
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Uncertainty-Aware Multi-Shot Knowledge
Distillation for Image-Based Object Re-Identification

Xin Jin,1∗ Cuiling Lan,2† Wenjun Zeng,2 Zhibo Chen1†
University of Science and Technology of China1 Microsoft Research Asia2

jinxustc@mail.ustc.edu.cn, {culan, wezeng}@microsoft.com, chenzhibo@ustc.edu.cn

Abstract

Object re-identification (re-id) aims to identify a specific ob-
ject across times or camera views, with the person re-id and
vehicle re-id as the most widely studied applications. Re-id is
challenging because of the variations in viewpoints, (human)
poses, and occlusions. Multi-shots of the same object can
cover diverse viewpoints/poses and thus provide more com-
prehensive information. In this paper, we propose exploit-
ing the multi-shots of the same identity to guide the feature
learning of each individual image. Specifically, we design an
Uncertainty-aware Multi-shot Teacher-Student (UMTS) Net-
work. It consists of a teacher network (T-net) that learns the
comprehensive features from multiple images of the same ob-
ject, and a student network (S-net) that takes a single image
as input. In particular, we take into account the data depen-
dent heteroscedastic uncertainty for effectively transferring
the knowledge from the T-net to S-net. To the best of our
knowledge, we are the first to make use of multi-shots of
an object in a teacher-student learning manner for effectively
boosting the single image based re-id. We validate the effec-
tiveness of our approach on the popular vehicle re-id and per-
son re-id datasets. In inference, the S-net alone significantly
outperforms the baselines and achieves the state-of-the-art
performance.

1 Introduction

Object re-identification (re-id) aims to identify/match a spe-
cific object in different places, times, or camera views, from
either images or video clips, for the purpose of tracking or
retrieval. Because of the high demand in practice, person re-
id and vehicle re-id are two dominant research areas for ob-
ject re-id. In this work, we focus on the popular image-based
person and vehicle re-id tasks.

Images to be matched typically have large variations in
terms of capturing viewpoints, (human) poses, lighting, and
occlusions, making re-id a challenging task (Subramaniam,
Chatterjee, and Mittal 2016; Su et al. 2017; Li et al. 2017;
Zhao et al. 2017; Ge et al. 2018; Qian et al. 2018; Zhang et
al. 2019; Wang et al. 2017; Liu et al. 2018b). These result

∗This work was done when Xin Jin was an intern at MSRA.
†Corresponding Author.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a1) (a2) (b1) (b2)

Figure 1: Challenges in image-based re-id: (a1) Inconsis-
tency of visible body regions; and (b1) Lack of comprehen-
sive information from a single image. Observation and Moti-
vation: multi-shot images make it easier to identify whether
they are the same person/vehicle as shown in (a2) and (b2).

in inconsistency of visible object regions across images (see
Fig. 1(a1)) and lack of comprehensive information from a
single image (see Fig. 1(b1)) for matching, and spatial se-
mantics misalignment.

Generally, for a specific object (e.g., person, vehicle),
multiple images captured from different viewpoints or times
can provide more comprehensive information, making the
identification much easier (see Fig. 1(a2) and (b2)). For ex-
ample, the difference between the rear of the vehicle is dif-
ficult to identify from the two single images in Fig. 1(b1)
but the difference becomes very obvious when comparing
the two sets of multi-shot images shown in Fig. 1(b2). It is
worth noting that for image-based re-id, only a single image
is available as a query during inference/testing. The explo-
ration of comprehensive information of multi-shot images is
underexplored and remains an open problem.

In this paper, we propose an Uncertainty-aware Multi-
shot Teacher-Student (UMTS) Network for exploiting the
multi-shot images to enhance the image-based object re-
id performance in a teacher-student manner, without in-
creasing the inference complexity or changing the inference
setting. We achieve this by distilling knowledge from the
multi-shots of the same object and applying it to guide sin-
gle shot network learning. Fig. 2 shows the flowchart of
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Figure 2: Proposed Uncertainty-aware Multi-shot Teacher-Student (UMTS) Network. It consists of a Teacher-network (T-net)
that learns features from the concatenation of multi-shots (i.e., K images, Yi) of the same identity i, and a Student-network
(S-net) that takes a single image Xi,k of the K images as input. To enable efficient feature learning from the T-net, we take
into account the data dependent heteroscedastic uncertainty and design an Uncertainty-aware Knowledge Distillation Loss
(UA-KDL), which we apply at different layers/stages of the teacher-student network. During inference, we use only the S-net.

the proposed Uncertainty-aware Multi-shot Teacher-Student
(UMTS) Network. It consists of a Teacher network (T-net)
that learns features from the multi-shots (i.e., K images) of
the same object, and a Student network (S-net) that takes
a single image of the K images as input. In particular, dif-
ferent individual images from the multi-shots have differ-
ent visible object regions, occlusions, and image quality, and
thus different capabilities in approaching the knowledge of
the multi-shot images. We take into account the data depen-
dent heteroscedastic uncertainty (Kendall and Gal 2017) and
design an Uncertainty-aware Knowledge Distillation Loss
(UA-KDL) to enable efficient learning of the S-net from the
T-net. We conduct extensive ablation studies and demon-
strate the effectiveness of the framework and components
on both person re-id and vehicle re-id datasets. Our main
contributions are summarized as follows:
• We propose a powerful Uncertainty-aware Multi-shot

Teacher-Student (UMTS) Network to exploit the compre-
hensive information of multi-shots of the same object for
effective single image re-id, without increasing computa-
tional cost in inference.

• We take into account the data dependent heteroscedastic
uncertainty and design an Uncertainty-aware Knowledge
Distillation Loss (UA-KDL), which can efficiently reg-
ularize the feature learning at different semantics levels
(i.e., layers/stages).

• To the best of our knowledge, we are the first to make use
of multi-shots of an object in a teacher-student learning

manner for efficient image-based re-id.

2 Related Work

2.1 Image-based Person/Vehicle Re-ID

For image-based person re-id, a lot of efforts are made to
address spatial semantics misalignment problem, i.e., across
images the same spatial positions usually do not correspond
to the same body parts. Many approaches tend to make
explicit use of semantic cues such as pose (skeleton), to
align the body parts (Kalayeh et al. 2018; Suh et al. 2018;
Liu et al. 2018a; Qian et al. 2018; Ge et al. 2018; Zhang et
al. 2019). Some approaches leverage attention designs to se-
lectively focus on different body parts of the person (Liu et
al. 2017; Zhao, Li, and others 2017). Some other approaches
split the feature map to rigid grids for the coarse align-
ment and jointly consider the global feature and local de-
tails (Sun et al. 2018; Wang et al. 2018b). Moreover, several
works use GAN to augment the training data with pseudo
labels assigned to remedy the insufficiency of training sam-
ples (Zheng, Zheng, and Yang 2017; Huang et al. 2018;
Zheng et al. 2019b). To address the viewpoint variation
problem for vehicle re-id, Zhou et al. design a conditional
generative network to infer cross-view images and then com-
bine the features of the input and generated views to improve
the re-id (Zhou and Shao 2017). In (Zhou and Shao 2018),
a complex multi-view feature inference scheme is proposed
based on an attention and GAN based model.

Different from the above works, we aim to explore the
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comprehensive information of multi-shot images of an ob-
ject in a teacher-student manner to improve single image
based re-id. It is a general re-id framework and we validate
its effectiveness for both person re-id and vehicle re-id.

2.2 Teacher-Student Learning

Recent studies show that the knowledge learned by a strong
teacher network can improve the performance of a student
network (Chen et al. 2017; Zhou et al. 2018; Wang et al.
2019). Hinton et al. propose distilling the knowledge in an
ensemble of models into a single model (Hinton, Vinyals,
and Dean 2015). Romero et al. extend this idea to enable
the training of a student that is deeper and thinner than the
teacher using both the outputs and the intermediate repre-
sentations learned by the teacher (Romero et al. 2015). Most
existing methods focus on learning a light-weight student
model from a teacher with the same input data. In contrast,
our work aims to distill knowledge from multi-shot images
to teach a single shot image feature learning for robust re-id.

2.3 Uncertainty and Heteroscedastic Uncertainty

In Bayesian viewpoint, there are two main types of un-
certainty: epistemic uncertainty and aleatoric uncertainty
(Kendall and Gal 2017; Gal 2016). Epistemic uncertainty
accounts for uncertainty in the model parameters, which
is often referred to as model uncertainty. Aleatoric uncer-
tainty can further be categorized into homoscedastic un-
certainty, which stays constant for different input data and
varies between different tasks, and heteroscedastic uncer-
tainty, which depends on the inputs to the model, with some
noisy inputs potentially having poorer predictions than oth-
ers (e.g., due to occlusion or low quality). Under a frame-
work with per-pixel semantic segmentation and depth re-
gression tasks, input-dependent heteroscedastic uncertainty
together with epistemic uncertainty are considered in new
loss functions (Kendall and Gal 2017), making the loss
more robust to noisy data. In a multi-task setting, Kendall et
al. show that the task uncertainty captures the relative con-
fidence between tasks, reflecting the uncertainty inherent to
the regression/classification task (Kendall, Gal, and Cipolla
2018). They propose using homoscedastic uncertainty as a
basis for weighting losses in a multi-task learning problem.

In our work, we exploit the heteroscedastic uncertainty of
the input data (multi-shot images and a corresponding single
shot image) to better transfer the knowledge distilled from
multi-shot images of an object to each single shot image.

3 Uncertainty-aware Multi-shot

Teacher-Student (UMTS) Network

We show the proposed Uncertainty-aware Multi-shot
Teacher-Student (UMTS) network in Fig. 2. It consists of
a Teacher network (T-net) that learns comprehensive fea-
tures from the multi-shot images of the same object, and a
Student network (S-net) that takes a single image from this
multi-shots as input. We aim to exploit the more compre-
hensive knowledge from the multi-shots of the same iden-
tity to regularize/teach the feature learning of a single image
for robust image-based object re-id. To effectively transfer

knowledge from T-net to S-net, we propose an Uncertainty-
aware Knowledge Distillation Loss (UA-KDL) and apply
them over intermediate layer features and the final match-
ing features, respectively. The entire network can be trained
in an end-to-end manner and only the S-net is needed in in-
ference. We discuss the details in the following subsections.

3.1 Motivation: Multi-Shots versus Single-Shot

For an object of the same identity, multiple images cap-
tured from different viewpoints/times/places are often avail-
able. There are large variations in terms of the visible re-
gions/occlusions, lighting, deformations (e.g., poses of per-
son), and the backgrounds. Multiple images can provide
more comprehensive information than a single image. For
image-based re-id, each identity usually has multiple images
in a dataset even though such grouping information cannot
be used in inference, where only a single image is used as
the query. There are very few works that explicitly explore
the multi-shot information to enhance image-based re-id.

We look into whether multi-shot images can lead to better
re-id performance and investigate how much benefit it can
potentially bring experimentally. As illustrated in Fig. 3, we
build three schemes (see (a)(b)(c)) based on the ResNet-50
which is widely used in re-id (He et al. 2016; Wang et al.
2018b; 2018a; Zhang et al. 2019; He et al. 2019). Scheme A
is a baseline scheme that uses single image for re-id. Scheme
B and Scheme C both assume four-shots of the same identity
1 are used together to obtain the re-id feature vector. Scheme
B (see (b)) obtains the re-id feature by averaging the feature
vectors of the four images while Scheme C (see (b)) jointly
extracts the re-id feature from the input of four-shot images
(input channel number: 3×4).

We show the performance comparisons on the person re-
id dataset CUHK03 (labeled setting) (Li et al. 2014) and ve-
hicle re-id dataset VeRi-776 (Liu et al. 2016) in Fig. 3(d).
Interestingly, Scheme B that simply aggregates the features
of four-shots outperforms (Scheme A) that uses single image
as input by 4.3% and 7.2% in mAP accuracy on CUHK03
and VeRi-776 respectively. Scheme B ignores the joint fea-
ture extraction and interaction among images of the same id
and Scheme C remedies these by simply concatenating four
images together in channel as the input. Scheme C outper-
forms Scheme A significantly by 9.0% and 12.7% in mAP
accuracy on CUHK03 and VeRi-776 respectively. We con-
clude that there is a huge space for improvement when multi-
shot images are available. However, during the inference, in
practice, only a single query image is accessible and there is
no identity information either for each image in the gallery
dataset for image-based re-id. Scheme B and Scheme C need
to take multi-shot images as input and are thus not practical,
but somewhat provide performance upper bounds.

To remedy the practical gap, we propose an Uncertainty-
aware Multi-shot Teacher-Student (UMTS) Network to
transfer the knowledge of multi-shot images to an individual
image (see Fig. 2). In inference, as shown in Fig. 3(d), our fi-
nal scheme UMTS with the S-net alone (Ours), which takes

1For each image, based on the groudtruth ids, we randomly se-
lect another three images of the same id to have four-shot images.
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Figure 3: Investigation on whether using multi-shot images can result in better re-id and how much benefit it potentially brings.
(a) Scheme A uses single shot image for re-id. (b) Scheme B assumes four-shot images are always used and the features
of the four images are averaged as the re-id feature. (c) Scheme C assumes four-shot images are always used and the re-id
feature is jointly extracted from the input of four-shot images (we also use this as the Teacher network in our final scheme). (d)
Performance comparisons on person re-id dataset CUHK03 (labeled setting) and vehicle re-id dataset VeRi-776.

a single image as input, significantly outperforms Scheme A
by 6.2% and 8.9% in mAP on CUHK03 and VeRi-776 re-
spectively. Note that the model sizes of the three schemes
and our final model S-net are almost the same, with Scheme
C slightly larger (0.11%), which is fair for comparisons.

3.2 Teacher network and Student network

Based on the analysis in subsec. 3.1, we take a simple but ef-
fective network as in Scheme C (see Fig. 3(c)) as the Teacher
network (T-net) (see Fig. 2). More generally, we define the
number of shots as K and the input to the T-net is a tensor of
size H ×W × 3K. T-net and S-net have the same network
structure beside the difference in the number of the input
channels. Each network has four stages with each contain-
ing multiple convolutional layers, and one fully connected
layer, i.e., the fifth stage to obtain the re-id feature vector
for matching. For each network, we add the widely-used re-
identification loss (ReID Loss) (classification loss (Sun et
al. 2018; Fu et al. 2019), and triplet loss with batch hard
mining (Hermans, Beyer, and Leibe 2017)) on the re-id fea-
ture vectors. Note that our approach is general and any other
networks, e.g., PCB (Sun et al. 2018), OSNet (Zhou et al.
2019), can replace the teacher and student networks.

For ease of description, we mathematically formulate the
construction of training samples for the T-net and S-net.
Given the available images of identity i, we randomly se-
lect K images and obtain the set of K-shot images Si =
{Xi,1, · · · ,Xi,K}, where Xi,k ∈ R

H×W×3. We obtain an
input sample for the T-net by concatenating the K-shots in
channel as Yi ∈ R

H×W×3K . 〈Yi, Xi,k〉 forms a teacher-
student training pair, where k = 1, · · · ,K. Different from
previous teacher-student networks that share the same input
data, an input data to our student network (i.e., Xi,k) is only
part of the input data to our teacher network (i.e., Yi).

3.3 Knowledge Transfer with UA-KDL

Re-id aims to learn discriminative feature vectors for match-
ing, e.g., in terms of l2 distance. We expect the S-net to
learn a representation that is predictive of the representa-

tion of the T-net, at both the intermediate layers and the final
re-id features. At an intermediate feature level, considering
that the inputs to the T-net and S-net 〈Yi, Xi,k〉 are differ-
ent with spatial misalignment in contents, the intermediate
feature maps are spatially average pooled to obtain a fea-
ture vector before the regularization supervision. We denote
ybi = φb

t(Yi) ∈ R
cb as the feature vector at stage b of the

T-net with the input Yi, where b = 1, · · · , 5. Similarly, we
denote xb

i,k = φb
s(Xi,k) ∈ R

cb as the feature vector at stage
b of the S-net with the input Xi,k. We encourage the S-net
with a single-shot as input to learn/predict the more compre-
hensive information from the T-net with an input of K-shot
images by minimizing the knowledge distillation loss as

Lb
KD(i,k) = ‖θbt (ybi )− θbs(x

b
i,k)‖2, (1)

where θbt (y
b
i ) and θbs(x

b
i,k) denote projection functions

that embed the feature vectors ybi and xb
i,k of stage

b of the T-net and S-net to the same space/domain.
Here θbt (y

b
i ) = ReLU(BN(W b

t y
b
i )) and θbs(x

b
i,k) =

ReLU(BN(W b
sx

b
i,k)), which is achieved by a fully-

connected layer with matrix W b
t ∈ R

cb×cb/rb or W b
s ∈

R
cb×cb/rb followed by a Batch Normalization and ReLU ac-

tivation function. rb denotes dimension reduction ratio to re-
duce the model complexity and aid generalisation. We set
rb=16 for b = 1, · · · , 4, and r5=4 experimentally. Based
on the analysis in subsec. 3.1, we can assume the T-net is
always better than the S-net in terms of the feature represen-
tations. Thus the projected feature θbt (y

b
i ) of the T-net can be

considered as the regression target of the S-net. Besides the
updating of projection functions θbt (·) and θbt (·), the loss are
only back-propagated to the S-net to regularize its feature
learning as illustrated in Fig. 2.

Considering that the K samples of the S-net Si =
{Xi,1, · · · ,Xi,K} correspond to the teacher with the same
K-shot input Yi, we can optimize the S-net simultaneously
from the K samples with the knowledge distillation loss as

Lb
KD(i,:) =

K∑

k=1

‖θbt (ybi )− θbs(x
b
i,k)‖2. (2)
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However, in the above formulation, the heteroscedastic un-
certainty of each sample to approach the features of the T-net
is overlooked, where S-net’s samples are equally treated.

Heteroscedastic uncertainty has been studied from the
Bayesian viewpoint and applied to per-pixel depth regres-
sion and semantic segmentation tasks, respectively (Kendall
and Gal 2017; Gal 2016). It captures noise inherent in the
observations, which depends on the input data.

For re-id, different individual images have different visi-
ble object regions, occlusions, image quality, and thus have
different capability/uncertainty in acquiring/approaching the
knowledge of the given K-shot images of the same iden-
tity. Motivated by the uncertainty analysis in Bayesian deep
learning and its application in depth regression (Kendall and
Gal 2017), we design an Uncertainty-aware Knowledge Dis-
tillation Loss (UA-KDL) as

Lb
UKD(i,:) =

K∑

k=1

1

2σb(ybi , x
b
i,k)

2
‖θbt (ybi )− θbs(x

b
i,k)‖2

+ log σb(y
b
i , x

b
i,k)

2,

(3)

where σb(y
b
i , x

b
i,k) denotes the observation noise parame-

ter for capturing heteroscedastic uncertainty in regression
and is data-dependent. Based on the uncertainty analysis
in (Kendall and Gal 2017), minimizing this loss actually is
equivalent to maximizing the log likelihood of the regres-
sion for the purpose of approaching the feature of T-net by
the S-net p(θbt (y

b
i )|θbs(φb

s(Xi,k)). The introduction of uncer-
tainty factors allows the S-net to adaptively allocate learning
efforts on different samples for effectively training the net-
work. For example, for a noisy image with the object being
seriously occluded, the uncertainty to approach the feature
of multi-shot images is high (i.e., large σb) and it is wise to
give small weight to the loss to have a smaller effect. The
second item can prevent predicting infinite uncertainty (and
therefore zero loss for the first item) for all images.

In our framework, the heteroscedastic uncertainty for re-
gression depends on both the feature of the K-shot images
(which is the target) and the feature of the single image
(which intends to approach the target). Then we model the
log of uncertainty i.e., υb(ybi , x

b
i,k) := log(σb(y

b
i , x

b
i,k)

2),

υb(y
b
i , x

b
i,k) =ReLU(wb[θ

b
t (y

b
i ), θ

b
s(x

b
i,k)]), (4)

where [·, ·] denotes the concatenation, wb is achieved by a
fully connected layer to map [θbt (y

b
i ), θ

b
s(x

b
i,k)] to a scalar

followed by ReLU. Predicting the log of uncertainty is more
numerically stable than predicting σb, since this avoids a po-
tential division by zero in (3)(Kendall and Gal 2017).

3.4 Training and Inference

As in Fig. 2, for the K-shot images of the same identity i,
the overall optimization loss consists of the widely used re-
identification loss LReID, and the proposed UA-KDLs:

L(i,:) = LReID(i,:) +

5∑

b=1

λbLb
UKD(i,:). (5)

Note that we add the UA-KDL at all 5 stages (the first 4
stages and the final re-id feature vector of the last stage) to

enable the knowledge transfer on intermediate features and
the final re-id features. λb is a weight to control the relative
importance for the regularization at stage b. In considering
the re-id feature of stage 5 is more relevant to the task, we
experimentally set λ5 = 0.5, and λb = 0.1 for the first 4
stages. We find that training the T-net first to convergence
and then fixing the T-net followed by the joint training of
S-net and UA-KDL related parameters can produce better
performance (about 1.4% gain in mAP on CUHK03(L)) than
the end-to-end joint training. This can all along leverage the
stable superior performance of the T-net.

In inference, we use only the S-net without any increase
in computational or model complexity. The feature vector
x5
i,k from stage 5 is the final re-id feature for matching.

4 Experiments

4.1 Datasets and Evaluation Metrics

We conduct object re-id experiments on the most
commonly-used person re-id dataset, CUHK03 (Li et al.
2014) (including the labeled/detected bounding box set-
tings), and three vehicle re-id datasets of VeRi-776 (Liu et
al. 2016), VehicleID (Liu, Tian, and others 2016) and the
recent large-scale VERI-Wild (Lou et al. 2019).

We follow common practices and use the cumulative
matching characteristics (CMC) at Rank-1, and mean aver-
age precision (mAP) to evaluate the performance.

4.2 Implementation Details

We use ResNet-50 (He et al. 2016) to build the T-net, S-
net, and baseline respectively. We set K as 4 and add UA-
KDLs at all the 5 stages by default. The batch size is set as
64. Following (Hermans, Beyer, and Leibe 2017), a batch
is formed by first randomly sampling P identities. For each
identity, we then sample K images. Then the batch size is
P ×K for the S-net and P for the T-net. For simplicity, we
refer to batch size with respect to the S-net hereafter. The
input image resolution is set to 256×256 for vehicle re-id
and 256×128 for person re-id, respectively.

We use the commonly used data augmentation strategies
of random cropping (Zhang et al. 2019), horizontal flipping,
label smoothing regularization (Szegedy et al. 2016), and
random erasing (Zhong et al. 2017) in both the baseline
schemes and our schemes. We use Adam optimizer (Kingma
and Ba 2014) for model optimization. All our models are im-
plemented on PyTorch and trained on a single NVIDIA-P40
GPU.

4.3 Ablation Study

We perform comprehensive ablation studies to demonstrate
the effectiveness of the designs in our UMTS framework,
on both the person re-id dataset CUHK03 (labeled bounding
box setting) and the vehicle re-id dataset VeRi-776.
Effectiveness of Our Framework. Table 1 shows the com-
parisons of our schemes with the baseline. Baseline denotes
the baseline scheme without taking into account multi-shot
images. MTS denotes our Multi-shot Teacher-Student Net-
work with knowledge distillation without considering the
heteroscedastic uncertainty (see formulation (2)). UMTS
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Table 1: Performance (%) of our schemes and Baseline. MTS
denotes our Multi-shot Teacher-Student Network. UMTS de-
notes Uncertainty-aware MTS. (bm+bn) denotes the knowl-
edge distillation losses are applied over stage m and n.

Model
CUHK03(L) VeRi-776

Rank-1 mAP Rank-1 mAP

Baseline 73.5 69.3 91.8 66.7

MTS(b5) 74.3 71.1 92.9 69.3
UMTS(b5) 76.6 72.8 93.7 70.9

UMTS(b1+b5) 77.8 73.4 93.9 71.8
UMTS(b2+b5) 78.6 74.3 94.4 73.5
UMTS(b3+b5) 79.3 74.8 94.8 74.1
UMTS(b4+b5) 78.8 74.5 94.4 74.0

MTS(all) 77.7 73.9 94.0 72.8
UMTS(all) 80.7 75.5 95.8 75.9

denotes our final Uncertainty-aware Multi-shot Teacher-
Student Network (see formulation (3)). UMTS(all) denotes
that the UA-KDL is applied at all five stages (b1 to b5).
Similarly, UMTS(b5) denotes that the UA-KDL is only
added at stage 5 while there is no knowledge distillation
loss on the other 4 stages. We make the following obser-
vations/conclusions.
1) Thanks to the exploration of the knowledge from

multi-shot images, and the heteroscedastic uncertainty,
our final scheme UMTS(all) significantly outperforms
Baseline by 6.2% and 8.9% in mAP accuracy on
CUHK03(L) and VeRi-776, respectively.

2) By learning the knowledge from multi-shots, our
MTS(all) outperforms Baseline by 4.6% and 6.1% in
mAP on CUHK03(L) and VeRi-776, respectively.

3) UMTS(all), which introduces the heteroscedastic uncer-
tainty, further improves the mAP accuracy by 1.6% and
2.8% on CUHK03(L) and VeRi-776, respectively.

4.4 Design Choices of UMTS

Which Stage to Add UA-KDL? To transfer the knowledge
from the T-net to the S-net, we add the UA-KDL over the
final stage re-id features (which are the most task-relevent)
as the scheme UMTS(b5). UMTS(b5) outperforms Baseline
by 3.5% and 4.2% in mAP on CUHK03 and VeRi-776, re-
spectively. We compare the cases of adding an UA-KDL to
a different stage (Conv Block), and adding UA-KDLs to all
stages (i.e., see Fig. 2). Table 1 shows the results. We ob-
serve that on each stage, the adding of UA-KDL leads to
obvious improvement and the gains are larger on stages 3, 4
and 2. When UA-KDL are added to all 5 stages, our scheme
UMTS(all) achieves the best performance.
Influence of the Number of Shots K and Batch Size B.
We study the influence of the number of shots K (K=2, 4, 8)
on re-id performance under the settings of different batch
sizes B (B=32, 64, 96 which is commonly used in re-id) on
CUHK03 and VeRi-776 datasets and show the results in Fig.
4. We have the following observations.
1) For batch size B=64, the setting with K=4 shots provides

the best performance. That may be because a smaller
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Figure 4: Study on the number of shots K and batch size B.

Input Baseline Ours Input Baseline Ours

Figure 5: Gradient responses from Baseline and our S-net
(Ours) using the tool Grad-CAM. Best viewed in color.

number of shots (e.g., K=2) for the T-net cannot provide
enough comprehensive information. When the shot num-
ber is too large, e.g., K=8, the number of samples (equiv-
alent batch size) for the T-net is small, e.g., B/K=8,
which is not enough to have precise statistical estimation
for the Batch Normalization layers.

2) When the batch size is small, i.e., B=32, large shot num-
ber K=8 results in inferior performance because of too
small number (B/K=4) of samples in a batch for the T-
net. When the batch size is increased to B=96, the perfor-
mance for K=8 shots further increases on CUHK03 and
saturates on VeRi-776. For K=4, the increase of batch
size does not bring benefit since using large batch tends
to converge to sharp minimums and leads to poorer gen-
eralization (Keskar et al. 2017). Besides, too large batch
size requires significant GPU memory resources.

We set B=64 and K = 4 to trade off the performance and
GPU memory requirement.

4.5 Visualization

Visualization of Feature Maps. To understand how the
multi-shot images benefit the feature learning of the single
image, we use Grad-CAM (Selvaraju et al. 2017) to visu-
alize the gradient responses of Baseline and S-net of our
UMTS in Fig. 5. We observe that Baseline tends to pay more
attention to some local regions and ignore some potential
discriminative regions on an object. In contrast, by exploit-
ing knowledge from multi-shot images which have a more
comprehensive perspective, our S-net can pay attention to
more regions to capture more discriminative information,
such as ‘bag’, ‘shoes’ (first row), and ‘shorts’ (second row)
on the persons, and ‘inspection sticker’ on the bus.
Visualization of Learned Uncertainty σ2

b . We visualize the
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Table 2: Performance (%) comparsions of the proposed UMTS and state-of-the-art methods on the vehicle re-id datasets.

Methods
VeRi-776

VehicleID VERI-Wild

Small=800 Medium=1600 Large=2400 Small Medium Large

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

GSTE (TMM) (Bai et al. 2018) – – – – – – – – 60.4 31.4 52.1 26.1 45.3 19.5
VAMI (CVPR) (Zhou and Shao 2018) 77.0 50.1 63.1 – 52.8 – 47.3 – – – – – – –
FDA-Net (CVPR) (Lou et al. 2019) 84.2 55.4 – – 59.8 65.3 55.5 61.8 64.0 35.1 57.8 29.8 49.4 22.7
Part-regularized (CVPR) (He et al. 2019) 94.3 74.3 78.4 – 75 – 74.2 – – – – – – –
MoV1+BS (IJCNN) (Kumar et al. 2019) 90.2 67.6 78.2 86.1 – 81.7 – 78.2 82.9 68.7 77.6 61.1 69.5 49.7

Baseline 91.8 66.7 74.4 80.4 72.4 77.1 69.8 75.2 77.6 65.2 72.7 60.3 63.8 45.0
UMTS 95.8 75.9 80.9 87.0 78.8 84.2 76.1 82.8 84.5 72.7 79.3 66.1 72.8 54.2
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Figure 6: Predicted uncertainty σ2
b for the 4-shot images on

the 5 stages respectively. Red represents large weight and
white means small weight. Best viewed in color.

predicted uncertainty factor σ2
b for the K-shot images (K=4)

on the five stages respectively in Fig. 6. In (a) and (b), the
uncertainties of image-4 (I4) are both relatively large due to
occlusion and poor image quality (blur). In (c), the uncer-
tainty values of I3 and I4 are larger than that of I1 and I2,
which may be because of the small scale and incompleteness
of the person. Fig. 6 (d) shows that I1 belongs to the minority
and thus has the highest uncertainty while the other similar
images have similar low uncertainty.

4.6 Comparison with State-of-the-Arts

We compare the proposed UMTS with other state-of-the-art
approaches and show the results in Table 2 and Table 3 for
vehicle re-id and person re-id, respectively. With the same
network structure in inference, our UMTS significantly out-
performs Baseline(ResNet-50) on all the datasets, by 9.2%
and 7.2% in mAP on the large-scale VERI-Wild for vehicle
re-id, and CUHK03 (labeled) for person re-id, respectively.
Our approach achieves the best performance on all the ve-
hicle re-id datasets and most of the person re-id datasets.
On the large-scale vehicle dataset VERI-Wild, our approach
outperforms the second best approach by 4.0%, 5.0%, 4.5%
for small, medium, and large sub-test sets, respectively.

Besides, our proposed UMTS is a general framework,
and can be easily applied to other powerful backbone net-
works to achieve superior performance. Table 3 also shows
the comparison when using OSNet (Zhou et al. 2019) as the

Table 3: Performance (%) comparsions of UMTS and state-
of-the-art methods on the person re-id dataset CUHK03.

Method

CUHK03

Labeled Detected

Rank-1 mAP Rank-1 mAP

HA-CNN (CVPR) (Li, Zhu, and Gong 2018) 44.4 41.0 41.7 38.6
PCB+RPP (ECCV) (Sun et al. 2018) 63.7 57.5 – –
Mancs (ECCV) (Wang et al. 2018a) 69.0 63.9 65.5 60.5
MGN (ACMMM) (Wang et al. 2018b) 68.0 67.4 66.8 66.0
HPM (AAAI) (Fu et al. 2019) 63.9 57.5 – –
CAMA (CVPR) (Yang et al. 2019) 70.1 66.5 66.6 64.2
CASN (CVPR) (Zheng et al. 2019a) 73.7 68.0 71.5 64.4
DSA-reID (CVPR) (Zhang et al. 2019) 78.9 75.2 78.2 73.1

Baseline (ResNet-50) 73.5 69.3 70.0 66.0
UMTS (ResNet-50) 80.7 75.5 77.2 73.4

Baseline (OSNet) (ICCV) (Zhou et al. 2019) – – 72.3 67.8
UMTS (OSNet) – – 78.6 74.1

backbone for person re-id. In comparison with this superior
baseline (which outperforms ResNet-50 backbone by 1.8%
in mAP), our UMTS achieves 6.3% improvement in mAP,
and achieves the best performance.

5 Conclusion

In this paper, we propose a simple yet powerful Uncertainty-
aware Multi-shot Teacher-Student (UMTS) framework to
exploit the comprehensive information of multi-shot images
of the same identity for effective single image based re-id. In
particular, to efficiently transfer knowledge from the T-net to
S-net, we take into account the heteroscedastic uncertainty
related to the single image input to the S-net and the K-shot
images input to the T-net and design an Uncertainty-aware
Knowledge Distillation Loss (UA-KDL) which is applied at
different semantics levels/stages. Extensive experiments on
person re-id and vehicle re-id both demonstrate the effec-
tiveness of the designs. Our UMTS achieves the best perfor-
mance on all the three vehicle re-id datasets and the person
re-id dataset. In inference, we only use the S-net without any
increase in computational cost and model complexity.
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