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Abstract

Deep hashing methods have been proved to be effective and
efficient for large-scale Web media search. The success of
these data-driven methods largely depends on collecting suf-
ficient labeled data, which is usually a crucial limitation in
practical cases. The current solutions to this issue utilize Gen-
erative Adversarial Network (GAN) to augment data in semi-
supervised learning. However, existing GAN-based methods
treat image generations and hashing learning as two iso-
lated processes, leading to generation ineffectiveness. Be-
sides, most works fail to exploit the semantic information
in unlabeled data. In this paper, we propose a novel Semi-
supervised Self-pace Adversarial Hashing method, named
SSAH to solve the above problems in a unified framework.
The SSAH method consists of an adversarial network (A-
Net) and a hashing network (H-Net). To improve the qual-
ity of generative images, first, the A-Net learns hard samples
with multi-scale occlusions and multi-angle rotated deforma-
tions which compete against the learning of accurate hashing
codes. Second, we design a novel self-paced hard generation
policy to gradually increase the hashing difficulty of gener-
ated samples. To make use of the semantic information in un-
labeled ones, we propose a semi-supervised consistent loss.
The experimental results show that our method can signif-
icantly improve state-of-the-art models on both the widely-
used hashing datasets and fine-grained datasets.

Introduction

In the big data era, large-scale image retrieval is widely
used in many practical applications, yet it remains a chal-
lenge because of the large computational cost and high ac-
curacy requirement. To address the efficiency and effective-
ness issues, hashing methods have become a hot research
topic. A great number of hashing methods are proposed to
map images into a hamming space, including traditional
hashing methods (Andoni and Indyk 2006; Lin et al. 2018;
2019) and deep hashing methods (Cao et al. 2017; 2018b;
Liu et al. 2018; Sheng et al. 2018). Compared with tradi-
tional ones, deep hashing methods usually achieve better re-

∗This work was done as a research intern in Alibaba Group.
†Correspondence Author

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Class A Class B Class CHard A Hard B Hard C
Image Pairs Optimal BoundaryBoundaryBoundary of class A

Which boundary 
is optimal ?

(a) w/o Hard Sample Generation (b) w Hard Sample Generation

Figure 1: To obtain the optimal boundary for points with
similar hashing codes, we propose a novel self-paced deep
adversarial hashing to generate hard samples, as shown in
(b). Intuitively, these samples can help the network learn
more optimal classification boundaries.

trieval performance due to its powerful ability of feature rep-
resentation and nonlinear mapping.

Although great efforts have been devoted to deep
learning-based algorithms, the label-hungry property makes
it intractable in practice. Contrarily, for some retrieval tasks,
unlabeled data is always enough. To make use of unlabeled
data, several semi-supervised methods are proposed, include
graph-based methods like SSDH (Zhang and Peng 2017)
and BGDH (Yan, Zhang, and Li 2017), and generation meth-
ods like DSH-GANs (Qiu et al. 2017), HashGAN (Cao et al.
2018a) and SSGAH (Wang et al. 2018). Graph-based works
like SSDH and BGDH use graph structure to mine unlabeled
data. However, constructing the graph model of large-scale
data is expensive computation and time-consuming, and us-
ing batch data instead may lead to a suboptimal result. Cur-
rently, GAN (Goodfellow et al. 2014) is proved to be ef-
fective in generation tasks and then this novel technical are
introduced into hashing. Existing GAN-based methods re-
stricted by two crucial problems, i.e., generation ineffec-
tiveness and unlabeled-data underutilization.

In terms of generation ineffectiveness, the existing GAN-
based methods train the generation network solely based on
label information. This setting leads to ineffective genera-
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tions that are either too hard or easy for hashing code learn-
ing, which unable to match the dynamic training of the hash-
ing network. In terms of unlabeled-data underutilization,
most existing works like DSH-GANs (Qiu et al. 2017) only
exploit unlabeled data to synthesize high-quality images,
while the unsupervised data is not utilized when learning
hashing codes. We argue that, the above two issues are not
independent. In particular, the ineffecitive generation policy
makes triplet-wise methods like SSGAH (Wang et al. 2018)
failed to make the most of unlabeled data, since these algo-
rithms heavily depend on hard triplets.

In this paper, we propose a novel deep hashing method
as a solid solution for generation ineffectiveness and
unlabeled-data underutilization termed semi-supervised
self-paced deep adversarial hashing (SSAH). The main idea
of SSAH is depicted in Figure 1.

To tackle generation ineffectiveness, first, our method
tries to generate proper hard images to gradually improve
hashing learning. The generation network is designed to
produce hard samplesL1 with multi-scale masks and multi-
angle rotations. Second, we apply the key idea of SPL2 to
our framework aiming to control the hard generations in the
dynamic training procedure. To tackle unlabeled-data un-
derutilization, we propose a consistent loss by encouraging
consistent binary codes for the input image (both labeled and
unlabeled data) and its corresponding hard generations.

Specially, SSAH consists of an adversarial generation
network (A-Net) and a hashing network (H-Net). The loss
function contains four components, including a self-paced
adversarial loss, a semi-supervised consistent loss, a super-
vised semantic loss, and a quantization loss, which guide the
training of two networks in an adversarial manner. The A-
Net learns deformations and masks to generate hard images,
where the quality of these generative images are evaluated
by the H-Net. Then the H-Net is trained by both the input
images and the generated hard samples. In the test phase,
we only use the H-Net to produce hashing codes.

The main contributions of SSAH are three-fold:

• To generate samples properly, we propose a novel hash-
ing framework by integrating the self-paced adversar-
ial mechanism into hard generations and hashing codes
learning. Our generation network takes both masking and
deformation into account.

• To make better use of unlabeled data, a novel consistent
loss is proposed to exploit semantic information of all the
data in a semi-supervised manner.

• Experimental results on both general and fine-grained
datasets demonstrate the superior performance of our
method in comparison with many state-of-art methods.

1We define the samples which are difficult for current retrieval
as hard samples.

2The SPL theory (Kumar, Packer, and Koller 2010) is inspired
by the learning process of human, where samples are involved in
learning from easy to gradually complex ones.

Related Work

We introduce the most related works from two aspects:
Semi-supervised Hashing and Hard Example Generation.

Semi-supervised Hashing Based on whether labeled data
is used in the training process, hashing methods can be di-
vided into unsupervised (Liu et al. 2011), semi-supervised
(Yan, Zhang, and Li 2017), and supervised ones (Xia et al.
2014). Semi-supervised hashing is effective when a small
amount of labeled data and enough unlabeled data is avail-
able. SSH (Wang, Kumar, and Chang 2010) is proposed to
minimize the empirical error over labeled data and maxi-
mize the information entropy of binary codes over both la-
beled and unlabeled data. However, SSH is a traditional shal-
low method, which leads to unsatisfying performance com-
pared with deep hashing methods like SSDH (Zhang and
Peng 2017), BGDH (Yan, Zhang, and Li 2017), which are
discussed in the introduction.

Very recently, some semi-supervised hashing methods are
proposed, which use GAN (Goodfellow et al. 2014) to aug-
ment data. Deep Semantic Hashing (DSH-GANs) (Qiu et al.
2017) is the first hashing method that introduces GANs into
hashing. But it can only incorporate pointwise label which
is often unavailable in online image retrieval applications.
Cao et al. propose a novel conditional GANs based on pair-
wise supervised information, named HashGAN (Cao et al.
2018a) to solve the insufficient sample problem. However,
the sample generation is independent of hashing codes learn-
ing. Wang et al. (Wang et al. 2018) propose SSGAH which
utilizes triplet-labels and specifically designs a GANs model
which can be well learned with limited supervised informa-
tion. For cross-model hashing, Zhang et al. (Zhang, Lai, and
Feng 2018) mines the attention region in an adversarial way.
However, all the mentioned GAN-based methods try to gen-
erate as much as possible images, which is not an effective
and even feasible solution in most cases.

Hard Example Generation. Hard example generation is
currently used in training deep models effectively for many
computer vision tasks, including object detection (Wang,
Shrivastava, and Gupta 2017), retrieval (Huang et al. 2018),
and other tasks (Peng et al. 2018). Zhong et al. (Zhong et
al. 2017) propose a parameter-learning free method, termed
Random Erasing which randomly selects a rectangle region
in an image and erases its pixels with random values. How-
ever, hard example generations of Random Erasing is still
isolated with network training. The generated images may
not be consistent with the dynamic training status. Very re-
cently, Wang et al. (Wang, Shrivastava, and Gupta 2017) in-
troduce the adversarial mechanism to synthesize hard sam-
ples. This method incorporates pointwise supervised infor-
mation, e.g. class labels, which is often unavailable in online
image retrieval applications. Different from previous meth-
ods, we propose a novel architecture using the pairwise label
to generate hard samples for learning better hashing codes.
What’s more, our proposed generation networks learn hard
samples in a self-paced adversarial learning manner.
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Figure 2: An illustration of self-paced adversarial hashing (SSAH). SSAH is comprised of two main components: (1) an
adversarial network (A-Net) for hard sample generation, (2) a hashing network (H-Net) based on AlexNet for learning hashing
codes. In the step1, the A-Net takes as input the training images and pairwise similarity to learn a hard mask. This mask is
learned under the criterion that the hashing codes of masked image pairs become contrary to their pairwise label. In the step2,
the H-Net take both training images and the generated hard samples as input to learn more accurate binary codes. In the training
stage, hard generation and hashing codes are learned in an adversarial way.

Semi-supervised Self-paced Adversarial Hash

Given a dataset consist of labeled and unlabeled data. Since
each labeled image in the dataset owns a unique class label,
image pairs can be further labeled as similar or dissimilar
Sij = 0 or 1. where Sij denotes the pairwise label of images
(xi, xj). Our goal is to learn more accurate hashing codes bi
in a semi-supervised way. To this end, we will present Semi-
supervised Self-paced Adversarial Hashing (SSAH) in de-
tails. Since discrete optimization is difficult to be solved by
deep networks, we firstly ignore the binary constraint and
concentrate on binary-like code μi. Then we obtain bi from
μi. Figure 2 illustrates an overview of our architecture,
which consists of an A-Net for hard samples generation and
an H-Net for binary codes learning. The generation network
takes labeled and unlabeled images as inputs and produces
hard masks and rotated-related parameters as the outputs.
Then the H-Net learns compact binary hashing codes from
both generative hard samples and training images.

Adversarial Network

The A-Net is designed to generate hard images. Our method
generates hard images in two main methods. The first
method is to change the rotation angle and scale of the whole
image. Here we propose Multi-Angle Rotation Network,
termed MARN. The second method is to generate masks to
change the value of the pixel. Here we propose Multi-Scale
Mask Network, termed MSMN.
Multi-Angle Rotation Network. Motivated by STN (Jader-
berg et al. 2015), we propose the MARN to create multi-
angle rotations on the training images. The reason is we want
to preserve the location correspondence between image pix-
els and landmark coordinates. Otherwise, we might hurt the
localization accuracy once the intermediate feature maps are
disturbed. However, the Single-angle RN will often predict
the largest angle. To improve the diversity of generated im-
ages, the MARN is designed to produce n hard generations
with size d0 × d0 × (3 × n), where d0 is the scale of im-
ages x0. Each generated hard samples are required in differ-
ent ranges of angles. More specially, the rotation degree of
the first image is constrained within 10◦ clockwise and anti-
clockwise. The n-th generated image is constrained within

[10◦ × (n − 1), 10◦ × n] clockwise and anticlockwise. For
each input image xi, the MARN produces n hard generated
images, which is denoted as yi(n).
Multi-Scale Mask Network. The object of MSMN is to
produce multi-scale masks to make training images harder.
In the hashing learning stage, we can obtain the convolu-
tional features from different layers in H-Net. These features
represent different spatial scales region of the original im-
age. Correspondingly, we generate multi-scale additive and
multiplicative masks for these selected features.

The framework of MSMN is shown in Figure 3. Specially,
for each selected convolutional layer m, we extract features
fm with size dm× dm× cm, where dm is the spatial dimen-
sion and cm represents the number of channels. Given this
feature, our MSMN predicts an additive hard mask AMm

and a multiplicative hard mask PMm.
We use the sigmoid function as the activation function for

additive masks and tanh function for multiplicative masks.
The value of AMm with dm×dm is in range of [0, 1] and that
of PMm is in range of [−1, 1]. The corresponding features
of hard samples, which is denoted as Fm, is obtained by

Fm = (I − sigmoid(PMm)) · fm + tanh(AMm), (1)

When the value of m is 0, fm represents the images y(n)i .

Hashing Learning Network

We directly adopt a pre-trained AlexNet (Krizhevsky,
Sutskever, and Hinton 2012) as the base model of the H-
Net. The raw image pixel, from either the original images
and the generated images, is the input of the hashing model.
The learned additive masks AMm and multiplicative masks
PMm are only required in the coding process of generated
images yi. The hard feature maps are computed according
to Eq (1). For each generated images yi, μi are learned:

μ′
i
(n)

= H-Net(yi(n)|AMm, PMm, ∀m > 0). (2)

The output layer of AlexNet is replaced by a hashing layer
where the dimension is defined based on the length of the
required hashing code.
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Figure 3: The framework of MSMN, where pi denotes multi-
scale masks for the selected layer.

Loss Functions

In this section, we design the adversarial loss function, in-
cluding a self-paced adversarial loss and a supervised se-
mantic loss, for the A-Net to guide the generations of
hard samples. Besides, a hashing loss function for the H-
Net, including the supervised semantic loss and the semi-
supervised consistent loss, is proposed to learn better codes
by capturing semantic information of all data.
Self-paced Adversarial Loss. Most existing GAN based
hashing methods try to generate images to augment data.
However, these methods can not ensure the quality of gener-
ative samples, which may obtain bad samples: (1) too diffi-
cult or too easy, (2) unable to match the dynamic training.

To improve the effectiveness of generations, in this pa-
per, we leverage the H-Net to guide the training of the A-Net
by a novel definition termed hard degree. Firstly, we com-
pute the similarity degree of image pairs (xi, xj) by using
μT
i ∗μj+k

2k , where μi represents binary-like codes of the input
images. The distance of the pairwise label and the estimated
similarity degree is denoted as dij :

dij = Si,j − (2 ∗ Si,j − 1) ∗ μT
i ∗ μj + k

2k
. (3)

d′ij can be obtained similarly, where μ′
i represents the

binary-like codes of their corresponding generated images. .
Since the hard samples learned by the A-Net may increase

the H-Net loss, the value of d′ij is required to be larger than
that of dij . The hard degree hard(yi, yj) of generative im-
age pairs (yi, yj) is defined by using the difference between
dij and d′ij , which can be formulated as:

hard(yi, yj) = d′ij − dij =
(2Si,j − 1)

2k
(μ′T

i μ
′
j − μT

i μj).

(4)
We adopt a positive dynamic margin (1− dij)ω to define

the self-paced adversarial loss, which can be concluded as:

ladv(yi, yj , ω) = max(ω(1− dij)− hard(yi, yj), 0). (5)

where ω > 0 is a fixed constant.
Discussion. The self-paced adversarial loss has two mer-

its: considering inter-pair difference and generating hard
samples gradually. In terms of inter-pair difference, the
value of dij is large, when original image pairs (xi, xj)

is hard to distinguish. In this situation, the hard degree of
(yi, yj) is not necessarily large. By contrast, if (xi, xj) is
easy to be distinguished, the hard degree of (yi, yj) need to
be relatively large. To meet difference requirements, (1 −
dij) adapts the margin of hard degree. In terms of hard gen-
erations policy, with the training of H-Net, better codes are
learned and then dij become small gradually. 1− dij can be
used to obtain a larger margin, leading to harder generations.

Similarly, we use xi, yj as cross-domain image pairs,
where xi is the input image and yi is its corresponding
hard samples. The hard degree of (xi, yj) is define as
hard(xi, yj), which can be formulated as:

hard(xi, yj) =
(2Si,j − 1)

2k
(μT

i μ
′
j − μT

i μj). (6)

Then self-paced adversarial loss of (xi, yj) is defined
as ladv(xi, yj , ω/2), where the constant ω > 0 is used in
Eq (5). The whole self-paced adversarial loss is written as:

lsp =
∑

i,j

∑

n

ladv(y
(n)
i , y

(n)
j , ω) + ladv(xi, y

(n)
j , ω/2).

(7)
Supervised Semantic Loss. Similar to other hashing meth-
ods, we adopt a pairwise semantic loss to ensure the hashing
codes preserve relevant class information. The similarity de-
gree of image pairs is computed by μT

i ∗μj+k
2k . Then the value

of similarity degree is required to near the pairwise label
Si,j . Since the H-Net is trained by both labeled image and
their corresponding hard generations, the supervised seman-
tic loss can be written as:

lsem =
∑

i,j

lpair(xi, xj) + lpair(xi, yj) + lpair(yi, yi)

=
∑

i,j

μT
i ∗ μj

2k
+

μ′T
i ∗ μj

2k
+

μ′T
i ∗ μ′

j

2k
+

3

2
.

(8)
Besides, when training the A-Net, the supervised semantic
loss is also adopted as a regular term to preserve class in-
formation of the generative hard samples.
Semi-supervised Consistent Loss. In some related com-
puter vision tasks like semi-supervised classification,
pseudo-ensembles methods2 (Bachman, Alsharif, and Pre-
cup 2014; Laine and Aila 2016; Tarvainen and Valpola 2017)
are proved to be effective. These methods encourage consis-
tent networks output for each image with and without noise.
Motivated by the success of these works, we propose a novel
consistent loss to improve the utilization of unlabeled data.

However, compared with existing pseudo-ensembles
methods, which always adopt random and data-independent
noise, our proposed method designs the A-Net to gener-
ate more proper noise for the inputs, including multi-scale
masks and multi-angle rotation. Then the H-Net is required
to learn consistent binary codes of the training images xi

(including labeled and unlabeled images) and their corre-
sponding hard samples yi, by taking the hamming distance

2These methods develop from the cognitive ability of human.
When a percept is changed slightly, a human typically still consider
it to be the same object.
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Algorithm 1 Self-paced Deep Adversarial Hashing
Input: Training set and their corresponding class labels.
Output: H-Net function: H-Net(x|Θ2) and A-Net func-

tion: A-Net(x|Θ1).
1: For the entire training set, construct the pairwise label

matrix S.
2: for t = 1 : T epoch do
3: Compute B accordi.ng to Eq (2).
4: Fixing Θ2, update Θ1 according to Eq (11).
5: Fixing Θ1, update Θ2 according to Eq (12).
6: end for
7: return HN(x|Θ2), AN(x|Θ1).

between the hashing codes μi and μ′
i. The consistent loss

can be formulated as:

lcon =
∑

i

∥∥∥∥∥
k − μ′T

i ∗ μi

2k

∥∥∥∥∥
2

. (9)

Quantization Loss. Due to the ignorant of the binary con-
straint, a widely-used quantization loss is used to pull the
value of μi and that of bi together, which is written as:

lquan =
∑

i

‖μ′
i − b′i‖1 + ‖μi − bi‖1, (10)

Alternating Optimization

Our network consists of two sub-networks: an adversarial
network, termed A-Net, for hard image generation and a
hashing network, termed H-Net, for compact hashing codes
learning. As shown in Algorithm. 1, we train the A-Net and
the H-Net iteratively. The overall training objective of the A-
Net integrates the semantic loss defined in Eq (8), the self-
paced adversarial loss of three types of image pairs defined
in Eq (7) and the quantization loss defined in Eq (10). The
A-Net is trained by the following loss:

min
Θ1

αlsp + λ1lsem + βlquan. (11)

By minimizing this term, the A-Net is trained to generate
proper hard samples, leading to better hashing codes.

For the shared hashing model, the H-Net is trained by the
input data, including labeled and unlabeled images, and their
corresponding hard genrative samples. The supervised se-
mantic loss, semi-supervised consistent loss, and the quanti-
zation loss are used to train the H-Net. We update its param-
eters according to the following overall loss:

min
Θ2

λ1lsem + λ2lcon + βlquan. (12)

By minimizing this term, the shared H-Net is trained to learn
effective hashing codes.

Experiment

To test the performance of our proposed SSAH method,
we conduct experiments on general hashing datasets, i.e.
CIFAR-10 and NUS-WIDE, to verify the effectiveness of

Table 1: The mAP scores for different number of bits on
CIFAR-10 and NUSWIDE datasets.

Dataset CIFAR-10 NUSWIDE
12 bits 24 bits 48 bits 12 bits 24 bits 48 bits

ITQ-CCA 0.435 0.435 0.435 0.526 0.575 0.594
KSH 0.556 0.572 0.588 0.618 0.651 0.682
SDH 0.558 0.596 0.614 0.645 0.688 0.711

CNNH 0.439 0.476 0.489 0.611 0.618 0.608
HashGAN 0.655 0.709 0.727 0.708 0.722 0.730

SSDH 0.801 0.813 0.814 0.773 0.779 0.778
BGDH 0.805 0.824 0.833 0.803 0.818 0.828

SSGAH 0.819 0.837 0.855 0.835 0.847 0.865
SSAH 0.862 0.878 0.886 0.872 0.884 0.898

our method. Then we conduct experiments on two fine-
grained datasets, i.e. CUB Bird and Stanford Dogs-120, to
prove that our method is still robust and effective for more
complex fine-grained retrieval tasks. We also conduct some
analytical experiments to further verify our method.

Datasets

We conduct our experiments on two general datasets,
namely CIFAR-10 and NUSWIDE. CIFAR-10 (Krizhevsky
and Hinton 2009) is a small image dataset including 60k 32
× 32 images in 10 classes. Each image belongs to one class
(6000 images per class). NUS-WIDE (Chua et al. 2009) con-
tains nearly 270k images with 81 semantic concepts. For
NUS-WIDE, we follow (Liu et al. 2011) to use the images
associated with the 21 most frequent concepts, where each
of these concepts associated with at least 5,000 images. Fol-
lowing (Liu et al. 2011; Wang et al. 2018), we randomly
sample 100 images per class as the test set, and the others
are as a database. In the training process, we randomly sam-
ple 500 images per class from the database as labeled data,
and the others are as unlabeled data.

We further verify our experiments on two widely-used
fine-grained datasets, namely Stanford Dogs-120 and CUB
Bird. Stanford Dogs-120 (Nilsback and Zisserman 2006)
dataset consists of 20,580 images in 120 mutually classes.
Each class contains about 150 images. CUB Bird (Wah et
al. 2011) includes 11,788 images in mutually 200 classes.
We directly use test set defined in these datasets. The train
set is used as a database. In the training process, we ran-
domly sample 50% images per class s from the database as
labeled data, and the others are as unlabeled data.

Comparative Methods and Evaluation Metrics

For the general datasets, including CIFAR-10 and
NUSWIDE dataset, we compare our method (SSAH)
with three supervised deep hashing methods: CNNH (Xia
et al. 2014), HashGAN (Cao et al. 2018a), three semi-
supervised deep hashing methods: SSDH (Zhang and Peng
2017), BGDH (Yan, Zhang, and Li 2017), SSGAH (Wang et
al. 2018) and three shallow methods: ITQ-CCA (Gong et al.
2013), KSH (Liu et al. 2012), SDH (Shen et al. 2015). For
the fine-grained datasets, our method is further compared
with DSaH (Sheng et al. 2018), which is the first hashing
method designed for fine-grained retrieval.

For a fair comparison between traditional and deep hash-
ing methods, we conduct these methods on features ex-
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tracted from the fc7 layer of AlexNet which is pre-trained
on ImageNet. For deep hashing methods, we use as input the
original images, and adopt AlexNet (Krizhevsky, Sutskever,
and Hinton 2012) as the backbone architecture.
Evaluation Metric. We use Mean Average Precision (mAP)
for quantitative evaluation. The Precision@top-N curves and
Precision-Recall curves are shown in supple materials.

Implementation Details

Network Design. As shown in Figure 2, our model con-
sists of an A-Net including MSMN, MARN, and a H-Net.
For MSMN, we adopt a lightweight version of generator in
GANimation (Pumarola et al. 2018). This network contains
a stride-2 convolution, three residual blocks (He et al. 2016),
and a 1/2-strided convolution. Similar to Johnson et al.
(Johnson, Alahi, and Fei-Fei 2016), we use instance normal-
ization (Ulyanov, Vedaldi, and Lempitsky 2016). The figu-
rations of MSMN are shown in the supplematerials. MARN
is built upon the STN (Jaderberg et al. 2015). Different from
STN, our transformer network produces n sets of affine pa-
rameters. We adopt AlexNet (Krizhevsky, Sutskever, and
Hinton 2012) as the encoder of H-Net, fine-tune all layers
but the last one are copied from the pre-trained AlexNet.
Trainind Details. Our SSAH is implemented on PyTorch
and the deep model is trained by batch gradient descent. In
the training stage, images are regarded as input in the form
of batch and every two images in the same batch construct
an image pair. Practically, we train A-Net before H-Net. If
we first train H-Net, A-Net might output semantic-irrelevant
hard generated images, which would be a bad sample and
guide the training of hashing model in the wrong direction.
Network Parameters. The value of hyper-parameter λ1 is
1.0, λ2 is 0.5, α is 0.5 and β is 0.1. We use the mini-batch
stochastic gradient descent with 0.9 momentum. We set the
value of the margin parameters ω as 0.1, which increases
0.02 every 5 epochs. The mini-batch size of images is fixed
as 32 and the weight decay parameter as 0.0005. The value
of the number of the rotated hard samples n is 3.

Quantitative Results

Performance on general hashing datasets. The Mean Av-
erage Precision (mAP,%) results of different methods for
different numbers of bits on NUSWIDE and CIFAR-10
dataset are shown in Table 1. Experimental results show
that SSAH outperforms state-of-the-art SSGAH (Wang et
al. 2018) by 3.75%, 3.55% on CIFAR10, and NUSWIDE,
respectively. According to the experimental results, SSAH
can be seen to be more effective for traditional hashing task.
Performance on fine-grained hashing datasets. The fine-
grained retrieval task requires methods describing fine-
grained objects that share similar overall appearance but
have a subtle difference. To meet this requirement, there will
be greater demand for collecting and annotating data, where
professional knowledge is required in some cases. Since it is
more difficult to generate fine-grained objects, GAN-based
hashing methods are also not effective due to the scarcity
of supervised data. However, the experimental results show
that our method is still robust to this task.

The mAP results of different methods on fine-grained
datasets are shown in Table 2. The proposed SSAH
method substantially outperforms all the comparison meth-
ods. Compared with existing best retrieval performance
(DSaH (Alexnet)), SSAH achieves absolute increases of
4.55%, 6.24% on CUB Brid datasets and on Stanford dog
datasets, respectively. Compared with the mAP results on
traditional hashing task, our method is proved to achieve
a significant improvement in fine-grained retrieval. What’s
more, we only use the H-Net to produce binary codes in the
test phase and the DSaH method need to highlight the salient
regions before the encoding process. Thus, our method is
also more efficient in time.

Table 2: The mAP scores for different number of bits on
Stanford Dogs-120 and CUB Bird datasets.

Dataset Stanford Dogs-120 CUB Bird
12 bits 24 bits 48 bits 12 bits 24 bits 48 bits

HashGAN 0.029 0.172 0.283 0.020 0.0542 0.123
SSGAH 0.127 0.233 0.329 0.073 0.1321 0.247

DSaH 0.244 0.287 0.408 0.091 0.2087 0.285
SSAH 0.273 0.343 0.478 0.141 0.265 0.359

Performance of Unseen Classes. To further evaluate our
SSAH approach, we adopt the evaluation protocol from
(Sablayrolles et al. 2017). In the training process, 75% of
classes (termed set 75) are known, and the remaining 25%
classes (termed set 25) are used to for evaluation. The set 75
and set 25 are further divided into the training set and test
set. Data amount in train and test set are the same. Follow-
ing settings in (Zhang and Peng 2017), we use train75 as the
training set and test25 as the test set. For general hashing re-
trieval, the set75 of CIFAR-10 and NUS- WIDE consist of
7 classes and 15 classes respectively, results are calculated
by the average of 5 different random splits, mAP scores are
calculated based on all returned images.

The mAP scores under the retrieval of unseen classes are
shown in Table 3. Our SSAH method achieves the best re-
sult when retrieving unseen classes, which means that our
method achieves better generalization performance to un-
seen class. The experimental results on fine-grained datasets
are shown in supple materials.

Ablation Study

To further verify our method, we conduct some analysis ex-
periments including: (1) the effectiveness of hard samples
generation, (2) the analysis of each loss component, (3) the
effectiveness of self-paced generation policy.
Component Analysis of the Network. We compare our
MARN and MSMN with random image rotation/random
mask generation strategy in training stage using the AlexNet
architecture. (1) Random Image Rotation: For each image,
we obtain three rotated images, where each image are ro-
tated in the specified angle range. (2) Random Mask Gen-
eration: The values of multiplicative masks are in range of
[0, 1] and that of additive masks are in range of [−1, 1]. The
90% values of multiplicative and additive masks are required
in the range of [−0.1, 0.1].
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Table 3: The mAP scores under retrieval of unseen classes
on CIFAR-10 and NUSWIDE datasets.

Dataset CIFAR-10 NUSWIDE
12 bits 24 bits 48 bits 12 bits 24 bits 48 bits

ITQ-CCA 0.157 0.165 0.201 0.488 0.493 0.503
SDH 0.185 0.193 0.213 0.471 0.490 0.507

CNNH 0.210 0.225 0.231 0.445 0.463 0.477
DRSCH 0.219 0.223 0.251 0.457 0.464 0.360

NINH 0.241 0.249 0.272 0.484 0.483 0.487
SSDH 0.285 0.291 0.325 0.510 0.533 0.551

SSGAH 0.309 0.323 0.339 0.539 0.553 0.579
SSAH 0.338 0.370 0.379 0.569 0.571 0.596

We report our results for using MARN and MSMN
in Table 4. For the AlexNet architecture, the mAP of
our implemented baseline is 75.1% ∼ 79.2% and 76.2% ∼
80.1% on CIFAR-10 and NUS-WIDE datasets. Based on
this setting, joint learning with our MARN model improves
baseline by 4.5% and 4.4%, respectively on these datasets.
Joint learning with the MSMN model improves baseline by
7.0% and 6.9%. As both methods are complementary to
each other, combining MARN and MSMN into our model
gives another boost to 86.2% ∼ 88.6% and 87.2% ∼ 89.8%
on CIFAR-10 and NUS-WIDE datasets, respectively.

Table 4: The mAP scores of SSAH using different network
components (MARN and MSMN).

Methods CIFAR-10 NUSWIDE
12 bits 48 bits 12 bits 48 bits

baseline 0.751 0.792 0.762 0.801
random rotate 0.788 0.810 0.797 0.828

+MARN 0.801 0.831 0.810 0.842
random mask 0.792 0.813 0.806 0.811
+MSMN (+) 0.811 0.838 0819 0.832
+MSMN (×) 0.820 0.847 0.831 0.849

+MSMN 0.830 0.853 0.840 0.861
random rotate+mask 0.796 0.816 0.810 0.833

Ours(full) 0.862 0.886 0.872 0.898

Component Analysis of the Loss Functions. Our loss func-
tion consists of three major components: lsem, lcon and
lsp. lsp includes that of hard and cross-domain image pairs,
which are denoted as lsph and lspc. To evaluate the contribu-
tion of each loss, we study the effect of different loss com-
binations on retrieval performance. From Table 5, when we
use lsem, lcon and lquan to train H-Net, and lsp and lsem
to train A-Net, the retrieval performance is best. For the H-
Net, the self-paced adversarial loss lsp may destroy the train-
ing procedure of accurate binary codes. Combined with lcon,
our method further improves about 2%, which shows H-Net
capture the semantic information of unlabeled data. We also
show some typical visualization results of hard masks using
different loss components of the A-Net in Figure 4.

As shown in Figure 4, for the A-Net, if we only use the
semantic loss, the generated mask would avoid the object.
if we only use the self-paced adversarial loss, the generated
mask occludes the object in some cases. However, using the
combination of ladv and lsem can obtain a proper mask. The
object is partially occluded and it still can be recognized.
The effectiveness of Self-paced Hard Generation Policy.

Images lsem lsp lsem + lsp

Figure 4: Typical Examples of the learned mask using dif-
ferent loss components on fine-grained dataset.

Table 5: The mAP scores of SSAH on CIFAR-10 dataset
using different combinations of loss functions.

A-Net H-Net CIFAR-10
12 bits 24 bits 48 bits

lsem lsem + lcon
0.809 0.823 0.85

lsph 0.821 0.843 0.862
lspc 0.836 0.850 0.870
lsp 0.848 0.862 0.872

lsem + lsp
lsem 0.841 0.855 0.867

lsem + lcon 0.862 0.878 0.886
lsem + lcon + lsp 0.843 0.852 0.8612

In this section, we evaluate SSAH on the impact of genera-
tion policy by self-paced vs. fixed-paced loss. To define the
fixed-paced loss, the dynamic margin (1−dij)ω in Eq (5) is
replace by a fixed parameter ω. The fixed-paced loss is for-
mulated as lfixed(yi, yj , ω) = max(ω − hard(yi, yj), 0).

As shown in Table 6, compare with fixed-paced loss, the
self-paced adversarial loss is more effective and also robust
to the margin parameter ω. A possible reason is that the
fixed-paced loss can not match the dynamic training proce-
dure, and balance hard pairs and simple ones.

Table 6: The mAP scores of SSAH on CIFAR-10 using self-
paced loss and fixed-paced loss with different margin ω.

Margin Parameters ω Self-paced Loss Fixed-paced Loss
12 bits 48 bits 12 bits 48 bits

0.01 0.790 0.803 0.791 0.815
0.05 0.843 0.855 0.819 0.842

0.3 0.855 0.873 0.838 0.852
0.5 0.846 0.861 0.789 0.813
1.0 0.849 0.852 0.775 0.801

Ours(0.1) 0.862 0.886 0.839 0.861

Conclusion

To solve the data insufficiency problem, we propose a
Semi-supervised Self-paced Adversarial Hashing (SSAH)
method, consisting of an adversarial network (A-Net) and a
hashing network (H-Net). To exploit the semantic informa-
tion in images, and their corresponding hard generative im-
ages, we adopt a supervised semantic loss and a novel semi-
supervised consistent loss to train the H-Net. Then the H-Net
is used to guide the training of A-Net by a novel self-paced
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adversarial loss to produce multi-scale masks and some sets
of deformation parameters. The A-Net and the H-Net are
trained iteratively in an adversarial way. Extensive experi-
mental results demonstrate the effectiveness of SSAH.
Acknowledgements This work was supported by the Na-
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