every 3 epochs by a factor 0.8 when training with
cross entropy loss. Each mini-batch contains 10 images.

For sentence generation in testing stage, beam search
strategy usually provides better performance for models
trained with cross entropy loss, but greedy search is faster.
Hence, greedy search is used for evaluation on the validation
set and beam search is used to generate the final results.

Evaluation metrics. Following the standard evaluation
process, five types of metrics are used for performance com-
parisons, specifically the BLEU (Papineni et al. 2002), ME-
TEOR (Banerjee and Lavie 2005), ROUGE-L (Lin 2004),
CIDEr (Vedantam, Lawrence Zitnick, and Parikh 2015), and
SPICE (Anderson et al. 2016). These metrics measure the
similarity between generated sentences and the ground truth
sentences from different viewpoints. To provide convincing
comparisons, we provide the performance measured by all
the above metrics. We use the official MSCOCO caption
evaluation scripts2 and source code of SPICE3 for the per-
formance evaluation.

The captioning performance of competing models by
beam search is presented in Table 2, including the perfor-
mance of single model and ensemble of models. For our
model and Review Net, the ensembles of 4 models are eval-
uated. We can observe that the performance of our single
model is better than the baseline method Review Net, which

2https://github.com/tylin/coco-caption
3https://github.com/peteanderson80/coco-caption

proves that our strategy of constructing dense connections in
reviewer can improve the performance. Moreover, ensem-
ble of our models is also better than the ensemble of Re-
view Net. And the ensemble of our models performs the
best in competing models. The results of the same ensem-
ble model are submitted to the evaluation server for more
complete comparisons. The results of online evaluation are
shown in Table 3. We can see that our method outperforms
the competing methods trained with cross entropy loss. In
addition, the models Att2all∗ (Rennie et al. 2017) and Up-
Down∗ (Anderson et al. 2017) are better than ours. However,
they were trained with reinforcement learning and can not be
used to compare the model ability with our model. Note that
our model is better than Att2all trained with cross entropy
loss, as shown in Table 2.

review depth
8 16 32 64

C
ID

E
r

100

100.5

101

101.5

102

102.5

103

103.5

104

104.5

105

Review Net
Recurrent Nested Model

Figure 2: The effects of review depth.

Comparison with Review Net. To show the advantages
of our model, we also compare our model with Review Net
with different review depths. The CIDEr scores with greedy
search on validation set are plotted in Fig 2. For our model,
the number of steps within each block is set to 8. We can
see that our model becomes better as the review depth in-
creases. However, Review Net shows opposite trends. This
phenomenon are attributes to the nested structure and the
inter- and intra-block connections adopted in our model.
Moreover, we can see that our model performs the best when
review depth is 64, i.e. the number of blocks is 8. Hence, B
is set to 8 in all our experiments.

The Effects of L. The CIDEr scores on the validation
dataset with different values of L are studies in Table 3, in
which the number of blocks is fixed to 8. We can see that
the performance of model does not vary greatly. The model
with L = 8 is the best and the model with L = 2 performs
the worst. Note that L is also the number of the thought vec-
tors generated by each block. Hence, if L is too small, the
thought vectors do not contain the necessary information for
the decoder. Larger L will lead to more memory occupation
and it seems that if L is bigger than 8, increase L does not
improve the performance. Hence, L is set to 8 in all our ex-
periments.
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Table 1: Performance comparisons on the test set of Karpathy’s split (Karpathy and Fei-Fei 2015). All image captioning models
are trained with the cross-entropy loss. Σ indicates an ensemble, † indicates a different split, and (−) indicates an unknown
metric. All values are reported as percentage (%), and the highest value of each entry has been highlighted in boldface. The
results are obtained using beam search with beam size 3.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

Soft Attention (Xu et al. 2015) 70.7 49.2 34.4 24.3 23.9 - - -
Review Net(Yang et al. 2016) - - - 29.0 23.7 - 88.6 -
LSTM-A3 (Yao et al. 2017) 73.5 56.6 42.9 32.4 25.5 53.9 99.8 18.5
Text Attention (Mun, Cho, and Han 2017) 74.9 58.1 43.7 32.6 25.7 - 102.4 -
Attribute LSTM (Wu et al. 2016) 74.0 56.0 42.0 31.0 26.0 - 94.0 -
RIC (Liu et al. 2016) 73.4 53.5 38.5 29.9 25.4 - - -
CNNL +RHN (Gu et al. 2017) 72.3 55.3 41.3 30.6 25.2 - 98.9 -
Adaptive (Lu et al. 2016)† 74.2 58.0 43.9 33.2 26.6 - 108.5 -
Att2in (Rennie et al. 2017) - - - 31.3 26.0 54.3 101.3 -
Att2all (Rennie et al. 2017) - - - 30.0 25.9 53.4 99.4 -
ReviewNet 74.8 58.3 44.5 33.9 26.4 54.9 106.5 19.6
Recurrent Nested Model 75.7 59.6 45.8 35.1 26.9 55.7 109.7 20.1

Table 2: Performance of model ensemble on the test set of Karpathy’s split (Karpathy and Fei-Fei 2015). All image captioning
models are trained with the cross-entropy loss. Σ indicates an ensemble, † indicates a different split, and (−) indicates an
unknown metric. All values are reported as percentage (%), and the highest value of each entry has been highlighted in boldface.
The results are obtained using beam search with beam size 3.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

Attribute Attention (You et al. 2016)Σ 70.9 53.7 40.2 30.4 24.3 - - -
NIC (Vinyals et al. 2015)†Σ - - - 32.1 25.7 - 99.8 -
Att2in (Rennie et al. 2017)Σ - - - 32.8 26.7 55.1 106.5 -
Att2all (Rennie et al. 2017)Σ - - - 32.2 26.7 54.8 104.7 -
ReviewNetΣ 76.4 60.3 46.6 35.7 27.3 56.2 111.7 20.3
Recurrent Nested ModelΣ 76.7 60.8 46.9 36.2 27.5 56.5 113.1 20.4

number of steps in each block
2 4 6 8 10

C
ID

E
r

102.5

103

103.5

104

104.5

Figure 3: The effects of the number of steps in each block.

Ablation Studies. To show the effects of the two types of
dense connections, we perform an ablation study. We com-
pare our model with the following variants:

• Recurrent Nested Model - All Connections: All the
dense connections are removed and the rest stays the same
with our model. It is similar to the Review Net, but the
RNN steps in reviewer are divided into blocks.

• Recurrent Nested Model - Intra-block Connections:
Only the high-order intra-block connections are removed
and the rest stays the same with our model. Each transition
unit is connected to the units belonging to the preceding
blocks.

• Recurrent Nested Model - Inter-block Connections:
Only the inter-block connections are removed and the rest
stays the same with our model. Each transition unit is con-
nected to the units belonging to the same block and the
last step of the previous block.

For all the models, both B and L are set to 8. The CIDEr
scores by greedy search on the validation set are presented
in Table 4. We can see that removing any kind of connec-
tions lead to an inferior model and the model without the two
types of connection performs the worst. Hence, the dense
connections are helpful and necessary for our model.

Code Captioning

Dataset. In addition to the task with a CNN as the en-
coder, we also evaluate our model on the code captioning,
on which the encoder is a RNN. The task of code captioning
is to generate the comment for the given source code. The
HabeasCorpus (Movshovitz-Attias and Cohen 2013) dataset
is used to illustrate the effectiveness of our method. In this
dataset, 9 popular open source Java code are collected. The
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Table 3: Performance of different models on the MS COCO evaluation server. All values are reported as percentage (%). ∗
indicates models trained with reinforcement learning.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE

Methods C5 C40 C5 C40 C5 C40 C5 C40 C5 C40 C5 C40 C5 C40 C5 C40

NIC (Vinyals et al. 2015) 71.3 89.5 54.2 80.2 40.7 69.4 30.9 58.7 25.4 34.6 53.0 68.2 94.3 94.6 18.2 63.6
Captivator (Fang et al. 2015) 71.5 90.7 54.3 81.9 40.7 71.0 30.8 60.1 24.8 33.9 52.6 68.0 93.1 93.7 18.0 60.9
LRCN (Donahue et al. 2015) 71.8 89.5 54.8 80.4 40.9 69.5 30.6 58.5 24.7 33.5 52.8 67.8 92.1 93.4 17.7 59.9
Hard-Attention (Xu et al. 2015) 70.5 88.1 52.8 77.9 38.3 65.8 27.7 53.7 24.1 32.2 51.6 65.4 86.5 89.3 17.2 59.8
ATT-FCN (You et al. 2016) 73.1 90.0 56.5 81.5 42.4 70.9 31.6 59.9 25.0 33.5 53.5 68.2 94.3 95.8 18.2 63.1
Adaptive (Lu et al. 2016) 74.8 92.0 58.4 84.5 44.4 74.4 33.6 63.7 26.4 35.9 55.0 70.5 104.2 105.9 19.7 67.3
PG-BCMR (Liu et al. 2017) 75.4 91.8 59.1 84.1 44.5 73.8 33.2 62.4 25.7 34.0 55.0 69.5 101.3 103.2 - -
Review Net (Yang et al. 2016) 72.0 90.0 55.0 81.2 41.4 70.5 31.3 59.7 25.6 34.7 53.3 68.6 96.5 96.9 18.5 64.9

Att2all (Rennie et al. 2017)∗ 78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7 20.7 68.9
Up-Down (Anderson et al. 2017)∗ 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5 21.5 71.5
AoANet (Huang et al. 2019) 81.0 95.0 65.8 89.6 51.4 81.3 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6

Our model 76.3 93.6 60.1 86.6 46.3 77.1 35.5 66.6 27.1 36.9 56.0 72.0 108.4 108.9 - -

Table 4: Ablation study of inter- and intra-block connec-
tions. The CIDEr scores on the validation set are reported.

Method CIDEr

Recurrent Nested Model 104.3
Recurrent Nested Model - All Connections 102.6
Recurrent Nested Model - Intra-block Connections 103.6
Recurrent Nested Model - Inter-block Connections 103.0

dataset contains 6K Java source code files with 7M source
code tokens and 251K comment word tokens. About 10% of
the files are randomly selected as the test set and validation
set, respectively, and the rest 80% is used for training.

Metrics. All the methods are evaluated with the task of
code comment completion. We apply the model to predict
the next token and compute the percentage of characters that
can be saved. The metric of top-k character savings (CS-
k) (Movshovitz-Attias and Cohen 2013) is used for evalua-
tion. Specially, for a word of length l, we denote the mini-
mum number of prefix characters needed to be typed such
that the actual word ranks among the top-k list based on the
given model as n, and the number of saved characters would
be l − n. To obtain CS-k, the average percentage of saved
characters per comment is calculated. We follow the same
preprocessing as in (Yang et al. 2016) and set the dimension
of LSTM unit to 512, L = 8 and B = 8.

Results. We compare our model with the encoder-decoder
models whose decoder or reviewer are LSTM, soft at-
tention (Bahdanau, Cho, and Bengio 2015) and Review
Net (Yang et al. 2016). For the all the models compared,
the encoders are all LSTMs. Hence, we use the types of de-
coder or reviewer to distinguish them. So, “LSTM” means
an encoder-decoder model with LSTM as both encoder
and decoder, and “SoftAttention” means an encoder-decoder
model with LSTM as encoder and LSTM with soft attention
mechanism as decoder.

The performance measured with CS-k is presented in Ta-

Table 5: Comparison of models on the HabeasCorpus code
captioning dataset.“CS-k” refers to top-k character savings.

Model CS-1 CS-2 CS-3 CS-4 CS-5

LSTM 69.5 76.9 80.3 82.2 83.5
SoftAttention 71.2 78.6 81.7 83.4 84.7
Review Net 71.9 79.1 82.1 83.8 85.0
Our model 71.9 79.2 82.4 84.1 85.4

ble 54. We can see that introducing soft attention mecha-
nism and reviewer step can improve the performance over
the vanilla encoder-decoder. But our model can further im-
prove the performance, which shows that the dense review
network is also effective for the setting with RNN encoder.

Conclusion

In this paper, a recurrent nested model was proposed, which
can make the encoder-decoder model for sequence learning
deeper. Thus, the effective review depth is increased from
8 to 64. In our model, the reviewer is divided into blocks,
which contains nested transition steps. Two types of con-
nections between RNN steps were introduced, i.e., inter-
block connections and intra-block connections. The intra-
block connections make the transition steps be aware of the
all the states of preceding steps within the same block, and
the inter-block connections make the block be aware of the
thought vectors from all preceding blocks. By virtue of the
connections introduced, the hidden states in the reviewer are
reused heavily, thus helping propagate errors and preserve
necessary information about the inputs. The effectiveness of
the proposed models has been verified sufficiently on image
captioning and code captioning tasks.
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