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Abstract

Research for computation-efficient video understanding is of
great importance to real-world deployment. However, most
of high-performance approaches are too computationally ex-
pensive for practical application. Though several efficiency
oriented works are proposed, they inevitably suffer degrada-
tion of performance in terms of accuracy. In this paper, we
explore a new architecture EAC-Net, enjoying both high effi-
ciency and high performance. Specifically, we propose Mo-
tion Guided Temporal Encode (MGTE) blocks for tempo-
ral modeling, which exploits motion information and tem-
poral relations among neighbor frames. EAC-Net is then
constructed by inserting multiple MGTE blocks to common
2D CNNs. Furthermore, we proposed Atrous Temporal En-
code (ATE) block for capturing long-term temporal relations
at multiple time scales for further enhancing representation
power of EAC-Net. Through experiments on Kinetics, our
EAC-Nets achieved better results than TSM models with
fewer FLOPs. With same 2D backbones, EAC-Nets outper-
formed Non-Local I3D counterparts by achieving higher ac-
curacy with only about 7× fewer FLOPs. On Something-
Something-V1 dataset, EAC-Net achieved 47% top-1 accu-
racy with 70G FLOPs which is 0.9% more accurate and 8×
less FLOPs than that of Non-Local I3D+GCN.

Introduction

Along with recent outstanding performance achieved by
CNNs for image domains, such as semantic segmentation
(Li et al. 2017; Long, Shelhamer, and Darrell 2015; Zhang
et al. 2018) object detection (Liu et al. 2016; Ren et al. 2015)
and classification (Simonyan and Zisserman 2014; He et al.
2016; Hu, Shen, and Sun 2018), the use of CNNs has been
expanding significantly in other fields of computer vision.
In particular, a variety of CNN based methods have been
proposed for the tasks of video recognition, and have ob-
tained better performance to methods by traditional hand-
crafted features (Laptev 2005; Laptev et al. 2008; Scovan-
ner, Ali, and Shah 2007; Wang and Schmid 2013). Com-
pared with still image classification, video recognition is a
much more challenging task due to its higher dimensional
and more complicated input signals.
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For video classification task, recent popular architectures
can be divided into two categories based on whether there
is spatio-temporal fusion procedure. Two-stream 2D CNN
(Simonyan and Zisserman 2014) as the representative for
architectures without spatio-temporal fusion, capturing ap-
pearance and temporal information from RGB and optical
flow inputs, which has turned out to be effective for video
classification. 3D CNN (Ji et al. 2012; Tran et al. 2015) is
the representative for models with spatio-temporal model-
ing, which have been experiencing rapid development since
Kinetics dataset (Kay et al. 2017) available. Several recent
works focus on modeling appearance information and inter-
frame relations through separate branches within a spatio-
temporal module (Zhou et al. 2018b; Qiu, Yao, and Mei
2017; Wang et al. 2018a) for empowering the representation
for video tasks. Moreover, several other methods seek to al-
leviate training complexity of 3D kernels via factorization to
facilitate learning of spatio-temporal information (Sun et al.
2015; Xie et al. 2018; Tran et al. 2018).

Most recent approaches focus their mind on how to learn
expressive spatio-temporal representation for video classifi-
cation task but all suffer the problem of heavy computation
cost during inference. One factor leading to this problem
is that extension of 2D CNN by integrating spatio-temporal
modules usually results in large additional computation. An-
other factor is that most high-performance approaches tend
to test on many clips, each of which is densely sampled from
a raw video, and whole inference time becomes to multiply
the time of once forward of a clip. Therefore, in practical
use, studying approaches with better trade-off between ac-
curacy and computation cost is very significant.

Given the aforementioned concerns, we propose our
EAC-Net framework as one solution to the problem of trade-
off between computation cost and performance. We de-
signed MGTE block for temporal modeling, which consists
of two branch, one is temporal max pooling which summa-
rizes the responses between consecutive features and makes
the temporal relation encoding become invariant to small
changes. Another branch encodes the temporal relations of
neighbor frames by temporal convolutions and then refined
via a gate layer controlled by motion information. Inserting
MGTE blocks into 2D CNNs makes the short-term spatio-
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temporal information progressively and robustly injecting
into the final representation. In addition, we propose ATE
block for further processing features before feeding to clas-
sifier, which aims to extract temporal relations among video
snippets at different time scales. We evaluate our method
over Kinetics and Something-Something datasets. Experi-
ment results show that compared with state-of-the-art ap-
proaches, our EAC-Net gives much better trade-off between
accuracy and cost measured by FLOPs. For example, ap-
plying ResNet-50 as backbone, our EAC-Net achieves top-1
accuracy 75.3% at 196G FLOPS during inference. Besides,
the learned representation is transferred to the Something V1
dataset and achieves accuracy of 47% at 150G FLOPs. The
main contributions of our paper are summarized as follows:

• We propose a new generic building block, called MGTE
block for temporal modeling, which exploits tempo-
ral relations and motion information among neighboring
frames. It can be inserted into common 2D CNNs to em-
power the model to learn spatio-temporal features while
adding less additional computational cost.

• The proposed ATE block applies series of temporal atrous
1D convolutions on the top of the backbone, further
encoding the relations among video snippets, which is
turned out to be effective in improving recognition per-
formance.

• Based on ATE block and MGTE block, we propose a new
architecture, EAC-Net, which outperforms some state-of-
the-art approaches on both recognition accuracy and com-
putational cost, showing better trade-off between preci-
sion and computational efficiency.

Related Work

On the contrary, 3D CNNs are naturally capable of learn-
ing spatio-temporal features from raw video frames. Re-
cently, some successful variants of 3D CNNs are proposed
and show their satisfied performance for video tasks on large
scale datasets. I3D (Carreira and Zisserman 2017), inflated
from 2D networks, enables to utilize pre-trained 2D CNNs
to initialize 3D kernels, making a big progress on future
studies of video tasks. Due to the fact that convolution layer
extract features just in local neighborhood, non-local block
(Wang et al. 2018b) is proposed to capture both spatial and
temporal long-range dependencies and can be incorporated
into inflated deep ResNet architectures for video classifi-
cation. Most recently, CoST (Li et al. 2019) block is pro-
posed to learn complementary features from multiple views
and can be integrated into 2D ResNet architectures follow-
ing the similar implementation of extending 2D ResNet to
its C3D counterpart. Although the improvement on video
classification by these methods cannot be negligible, they
suffer from heavy computational cost in practical applica-
tion. Then, some efforts are also made to reduce computa-
tion cost of 3D convolution such as S3D (Xie et al. 2018)
and R(2+1)D (Tran et al. 2018) factorizing 3D convolu-
tion layer into a 2D spatial convolution and a 1D temporal
convolution for reduction of computation. MF-Net (Chen et
al. 2018b) utilize a model of small size, which is designed

Layer Name C2D
Output Size
T × S2

EAC-Net
Output Size
T × S2

Conv1 1× 72, 1× 22, 64 32× 1122 1× 72, 1× 22, 64 32× 1122

Pool1 1× 32, 1× 22,max 32× 562 1× 32, 1× 22,max 32× 562

Res2

⎡
⎢⎣
1× 12, 64

1× 32, 64

1× 12, 256

⎤
⎥⎦× 3 32× 562

⎡
⎢⎣
1× 12, 64

1× 32, 64

1× 12, 256

⎤
⎥⎦× 3 32× 562

Res3

⎡
⎢⎣
1× 12, 128

1× 32, 128

1× 12, 512

⎤
⎥⎦× 4 32× 562

⎡
⎢⎣
1× 12, 128

1× 32, 128

1× 12, 512

⎤
⎥⎦× 4 32× 282

Res4 1

⎡
⎢⎣
1× 12, 256

1× 32, 256

1× 12, 1024

⎤
⎥⎦× 1 32× 142

⎡
⎢⎣
1× 12, 256

1× 32, 256

1× 12, 1024

⎤
⎥⎦× 1 32× 142

Temporal
Block

None 32× 142
MGTE block

(d=128) 16× 142

Res4 {2:6}

⎡
⎢⎣
1× 12, 256

1× 32, 256

1× 12, 1024

⎤
⎥⎦× 5 32× 142

⎡
⎢⎣
1× 12, 256

1× 32, 256

1× 12, 1024

⎤
⎥⎦× 5 16× 142

Res5 1

⎡
⎢⎣
1× 12, 512

1× 32, 512

1× 12, 2048

⎤
⎥⎦× 1 32× 72

⎡
⎢⎣
1× 12, 512

1× 32, 512

1× 12, 2048

⎤
⎥⎦× 1 16× 72

Temporal
Block

None 32× 72
MGTE block

(d=256) 8× 72

Res5 {2:3}

⎡
⎢⎣
1× 12, 512

1× 32, 512

1× 12, 2048

⎤
⎥⎦× 2 32× 72

⎡
⎢⎣
1× 12, 512

1× 32, 512

1× 12, 2048

⎤
⎥⎦× 2 8× 72

Head GAP+Classifier 1× 12 ATE block+Classifier 1× 12

Table 1: Architecture of C2D and EAC-Net model. The di-
mensions of kernels are denoted by {T×S, C} for temporal,
spatial, and channel sizes. The stride of each model layer can
be represented as {temporal stride, spatial stride}. The input
size is 32 × 224 × 224. The backbone is ResNet-50. Here,
d is a hyperparameter, denoting the dimension for reduction
of input feature in a MGTE block.

to have good trade-off between performance and computa-
tional speed. However, all these methods sample multiple
subsets of the video densely and give the averaged output as
the prediction, where model inference on each of the sub-
sets is required, resulting a large amount of computation and
making the methods difficult to deploy in practical applica-
tion.

Our works are in some extent inspired by (Wang et al.
2018a; Zhou et al. 2018b; He et al. 2019), all of which learn
spatio-temporal features by proposed blocks with multi-
branch structures. Similarly, we designed the MGTE block
in which two branches are employed for temporal model-
ing. Specifically, temporal max pooling is highly efficient in
temporal modeling and thus chosen as one of the branches,
whose encoding reserves majority of spatial information of
neighboring frames, but without further exploration of tem-
poral relations among frames. Motivated by this point, we
add another computation-friendly branch for a supplement,
which fully exploits motion information and temporal re-
lations. Moreover, we propose ATE block to substitute the
global pooling layer connected before classifier. This block
aims to encode the complex relations among video snippets,
which is hard to be processed trivially by global pooling op-
eration. By zeroing out the responses from temporal relation
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Figure 1: Architecture of MGTE block, where the fea-
ture maps are shown as the shape of their tensors, e.g.,
Xin : 32× C ×H ×W for input feature with 32 temporal
length. “⊗” denotes matrix Hadamard product, and “⊕” de-
notes element-wise sum. Here, input dimension is reduced
to d = 128.

branch in MGTE block, EAC-Net keeps initial behavior of
its C2D counterpart at start of training, but finally it would
learn more powerful video features.

Approach

Overall Architecture

We can partition the construction of most action recogni-
tion architectures into three main components: 2D CNN
backbone for spatial modeling, temporal modeling block
and indispensable classifier. For example, C2D leverages the
strong spatial representation of 2D CNNs and its temporal
module is only a global temporal pooling applied on deep
features in the head. C2D is favored by its computational ef-
ficiency, but the temporal module is too trivial, resulting in
unsatisfied performance on video data. Motivated by above
analysis, we proposed a novel temporal block for increasing
the capacity of temporal modeling in EAC-Net.

Table 1 shows the overall architecture of our proposed
network. EAC-Net is constructed from ResNet (He et al.
2016) architecture. We propose MGTE blocks for tempo-
ral modeling which are added right after residual blocks of
Res4 1 and Res5 1, i.e. the first block of Res4 and Res5. The
resulting feature is then feed into our proposed ATE block to
form the final representation vector. Details about the MGTE
block and ATE block is given in the following sections.

MGTE block

As shown in Figure 1 MGTE block is a two-branch archi-
tecture, which is composed of a temporal pooling branch
and a temporal relation branch. As its name suggests, the

temporal relation branch aims to encode temporal relations
among neighbor frames complementing to the representa-
tion from pooling branch, where gating mechanism is further
applied for enhancing the capacity of MGTE block. Specif-
ically, denoting the input tensor as Xin with a tensor size
of T × C × H × W , where H and W for spatial size and
T for temporal size. First, we reduce the dimension of Xin

by 1 × 1 spatial convolution followed by a batch norm and
ReLU layer, resulting in a tensor Xd ∈ RT×d×H×W , then
we split Xd to two pairs by rearranging its temporal orders,
resulting in X2t = Xd[0, 2, 4, ...; :; :; :] ∈ RT/2×d×H×W ,
X2t+1 = Xd[1, 3, 5, ...; :; :; :] ∈ RT/2×d×H×W to facili-
tate the batch processing of every two neighboring frames.
First, X2t and X2t+1 are concatenated to form Xpairs ∈
RT/2×2d×H×W along the axis of feature dimension. Then,
the temporal relations can be computed as following:

Tpairs = relu(bn(kp ∗Xpairs)) (1)

Where kp ∈ Rd×2d×1×1 denotes the kernel of the
2D convolution layer, which encodes appearance rela-
tions between inter-frames into temporal features Tpairs ∈
RT/2×d×H×W .

Inspired by (Feichtenhofer, Pinz, and Wildes 2017; Sun
et al. 2018), we further refine the above temporal feature by
gate controlled by motion features estimated using neigh-
bor frames. For computational efficiency, the motion feature
is approximated by temporal gradient of neighbor features,
thus we have:{

Xdiff = |X2t −X2t+1|
Gate = σ(bn(kg ∗Xdiff ))

(2)

Here, σ denoted for sigmoid function, kg ∈ R1×d×1×1 is
the kernel of a 1 × 1 2D convolution layer for mapping to
gate value space. In practice, we found widening the access
to temporal context to control the gate further improved per-
formance, then we have the gate formulated as:{

Xcat = Concat(Xdiff , BC(Mean(Xd)))
Gate = σ(bn(kg ∗Xcat))

(3)

Here, Mean(·) denoted the operation for reduction of tem-
poral dimension of a tensor by averaging along that axis.
Concat(·) is applied along the 1st axis of input tensor and
BC(·) for broadcasting elements of a tensor to its tempo-
ral dimension. kg ∈ R1×2d×1×1is the kernel of a 1 × 1 2D
convolution layer for mapping to gate map. Gated temporal
features can be formulated as:

Tgate = Tpair ◦Gate (4)

The gate is conducted spatially for input tensor, aiming
to selectively process information for different spatial sub-
regions. Finally, we formulate the whole MGTE block as:

Tout = Tpool + Tgate (5)

Here, Tpool ∈ RT/2×C×H×W is computed through temporal
max pooling Xin with kernel size 2×1×1. ku ∈ Rc×d×1×1

is for expanding the dimension of Tgate to match that of
Tpool.
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Figure 2: Architecture of ATE block, where the shapes of
feature maps follow two types of formats: C × T ×H ×W
for channel, temporal and spatial sizes, and C × T for chan-
nel and temporal sizes, representing features squeezed along
spatial dimension. Here, “⊕” denotes element-wise sum.
The subscript “d” denotes dilation rate.

ATE Block

We propose ATE block for further encoding the temporal re-
lations among video snippets at multiple time scales. Specif-
ically, inputs to ATE block are global averaged across spatial
dimension, resulting in a tensor Fs ∈ RC×T , of which each
column vector represents a short video snippet. Similarly as
done in (Chen et al. 2018a),we then define three 1D convo-
lutions with dilation rates 1, 2 and 3, each kernel tensor is
formulated as ki ∈ Rd×C×3, i ∈ [1, 2, 3], aiming to capture
temporal relations at multiple time scales. Next, Fs ∈ RC×T

is temporally averaged followed by a temporal convolution
k4 ∈ Rd×C×1, leading to holistic temporal context. Thus,
we formulate the whole ATE block as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T1 = relu(bn(k1 ∗ Fs))
T2 = relu(bn(k2 ∗ Fs))
T3 = relu(bn(k3 ∗ Fs))
Tg = BC(relu(bn(k4 ∗Mean(Fs))))
Tr = Concat(T1, T2, T3, Tg)

Tout = Fs +Ku ∗ Tr

(6)

Here, Mean(·) and BC(·) are applied along 2nd axis of in-
put tensor, and Concat(·) applied along the 1st axis of input
tensor. ku ∈ RC×4d×1 is for expanding the dimension of Tr

to match that of Fs. Tout ∈ RC×T represents an ensem-
ble of features which encode relations among video snippets
at multiple time scales and also holistic temporal context.
As shown in Figure 2, Tout is averaged along temporal di-
mension (i.e. the 2nd axis of Tout) to obtain a video level
representation, which is then fed into following classifier.

Experiments

Datasets

We perform comprehensive studies on the challenging Ki-
netics dataset (Kay et al. 2017). This dataset contains 246k
training videos and 20k validation videos. It is a classifica-
tion task involving 400 human action categories. We train all
models on the training set and test on the validation set.

Other datasets reported are Something-something V1
(Goyal et al. 2017) which consists of 110k videos of 174 dif-
ferent low-level actions. In contrast to Kinetics, this dataset
requires making fine-grained low-level distinctions, some of
the ambiguous activity categories are challenging, such as
‘Turn something upside down’ vs. ‘Pretending to turn some-
thing upside down’. We also report results on this dataset to
show the generality of our models.

Implementation Details

During training. We first sample 32 frames at random rate
from a video, and resize shorter side of each sampled frame
to a number prepicked randomly from 215 to 345. Then
224 × 224 randomly cropping is applied to these processed
frames, leading to the network input with dimension of
32× 3× 224× 224. In all experiments, our models are ini-
tialized by ImageNet (Russakovsky et al. 2015) pre-trained
models. For Kinetics, we train for up to 60 epochs, starting
with a learning rate of 0.001 and a 10× reduction of learn-
ing rate respectively at 30, 50 epoch. We use a momentum of
0.9 and a weight decay of 5e-4. We then fine-tuned models
pre-trained on Kinetics to Something-Something V1 dataset,
where fine-tuning is conducted for 25 total epochs, starting
with initial learning rate 0.001 and reduced by a factor of 0.1
respectively at 10, 15, 20 epoch.
During inference. Many state-of-the-art methods use dif-
ferent post-processing techniques during the testing stage.
For example, Nonlocal (Wang et al. 2018b) and SlowFast
(Feichtenhofer et al. 2019) sample multiple subsets of the
video densely and give the averaged output as the predic-
tion, where model inference on each of the subsets is re-
quired, resulting in a large amount of computation. Since
we target at making the inference efficient and fast, in our
methods, 32 frames are first evenly sampled from a video,
and then we apply single crop per frame leading to only
32 processed frames for a video to evaluate our models.
Specifically, for Kinetics, short sides of sampled frames are
rescaled to 256 pixels and then 256× 256 center cropping is
applied to the resized frames. Next, we perform fully con-
volutional inference on these processed frames. For eval-
uations on Something-Something V1, we just modify the
rescaled size and center cropping size to 224 and 224× 224
respectively.

Ablation Study

We conduct ablation study on Kinetics datasets. All mod-
els are equipped with ResNet50 as backbone. Top-1 accu-
racy (%), as well as computational complexity measured in
FLOPs are showed to compare model performance.
Location and number of MGTE block. ResNet architec-
ture can be divided into 5 stages. We refer the Res3 x to
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Model, R50 Res3 1 Res4 1 Res5 1 Top-1 FLOPs
C2D \ \ \ 71.0 172.7G

EAC-Net w/o
ATE BLock

� × × 72.6 112.9G
× � × 73.6 134.5G
× × � 73.7 165.3G
× � � 74.3 130.8G
� � � 73.2 91.9G

Table 2: Results for adding MGTE blocks to different stages
of backbone.

Model, R50 Temporal Pool Temporal Relation Top-1 FLOPs
C2D × × 71.0 172.7G

EAC-Net w/o
ATE BLock

� × 72.0 128.2G
� � 74.3 130.8G

Table 3: The effect of temporal pooling branch and tempo-
ral relation branch in MGTE block. Here, MGTE blocks are
applied on to stage 4 and stage 5.

Res5 x as stage 3 to stage 5. The 2nd to 4th rows of Table
2 compare the performance of adding single MGTE block
right after only the first residual block on different stages in
ResNet-50, from stage 3 to stage 5, respectively. We con-
clude from the results that adding only one MGTE block al-
ready yield significant performance improvement compared
to the baseline C2D in Table 1, which demonstrates the ef-
fectiveness of the proposed MGTE block. Besides, adding
the MGTE block at latter stage (e.g., stage 5) yield better
accuracy than early stage (e.g., stage 3). One possible rea-
son is that temporal modeling is beneficial more with larger
receptive fields that can capture global temporal features. We
then add multiple MGTE blocks to ResNet-50 and leads to
the best result when adding two MGTE blocks respectively
to the stage 4 and stage 5. Next, we further add a MGTE
block to stage 3 and find from the results that the model suf-
fers top-1 accuracy degradation of 1.1% (73.2% vs. 74.3%),
which may be due to the fact that too early spatial temporal
fusion does harm to low-level feature learning (Carreira and
Zisserman 2017).
Ablation study on branches in MGTE block. In Table 3,
with respect to the C2D baseline with no temporal model-
ing at all, adding MGTE blocks with only pooling branch
boosts the model accuracy by 1% and significantly reduces
the FLOPs from 172.7G to 128.2G due to the temporal down
sampling by pooling branch. For fitting our earlier analysis
in paper, we also add the temporal relation branch for com-
plementing to the pooling branch. We can see that the accu-
racy is boosted by a large margin, 2.3% increased, while the
FLOPs are only increased from 128.2G to 130.8G.
Impact of gate on temporal relation representation. In
Table 4, we evaluated some variants of EAC-Nets on Ki-
netics, which differ in their respective implementations of
MGTE blocks. The first two rows in Table 4 compare the re-
sults of two variant models: one is equipped with modified
MGTE blocks whose gate mechanism is entirely disabled,
and the other a variant model with gate operation enabled
and controlled by temporal gradient of consecutive features.
From the results, we found that introducing the gate into
the temporal relation branch brings 0.6% top-1 accuracy im-

Model, R50 Temporal Gradient Global Context Top-1

EAC-Net w/o
ATE BLock

× × 73.0
� × 73.6
� � 74.3

Table 4: Ablation study on the gate in MGTE block. Re-
sults from the first two rows correspond to model configs
using MGTE blocks w. or w/o. enabling gate unit respec-
tively. Each component for controlling the gate is enabled
one by one, and the progressively improved performance
proves their individual effectiveness.

Model, R50 MGTE Block ATE Block Top-1 FLOPs

C2D × × 71.0 172.7G
× � 72.5 173.6G

EAC-Net � × 74.3 130.8G
� � 74.8 131.1G

Table 5: Ablation study on ATE block on Kinetics. Noting
that MGTE blocks are applied on to stage 4 and stage 5 in
EAC-Net.

provement, demonstrating the effectiveness of the gate con-
trolled by approximated motion features. Furthermore, ap-
plying holistic temporal context as an additional component
of controlling signals, can further promote model perfor-
mance. It is given in the 3rd line of Table 4 that 0.7% top-1
improvement is gained from adding holistic temporal con-
text as a control component.
Impact of ATE block. Here, we choose two baselines
to prove the effectiveness of ATE block; one is the best-
performing model in Table 2 where MGTE blocks are ap-
plied in stage 4 and stage 5; another is the C2D counterpart
described in Table 1. No ATE block is employed in both
of the baseline models. By observing the results in Table 5,
it would produce better accuracy w.r.t both of the baselines
that modifying the global average pooling in the head to ATE
block: top-1 accuracy of the C2D is further boosted to 72.5%
(71.0% vs. 72.5%), and for the other model, incorporating
ATE block brings 0.5% accuracy improvement. Moreover,
the inference FLOPs of both models are slightly increased
by 0.9G and 0.3G respectively. It evidences the fact that it is
necessary for enhancing performance of a video model that
modeling temporal interactions among the feature sequences
at different temporal scales.

Comparison with Other Methods on Kinetics

We evaluate our proposed framework against the recent
state-of-the-art methods on Kinetics-400 in terms of their
effectiveness (i.e. top-1 accuracy) and efficiency measured
by number of FLOPs. Each of the approaches is instanti-
ated using different 2D CNN backbones. Due to these meth-
ods differ in their inference strategy for cropping/clipping in
space and in time, each method is evaluated using different
numbers of temporal clips and spatial crops as input during
inference, and their top-1 accuracy and FLOPs are reported
in Table 6. For better analysis of accuracy-cost trade-off, we
apply the chart in Figure 3 to visualize the results in Table 6,
where the points in different shapes marked in Figure 3 are
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Methods Backbone Frame×Clip Input Size Top-1 FLOPs

I3D
InceptionV1 319∗ × 1 256× 256 70.2 544G

R50 32× 30 256× 256 73.3 1260G
R101 32× 30 256× 256 74.4 2010G

Nonlocal-I3D R50 32× 30 256× 256 74.9 1470G
R101 32× 30 256× 256 76.0 2190G

CoST R50 8× 10 256× 410∗ 74.1 750G
R101 8× 10 256× 410∗ 75.5 1370G

Slowfast(4× 16) R50 32× 30 256× 256 75.6 1080G
Slowfast(8× 8) R50 64× 30 256× 256 77.0 1980G
Slowfast(4× 16) R101 32× 30 256× 256 76.9 1740G

MF-Net Custom 16× 1 224× 224 65.0 11G
Custom 16× 50 224× 224 72.8 555G

StNet R50 125× 1 256× 256 69.9 189G
R101 125× 1 256× 256 71.4 310G

TSM

R50 8× 1 224× 224 71.2 33G
R50 16× 1 224× 224 72.6 65G
R50 8× 10 224× 224 72.8 330G
R50 16× 10 224× 224 73.7 650G
R50 8× 30 256× 256 74.1 1290G

EAC-Net

BNInception 32× 1 256× 256 73.5 61G

BNInception 48× 1 256× 256 74.2 91G

R50 32× 1 256× 256 74.8 131G

R50 48× 1 256× 256 75.3 196G

R101 32× 1 256× 256 75.5 209G

R101 48× 1 256× 256 76.3 313G

R152 32× 1 256× 256 76.6 305G

R152 48× 1 256× 256 77.2 458G

Table 6: Ablations on Kinetics-400 action recognition. We
show Top-1 classification accuracy (%), as well as computa-
tional cost measured in FLOPs. Numbers with “ *” are taken
as the averages of varying sizes of data fed to the model
when scanning all over the validation set.

associated with all the lines of results in Table 6 in a one-
to-one correspondence. Besides, the points corresponding to
results from the same family of models are connected with
dashed lines in the same color, aiming to make it possible to
intuitively learn about the sensitivity of model accuracy to
inference FLOPs. We mainly compare our framework with
two categories of approaches, where one category of meth-
ods focuses on designing efficient models for achieving bet-
ter trade-off between accuracy and cost, the other includes
high-performance approaches with less regards to computa-
tion complexity at inference. Noting that models reported in
Figure 3 are all under 2200G FLOPs at inference, consider-
ing that models with more than 2200G FLOPs thus can’t be
efficiently used in application.
For category of cost-efficient approaches. Several
efficiency-oriented approaches such as MF-Net (Chen et
al. 2018b), StNet (He et al. 2019), InceptionV1-I3D (Car-
reira and Zisserman 2017) and TSM (Lin, Gan, and Han
2019) are evaluated and listed in Table 6 for the first cat-
egory of methods. Compared to TSM, our method always
can achieve better performance at smaller FLOPs. Specifi-
cally, TSM achieves top-1 accuracy 72.6% with 65G FLOPs
and accuracy 72.8% with explosion of FLOPs to 330G, how-
ever, our BN-Inception based EAC-Net can beat both the

Figure 3: Comparisons of EAC-Net with previous ap-
proaches for video classification. Models from these ap-
proaches are instantiated with different backbones and eval-
uated using different test strategies. Our EAC-Net signifi-
cantly outperform other competitors by better trade-off be-
tween accuracy and cost, and provide a new upper envelope
in the accuracy-cost plot.

results by achieving top-1 accuracy 73.5% at smaller cost
of 61G FLOPs. If increasing the FLOPs of TSM to 650G
by enlarging input size to ten 16-frame clips, its accuracy is
boosted to 73.7%, while only 0.2% higher than accuracy of
our EAC-Net (73.7% vs. 73.5%), but at huge cost of about
10× more FLOPs than that of EAC-Net (650G vs. 61G).
By lengthening the input clip from 32 to 48 frames, the per-
formance of EAC-Net can be further boosted to 74.2% at a
cost of only 91G FLOPs, surpassing the result of TSM over
both accuracy and efficiency. Compared with the heaviest
model from TSM family, which applies 30 8-frame clips as
input and achieves top-1 of 74.1% with 1290G FLOPs, BN-
Inception based EAC-Net can still present higher accuracy
than TSM with over about 14× FLOPs reduction. MF-Net is
very cheap in FLOPs (11.1G FLOPs), but its performance is
poor (65.0%) if testing 1 clip. When 50 clips are used, top-1
is boosted to 72.8% at an increased cost of 555G. In a sim-
ilar case, the model size and performance of InceptionV1-
I3D is plausible, however, applying itself convolutional over
whole frames at inference leads to a cost of more than 500G
FLOPs. Our BN-Inception based EAC-Net outperform these
models by a large margin over accuracy and FLOPs, show-
ing a better trade-off.
For category of high-performance approaches. We first
perform apple-to-apple comparisons between EAC-Net and
Non-Local I3D by using same 2D backbones. As shown in
Table 6, EAC-Net models with 48-frame clip as input can
achieve 0.3% better accuracy with about 7× fewer FLOPs
compared to Non-local I3D counterparts which take more
than 1000G FLOPs at inference. SlowFast (Feichtenhofer et
al. 2019) network is a most recent state-of-the-art method,
and it can achieve 77% top-1 accuracy with 1980G FLOPs.
Our heaviest EAC-Net can achieve 77.2% accuracy with
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Methods Backbone #Frame×Clip Top-1 FLOPs

C2D ResNet50 32× 1 22.8 132G
TRN-Multiscale BNInception 8× 1 34.4 16G
TRN-Multiscale BNInception 8× 1 38.9 33G

ECO BNInception+R18 8× 1 39.6 32G
ECO BNInception+R18 16× 1 41.4 64G

ECOenLite BNInception+R18 92× 1 46.4 267G
I3D ResNet50 32× 2 41.6 306G

Nonlocal-I3D ResNet50 32× 2 44.4 336G
Nonlocal-I3D+GCN ResNet50+GCN 32× 2 46.1 606G

TSM ResNet50 8× 1 43.4 33G
TSM ResNet50 16× 1 44.8 65G

TSMen ResNet50 24× 1 46.8 98G

EAC-Net

BNInception 32× 1 44.5 47G

BNInception 48× 1 47.0 70G

ResNet50 32× 1 45.6 100G

ResNet50 48× 1 47.4 150G

Table 7: Comparisons of EAC-Net with state-of-the-art ap-
proaches on Something-Something V1 dataset.

only 458G FLOPs, about 4.3× fewer FLOPs than Slow-
Fast net. To the best of our knowledge, EAC-Net is the first
method whose top-1 accuracy could reach above 77% on
Kinetics validation sets but with a cost lower than 500G
FLOPs. By observing the chart in Figure 3, models from
EAC-Net family cluster in the upper left region of the chart,
matching high precision and low computational cost perfor-
mance.

Transfer Learning on Something-Something V1

We transfer the models of EAC-Net pre-trained on Kinetics
to Something-Something V1 dataset to show the learned rep-
resentation can be well generalized to video dataset which
heavily relies on temporal relationships. In Table 7 we
present the TRN (Zhou et al. 2018a) models, where only
late temporal fusion is added after feature extraction, lead-
ing to results significantly lower than state-of-art methods.
Then compared with ECO (Zolfaghari, Singh, and Brox
2018), our method achieves better performance at a smaller
FLOPs. For instance, our BN-Inception model achieves
44.5% with 47G FLOPs, which is 3.1% more accurate than
ECO while taking about 27% less computational cost (47G
vs. 64G). The ensemble version of ECO achieves top-1 ac-
curacy 46.4% with the FLOPs increased to 267G, However,
our BN-Inception based EAC-Net still presents better per-
formance by 0.6% more accuracy and 3.8× less FLOPs
than that of ensemble ECO (70G vs. 267G). For comparing
with high-performance methods, our BN-Inception model
can achieve only 0.1% accuracy improvement but with 7×
fewer FLOPs compared to the Non-local I3D network (47G
vs. 336G). Although the Non-local I3D + GCN (Wang and
Gupta 2018) network further boosts the top-1 accuracy to
46.1% with FLOPs as huge as 606G, our EAC-Net still
outperforms it by top-1 accuracy of 47% and 8.6× fewer
FLOPs (70G vs. 606G). Interestingly, we found that there
is a large accuracy gap between the results of C2D and our

EAC-Net (22.8% vs. 44.5%) on Something-Something V1
dataset. A similar case already happened when evaluating
TSN (Wang et al. 2016) models on Something-Something
V1 dataset, where TSN models achieved bad performance
due to the lack of temporal modeling (Lin, Gan, and Han
2019). Therefore, from the result of C2D, we conclude that
temporal dimension cannot be trivially addressed by only
pooling. In Table 7, the 8, 16-frame models of TSM al-
ready present property of cost-efficiency at inference, while
they failed to achieve decent accuracy. Ensemble of the 8,
16-frame models promotes the performance to top-1 46.8%
but at the cost increased to 98G FLOPs, however, which is
still 0.2% less accurate and 1.4× more costly than our BN-
Inception model (98G vs. 70G).

Conclusion

In this paper, we have proposed the EAC-Net for efficient
and accurate video recognition, which can be implemented
using common pre-trained 2D CNNs as backbone, and in-
corporating our proposed MGTE blocks for local temporal
modeling and ATE block for late temporal fusion to em-
power the model to learn video-level representation. Exper-
iments on large-scale benchmark Kinetics have verified the
effectiveness and cost-efficiency of EAC-Net. In addition,
EAC-Net trained on Kinetics also exhibits pretty good trans-
fer learning ability on the Something-Something V1 dataset.
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