
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Associative Variational Auto-Encoder
with Distributed Latent Spaces and Associators

Dae Ung Jo,1 ByeongJu Lee,1 Jongwon Choi,2 Haanju Yoo,3 Jin Young Choi1

{mardaewoon, adolys, jychoi}@snu.ac.kr, {jw17.choi, haanju.yoo}@samsung.com
1Department of ECE, ASRI, Seoul National University, Korea

2Samsung SDS, Korea, 3Samsung Research, Korea

Abstract

In this paper, we propose a novel structure for a multi-
modal data association referred to as Associative Variational
Auto-Encoder (AVAE). In contrast to the existing models us-
ing a shared latent space among modalities, our structure
adopts distributed latent spaces for multi-modalities which
are connected through cross-modal associators. The proposed
structure successfully associates even heterogeneous modal-
ity data and easily incorporates the additional modality to
the entire network via the associator. Furthermore, in our
structure, only a small amount of supervised (paired) data is
enough to train associators after training auto-encoders in an
unsupervised manner. Through experiments, the effectiveness
of the proposed structure is validated on various datasets in-
cluding visual and auditory data.

Introduction

The brain combines multisensory information to understand
the surrounding situation. Through various sensory experi-
ences, humans learn the relationships between multisensory
data and understand the experienced situation. This mech-
anism to learn the relationship among multiple stimuli is
called associative learning (Bliss and Collingridge 1993;
Buonomano and Merzenich 1998; Van Praag et al. 1999).
Because of the associative learning mechanism, humans can
robustly understand and perceive their surrounding situa-
tions even when only some of the modalities are available.

In the field of machine learning, utilizing multi-modality
is also important issues because of its usefulness in a wide
range of applications (Baltrušaitis, Ahuja, and Morency
2018; Bengio, Courville, and Vincent 2013). As a represen-
tative example, object recognition and scene understanding
methods based on multi-modal data outperform the meth-
ods using only single-modal data (Hu, Li, and others 2016;
Ngiam et al. 2011). Moreover, one can generate the syn-
thesized data for a missing or desired modality (Cadena,
Dick, and Reid 2016; Lim et al. 2018; Senocak et al. 2018;
Spurr et al. 2018; Wang, van de Weijer, and Herranz 2018;
Yoo et al. 2017). The multi-modal data association is one
of the fundamental steps to understand the relationships
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Figure 1: Conceptual illustration of the proposed AVAE.
AVAE has modality-specific encoders and decoders for each
modality (image, voice). Each modality has its own latent
space, which is painted with a different color (red, green,
blue). The latent spaces are connected via the proposed as-
sociator which associates two different modalities.

among multi-modal data. Recently, along with the advances
of deep learning, many studies have attempted to solve the
multi-modal data association problem by deep learning al-
gorithms (Baltrušaitis, Ahuja, and Morency 2018). The stud-
ies have adopted an approach that encodes multi-modal data
into a shared latent space to memorize common features
among multiple modalities (Cadena, Dick, and Reid 2016;
Hu, Li, and others 2016; Ngiam et al. 2011; Spurr et al.
2018; Wu and Goodman 2018).

However, as pointed out by Chaudhury et al. (2017), most
existing studies did not consider the case that the charac-
teristic of each modality is very different from others. The
encoding in the shared latent space is hard to represent all
characteristics of the heterogeneous modalities or could be
biased to a dominant modality. Furthermore, the capacity of
the shared latent will be saturated as modalities increase and
so encounters a scalability problem. To mitigate the limita-
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tion of the shared latent space, we propose an approach that
adopts distributed latent spaces. In our approach, as shown
in Figure 1, each modality is encoded in each latent space
separately by the variational auto-encoder (VAE) (Kingma
and Welling 2013) and the distributed latent spaces are as-
sociated with the other modalities via associators.

The proposed structure is implemented with a deep neu-
ral network with multiple variational auto-encoders and
variational associators. The loss function to train the net-
work is derived by the variational inference framework. In
experiments, the effectiveness and performance are eval-
uated through comparison with the existing methods and
self-analysis using various datasets including voice and vi-
sual data. In addition, by self-experiments, the advantage of
our structure is verified on generalization ability for semi-
supervised learning, scalability of the network, and flexibil-
ity of distributed latent space dimensions.

Related Works

Multi-modality in Machine Learning

One of the major issues in machine learning is exploiting
multi-modal data for various applications, such as data gen-
eration (Kingma and Welling 2013; Goodfellow et al. 2014;
Spurr et al. 2018; Yoo et al. 2017), retrieval (Wang et al.
2016) and recognition (Hu, Li, and others 2016; Ngiam et
al. 2011). There are a lot of studies that extract modality in-
dependent features by finding the shared representation of
multi-modal data (Baltrušaitis, Ahuja, and Morency 2018).
The shared representation is utilized in diverse applications
such as handling a missing modality (Cadena, Dick, and
Reid 2016; Spurr et al. 2018) or accomplishing better per-
formance than models trained on single-modal data (Hu, Li,
and others 2016; Ngiam et al. 2011). The research related
to multi-modality can be categorized into two groups (Bal-
trušaitis, Ahuja, and Morency 2018).

One is a method mapping data from diverse modalities to
the shared latent space. Wu and Goodman (2018) proposes
the extended version of a Variational auto-encoder (Kingma
and Welling 2013) which combines distribution parameters
from encoders and calculate integrated distribution parame-
ters. Spurr et al. (2018) also a variant of Variational auto-
encoder for hand pose estimation with multi-modal data.
The model proposed by Spurr et al. chooses the input modal-
ity and the output modality pair and train the corresponding
encoder and decoder pair at every iteration. Cadena, Dick,
and Reid (2016) trains an auto-encoder that takes RGB im-
ages, depth images and semantic images as its network in-
put, then the trained model can a generate complete depth
image and semantic image from an RGB image and par-
tial depth and semantic image. Ngiam et al. (2011) builds
a deep-belief network structure that maps audio data and
lip images into the common hidden node for audio-visual
speech recognition. Hu, Li, and others (2016) extends the
RBM structure to reflect the sequential characteristic of a
speech dataset.

The other group comprises methods that encode the cor-
responding data to the latent space of each modality but en-
force similarity constraints to corresponded latent vectors.

Wang, van de Weijer, and Herranz (2018) trains domain spe-
cific encoders and decoders, allowing encoders and decoders
from different modality to be combined, then, the model is
able to generate an unseen data pair by combining the en-
coders and decoders. Chaudhury et al. (2017) extracts low-
level representation from original data first. Then they trains
auto-encoders for each modality and enforces similarity con-
straints to embedding spaces of each auto-encoders for cor-
related data pair. In (Frome et al. 2013), a model is trained to
maximize the similarity of an image feature and a vectorized
label to infer a proper label for a given image.

Associative Learning inspired by the Brain

The artificial neural network is an engineering model in-
spired by the biological mechanism of the brain. Parameters
of those networks are usually updated by Hebbian learn-
ing rule where weight connections between firing nodes
for input data are strengthened (Hebb 1961). The Hopfield
network and Boltzmann machine are representative exam-
ples (Ackley, Hinton, and Sejnowski 1985). The Hopfield
network models associative memory of human, thus network
is trained to memorize specific patterns. Even if the input
is incomplete, The Hopfield network can restore incomplete
data through recurrent iteration. The Boltzmann machine is a
stochastic version of the Hopfield network, which can learn a
latent representation for input data through its hidden nodes.

There have been many studies that investigate associa-
tive learning from the perspective of neuroscience (Bliss
and Collingridge 1993; Buonomano and Merzenich 1998;
Van Praag et al. 1999). In the recent study which tried to ana-
lyze associative learning at the cellular substrate level (Wang
and Cui 2018; 2017), they introduce the associative memory
cells to describe brain neurons which are mainly involved
in integration and storage of associated signals. A brain
learns associated information by enhancing the strength of
the synapses between co-activated associative memory cells
activated by associated signals. In this paper, we realize the
cross-modal association mechanism recently proposed by
Wang and Cui (2018), which assumes the comprehensive di-
agram based on the associative memory cells.

Method

Problem Statements

According to recent studies (Wang and Cui 2017; 2018), as-
sociative learning process in the brain includes intra-modal
and cross-modal association processes. The intra-modal as-
sociation process is to make humans familiar with single-
modal sensory information. On the other hand, the cross-
modal association process is accomplished to enhance the
strength of the synapses connecting multi-modal informa-
tion to be associated. The goal of this paper is to establish
the Bayesian formulation of these two association processes
and to realize them in a variational auto-encoder framework.

Graphical Model of Intra-Modal Association

Intra-modal association is the process of memorizing single-
domain information. To efficiently memorize a vast amount
of information, the model needs to extract the expressive
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Figure 2: Graphical models for intra-modal and cross-modal
association. Observable variables are illustrated as shad-
owed circles. θ, φ, ρ are distribution parameters: θ for true
distribution, φ for variational distribution, and ρ for cross-
modal association model. Subscripts denote modality. Dot-
ted lines indicate variational approximation of true probabil-
ity distribution. (a) Intra-modal association Latent variable
z is obtained by x through qφ(z|x) and x is inferred from z
through pθ(x|z) (b) Cross-modal association between two
modalities The cross-modal association model has mutual
connections between latent variables zi and zj .

features of the data. One way to make the encoding model
remember the features of the data in an unsupervised man-
ner is to formulate a mathematical model reconstructing the
original sensory data from the encoded information. Figure 2
(a) shows Bayesian graphical model to formulate the intra-
modal association to memorize a distribution of the latent
variable zi associated with the input variable xi for an obser-
vation in modality i. In the Bayesian framework, the objec-
tive is to infer model parameter θi of posterior distribution
pθi(zi|xi).

One of the most popular approaches to approximate an in-
tractable posterior is the variational inference method. In this
method, the variational distribution qφi

(zi|xi) approximates
the true posterior pθi(zi|xi) by minimizing the Kullback-
Leibler divergence, DKL (qφi

(zi|xi)‖pθi(zi|xi)). Accord-
ing to Kingma and Welling (2013), the minimization of
DKL (qφi

(zi|xi)‖pθi(zi|xi)) can be replaced with the max-
imization of the evidence lower bound, given by

L(qφi(zi|xi)) =−DKL(qφi(zi|xi)‖pθi(zi))
+ Eqφi

(zi|xi)[log pθi(xi|zi)], (1)

where Eqφi
(zi|xi) indicates expectation over distribution

qφi(zi|xi).

Graphical Model of Cross-Modal Association

In this section, we design a graphical model to represent the
cross-modal association mechanism as in Figure 2 (b). With-
out loss of generality, we consider a path from modality i to
j. From observations of an associated variable pair (xi,xj),
the distribution parameter ρji is inferred to model the asso-
ciation between zi and zj .

For a given observation pair (xi,xj), the cross-posterior
distribution pθi,ρji

(zj |xi) is defined by marginalization for
zi as

pθi,ρji(zj |xi) =

∫
pρji(zj |zi)pθi(zi|xi) dzi. (2)

To establish the cross-modal association model, we de-
fine a variational distribution for cross-posterior distribu-
tion qφi,ρji(zj |xi). Then, to infer the distribution parame-
ters (φi, ρji), we minimize Kullback-Leibler divergence be-
tween pθj (zj |xj) and qφi,ρji

(zj |xi). To avoid clutter, sub-
scripts for the distribution parameters are omitted in the re-
mainders of this section. Kullback-Leibler divergence be-
tween p(zj |xj) and q(zj |xi) is given by

DKL(q(zj |xi)‖p(zj |xj)) = log p(xj)−L(q(zj |xi)), (3)

where

L(q(zj |xi)) =

∫
q(zj |xi) log

p(xj)p(zj |xj)

q(zj |xi)
dzj . (4)

Since log-evidence log p(xj) is independent to the model
parameter, the target problem is identical to maximizing
the evidence lower bound L(q(zj |xi)). With probabilistic
tricks, L(q(zj |xi)) can be decomposed as following.

L(q(zj |xi)) =−DKL(q(zj |xi)‖p(zj))
+ Eq(zj |xi)[log p(xj |zj)]. (5)

The detail derivation is given in Appendix A of supplemen-
tary document.In Eq. (5), the first term is a negative KL
divergence term that leads zj given by xj to have simi-
lar distribution with a prior distribution of target modality.
The expectation term in Eq. (5) minimizes the reconstruc-
tion error of decoded output from zj fired from xi, which
also promotes the inference for ρji. By the similar steps, we
can easily derive the opposite association from modality j to
modality i.

Realization: Cross-Modal Association Network

We accomplish a realization of the aforementioned intra-
modal and cross-modal association models by extending the
Variational Auto-Encoder framework (VAE) (Kingma and
Welling 2013). Figure 3 illustrates the proposed cross-modal
association network for modality i and j. Although only
two modalities are considered in this paper, the proposed
model can be applied to the association among three or more
modalities also. In the proposed structure, the encoder pro-
duces the parameter of qφi

(zi|xi = xi), and the decoder
produces the parameter of pθi(xi|zi = zi). The encoder
and decoder are realized by deep neural networks. Likewise,
the latent space associating models pρji(zj |zi = zi) and
pρij (zi|zj = zj) are also realized by deep neural networks,
which are called by associator. Thus, the intra-modal as-
sociation network contains several auto-encoders, each of
which considers one of the multiple modalities only. The
latent spaces of the auto-encoders are connected by associa-
tors in a pairwise manner, which configure the cross-modal
association network.
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Figure 3: Overall structure of the proposed method for the modalities i and j. For an observation sample xi for the variable xi,
the intra-modal network of modality i encodes xi into a latent vector zi for the latent variable zi through the encoder Ei and
decodes zi to x̂i through decoder Di. In the case of association from modality i to j, a sample xi is encoded to zji through
the encoder Ei and the associator Aji. Then, zji is decoded to x̂ji through Dj . The procedure for the opposite direction is
performed in the same way.

The proposed network is trained in the two phases: intra-
modal training phase and cross-modal training phase. In the
intra-modal training phase, the auto-encoder in each modal-
ity is trained separately by minimizing the approximated
version of the negative evidence lower bound in Eq. (1).
As derived by Kingma and Welling (2013), variational dis-
tributions are assumed by the centered isotropic multivari-
ate Gaussian distribution. For a given observation sample
xi, the encoder Ei produces the mean μφi and the variance
σφi for a Gaussian distribution of qφi(zi|xi = xi). Then,
the latent vector zi is sampled as zi = μφi + σφi ∗ ε and
ε � N(0, I). Similarly, the decoder Di also produces the
mean μθi and the variance σθi for a Gaussian distribution of
pθi(xi|zi = zi). Then, the reconstruction vector x̂i is sam-
pled as x̂i = μθi + σθi ∗ ε and ε � N(0, I).

Using the samples, the empirical loss for auto-encoder can
be derived as

Lint(θi, φi;xi) = −Eqφi
(zi|xi)[log pθi(xi|zi)]

+ λ
′
intDKL(qφi

(zi|xi)||pθi(zi)),
= ||xi − x̂i||22

− λint

H∑
k

(1 + log σ2
φi(k)

− μ2
φi(k)

− σ2
φi(k)

).

(6)

where λint is a user-defined parameter and H is the dimen-
sion of the latent variable zi. μφi(k) and σ2

φi(k)
denote the

k-th element of μφi and σ2
φi

. The detail derivation presents
in Appendix B of supplementary document.

After the convergence of the intra-modal training phase,
the following cross-modal training phase proceeds to train
the associators while freezing the weights of the auto-
encoders. In the same way as in the intra-modal training
phase, for a given observation pair xi and xj , the encoders
Ei and Ej produce the latent vectors zi and zj , respectively.
In addition, associators Aji and Aij produce the latent vec-
tors zji and zij using inputs zi and zj , respectively. There-

after, the decoders Di and Dj produce the reconstruction
vectors x̂ij and x̂ji from zij and zji, respectively.

Using the samples, the empirical loss for Aji is designed
according to Eq. (5) as follows:

Lcrs(ρji;xi, xj) = −Eqρji (zji|xi)[log pθj (xj |zji)]
+ λ

′
crsDKL(qφi,ρji

(zji|xi)||pθj (zji))
= ||xj − x̂ji||22

− λcrs

H∑
k

(1 + log σ2
ρji(k)

− μ2
ρji(k)

− σ2
ρji(k)

).

(7)

where λcrs is a user-defined parameter and H is the dimen-
sion of the latent variable zji. (μρji , σ

2
ρji

) are parameters for
Gaussian distribution qφi,ρji(zji|xi) produced by Aji. The
detail derivation presents in Appendix B of supplementary
document.

The loss Lcrs(ρij ;xi, xj) for Aij is given in the same
form of Aji except the index. Note that all μ’s and σ’s in
Eq. (6) and Eq. (7) are the functions of weights (w) in en-
coders, decoders, or associators. Hence, the weights of the
proposed network are trained by the negative direction of the
gradient of the losses with respect to the weights (∇wL(·)).
Advantages of Proposed Method

Owing to the newly introduced associator, the proposed
model can associate heterogeneous modalities effectively.
Reckless coalescence of heterogeneous data may have a fa-
tal impact on associative learning such as the problem that
shared latent vectors can be biased to the dominant modal-
ity. However, in our model, the associator acts as a transla-
tor between heterogeneous modalities and thus the charac-
teristics of each latent space are preserved. Furthermore, in
contrast to the existing models which adopt a shared latent
space for the different modalities (Wu and Goodman 2018;
Spurr et al. 2018; Cadena, Dick, and Reid 2016; Ngiam et
al. 2011), our structure can provide a flexible dimensional
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encoding in each latent space depending on the complexity
of each modality. This provides better cross-modal data as-
sociation results.

The proposed model easily incorporates additional
modalities while maintaining the existing modalities. That
is, a new modality can be added via training of only a
new associator between an existing auto-encoder and a new
auto-encoder. Though the associator only associates the new
modality with one of the existing modalities, the model can
associate the new modality with the rest of the modality by
passing through multiple associators.

Finally, in contrast to existing models which always re-
quire paired data for cross-modal association, our structure
can train the associator with the only small amount of paired
data in a semi-supervised manner after learning each auto-
encoder using unpaired data independently. Since obtaining
paired data for cross-modal association is more expensive
than obtaining unpaired data, our model is cost-effective.
Furthermore, our model is plausible in that, when a person
learns a cross-modal association, the paired examples are
rarely given by a teacher after the person has become famil-
iar with each modality via self-experience without a teacher.

The aforementioned advantages of the proposed structure
are validated in the following experiment section.

Experiment

The implementation details for network architectures are
provided in Appendix C of the supplementary document.

Datasets

Google Speech Commands (GSC) (Warden 2018): As
the data for the auditory modality, we used the GSC dataset,
which consists of 105,829 audio samples containing utter-
ances of 35 short words. Each audio sample is one-second-
long and encoded with a sampling rate of 16KHz. Among
35 words, we chose 14 words, including words for each
digit (’ZERO’ to ’NINE’) and four traffic commands (’GO,’
’STOP,’ ’LEFT,’ ’RIGHT’). The chosen set has 54,239 sam-
ples. We extracted the Mel-Frequency Cepstral Coefficient
(MFCC) from each audio clip to generate an audio fea-
ture. MFCC has been widely used in the processing of
voice data because it reflects the human auditory percep-
tion mechanism well (Muda, Begam, and Elamvazuthi 2010;
Logan and others 2000; Rubin et al. 2016). The resulting
features are 40 × 101 matrices. We randomly divided the
original dataset into training, validation and test sets at the
ratio of 8:1:1.

German Traffic Sign Recognition Benchmark (GT-
SRB) (Stallkamp et al. 2011): For the visual data that
correspond to the traffic commands in GSC, we used the
GTSRB dataset, which consists of 51,839 RGB color im-
ages illustrating 42 kinds of traffic signals. In particular, to
evaluate the performance on pairs of traffic sign images and
voice commands in GSC, we chose four pair sets, where
each pair set has similar semantic meaning, i.e., (’Ahead
only,’ ’GO’), (’No entry for vehicle,’ ’STOP’), (’Turn left
and ahead,’ ’LEFT’), and (’Turn right and ahead,’ ’RIGHT’).
The first and the second element are taken from GTSRB and

GSC dataset, respectively. Then, to prevent the four signs
from occupying the entire latent space, we chose additional
sign images in GTSRB such as ’No overtaking,’ ’Entry to
30kph zone,’ ’Prohibit overweighted vehicle,’ ’No-waiting
zone,’ and ’Roundabout’. The chosen set includes 10,709
samples. All of the chosen signs have a circular backboard.
The size of each image varies from 15 × 15 to 250 × 250
pixels for each RGB channel in the original dataset. In our
experiments, we resized all images into 52× 52.

MNIST (LeCun et al. 1998): We used the MNIST dataset
as the corresponding visual data to the GSC for each digit.
The MNIST consists of center-aligned 28 × 28 gray-scale
images for handwritten digits from 0 to 9. The dataset con-
tains 60k and 10k samples for the training set and testing set,
respectively.

SVHN (Netzer et al. 2011): We used the SVHN dataset
as another visual modality. Even though SVHN and MNIST
are equally categorized by digits, their capturing environ-
ments are very different from each other. The SVHN con-
sists of 32 × 32 RGB images for digits from 0 to 9. The
dataset contains 73257 and 26032 samples for the training
set and testing set, respectively.

Fashion-MNIST (F-MNIST) (Xiao, Rasul, and Vollgraf
2017): To validate that the proposed model can asso-
ciate even not semantically related datasets, we used the F-
MNIST dataset. We associated F-MNIST with the MNIST
and the GSC dataset. After this association learning, we
can imagine the clothing items (F-MNIST) from their num-
berings (MNIST). The F-MNIST consists of center-aligned
28 × 28 gray-scale images assigned with a label from 10
kinds of clothing such as T-shirt, Trouser and Sneaker. The
dataset contains 60k and 10k samples for the training set and
testing set, respectively.

Evaluation Metric

Since aforementioned datasets have no direct matching re-
lationships, we cannot measure cross-likelihood p(x1|x2)
for paired sample (x1,x2) used in recent works (Wu and
Goodman 2018; Suzuki, Nakayama, and Matsuo 2016). In
our work, we used the classification accuracy for the recon-
structed results as the evaluation metric of the association
models. The quality of results reconstructed by an associa-
tion model can be a valid measure to evaluate the association
model since the quality of the reconstructed results is accept-
able to both the human and the classifier. Table 2 shows the
performance of the classifiers trained with the each dataset,
which shows sufficient performance for evaluating the re-
constructed results of the compared encoders. For the GSC
dataset, we get performance comparable to the 88.2% (War-
den 2018).

Intra-Modal Association

As mentioned in the problem statements section, it is also
essential for the proposed model to learn the intra-modal as-
sociation that encodes single modal input data into the latent
space. For a fair comparison to existing works, we trained
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Table 1: Evaluation of cross-modal association models. Accuracy is measured by the classifier for the reconstructed data of the
target modality from the input data of the other modality. Bold font denotes the best performance for each case.

Classification Accuracy (%)

SVHN → F-MNIST MNIST → MNIST GSC → F-MNIST GSC → GTSRB GSC →
Model MNIST → MNIST F-MNIST → GSC MNIST → GSC F-MNIST → GSC GTSRB

VAE 38.73 47.36 41.86 10.34 28.61 12.83 22.18 35.93 19.44
VAE-CG 66.05 82.41 83.84 32.46 66.62 29.87 63.79 28.43 55.00
JMVAE 64.93 83.49 88.14 28.15 62.31 47.58 51.23 41.02 65.18

CVA 57.01 76.51 85.88 24.61 65.04 18.70 59.73 31.02 77.78
MVAE 31.18 62.65 77.62 23.04 46.70 13.52 33.24 28.06 69.17

ours 74.20 82.02 94.26 59.47 88.66 43.95 77.84 58.89 77.87
ours-flex - - - - - - - 61.39 80.56

Table 2: Performance of the classifier trained with the each
dataset and reconstruction performance of VAE. dim(z) de-
notes the dimension of latent space of VAE.

Dataset Acc (%) VAE (%) dim(z)

MNIST 97.97 96.12 64
F-MNIST 89.22 80.54 64

SVHN 93.73 78.22 64
GSC 88.65 81.93 64

GTSRB 98.53 95.70 64
GTSRB - 95.50 256

encoders and decoders for each dataset with the fixed di-
mension of latent space (dim(z) = 64). In addition, to show
the advantages of the proposed model where the dimension
of the latent space can be flexibly designed according to the
complexity of target modality, we trained additional auto-
encoder whose latent space dimension is 256 for GTSRB
dataset.

Table 2 shows the performance of the classifiers and the
intra-modal association network implemented by VAE. Per-
formance of VAE is also measured by the classifier on the
results reconstructed by VAE. As shown in the table 2, the
voice data in the GSC dataset shows much degraded accu-
racy, which means that the voice data are hard to be recon-
structed than other modalities. Since F-MNIST has confused
classes such as pullover, coat, and shirt, performance on F-
MNIST dataset is also degraded.

Cross-Modal Association

Cross-modal problem is defined to develop a model that can
generate the sample of target modality from a given sample
of source modality, where samples are semantically associ-
ated. We evaluated the proposed model on five scenarios:
(1) Association between MNIST and GSC, (2) GTSRB and
GSC, (3) F-MNIST and GSC, (4) F-MNIST and MNIST,
(5) SVHN and MNIST. Scenario (1), (2) and (3) are for as-
sociation between heterogeneous datasets, i.e. voice and im-
age datasets. Scenario (3) and (4) is for association between
datasets which have no semantic relations between classes.

Scenario (5) is for association between semantically related
datasets, through two datasets have different dataset char-
acteristics like image size. In order to train cross-modal as-
sociation, we used randomly paired training samples from
each dataset belonging to the correlated class. For example,
we paired a randomly chosen sample in ’0’ class of MNIST
dataset with a randomly chosen sample in ’ZERO’ class of
GSC dataset.

To evaluate the proposed associator, the following meth-
ods were compared: VAE and VAE-CG are variants of the
standard VAE. When training VAE, we constructed the train-
ing data with vectors concatenated with data from two asso-
ciated modalities, whereas one modality in the concatenated
vector for 50% of training data was set to zero-vector to learn
the case of the missing modality. VAE-CG is trained to gen-
erate the target modality sample from a given input sample
of other modality. VAE-CG has to be trained only by su-
pervised data with input and output pairs. Joint Multimodal
Variational Auto-Encoder (JMVAE) (Suzuki, Nakayama,
and Matsuo 2016) has two kinds of latent spaces: one is
for each modality and the other is for jointly encoding of
two modalities. The joint latent space is shared for associ-
ation between two modalities. The training for encoding in
the joint latent space is done to minimize Kullback-Leibler
divergence between the latent vector of each encoder and
the joint latent vector of the joint encoder. In comparison,
the hyper-parameter α was set to 0.01 for whole scenar-
ios. Cross-modal Variational Auto-Encoder (CVA) (Spurr et
al. 2018) is an extension of VAE for cross-modal data. In
CVA, the latent space is shared between two modalities. In
the training process, the selected sample pair are trained al-
ternately throughout iteration. Multimodal Variational Auto-
Encoder (MVAE) (Wu and Goodman 2018) is also a variant
of VAE for cross-modal data. MVAE uses the standard VAE
for each modality, but each latent space is associated via a
shared latent space expressing the unified distribution of the
association modalities. We trained MVAE by using the sub-
sampled training paradigm presented in their paper.

To evaluate the flexibility of encoding dimension in our
model, we have conducted an experiment where each modal-
ity is encoded in a different dimensional space from the
other. ours-flex has large dimension of latent space for GT-
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Figure 4: Qualitative results for 3D hand pose estimation
on RHD dataset. Each column corresponds to input images,
ground truth 3D keypoints, estimated 3D keypoints in order
from left to right.

SRB dataset (dim(z) = 256). Except for ours-flex, all com-
pared models use the same VAE of which the latent space
dimension is 64.

Table 1 shows the evaluation result of the proposed model
and the compared models for the cross-modal association.
The proposed model accomplishes significant enhancement
from the compared algorithms for most of the scenarios. In-
terestingly, in the challenging scenarios such as the asso-
ciation between heterogeneous modalities, for instance, be-
tween voice (GSC) and image data (MNIST, GTSRB), the
proposed model achieves a remarkable improvement com-
pared to the existing methods. The qualitative results of our
model are presented in Appendix D of supplementary mate-
rial.

Application: 3D Hand pose estimation

We have conducted additional experiments for 3D hand pose
estimation on Rendered Hand pose Dataset (RHD) (Zim-
mermann and Brox 2017). RHD dataset provides 320× 320
RGB image, depth map, segmentation map and 21 key-
points for each hand. The dataset contains 41258 training
and 2728 testing samples. The association target is to gener-
ate 3D keypoints from the RGB image. The evaluation met-
ric is the average End-Point-Error (EPE), which measures
Euclidean distance between ground truth keypoints and es-
timated keypoints. We used the same encoders and decoders
structure to CVA and added our associator. The proposed
model achieves 13.15, which outperforms recent 3D hand
pose estimation algorithms such as CVA (19.73) and HPS
(30.42) (Zimmermann and Brox 2017). Figure 4 shows qual-
itative results for 3D hand pose estimation.

Semi-supervised Learning

We conducted an additional experiment to verify the effec-
tiveness of the proposed associator in semi-supervised learn-
ing. Figure 5 illustrates a trend of performance variation
depending on the proportion of paired data, from 100% to
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Figure 5: Semi-supervised learning. Performance variation
while reducing the proportion of paired data from 100% to
1% in the GSC → MNIST. Our method can achieve much
better performance with only 5% paired data than the exist-
ing methods with 80% paired data.

Table 3: Performance of the proposed model in the case of
cascading association and direct association.

GSC → MNIST GSC → F-MNIST → MNIST

88.66 76.99

1% in the GSC → MNIST scenario. The result shows that
the proposed associator can achieve eminent performance
with only a small proportion of paired data (5%) in a semi-
supervised manner.

Scalability

The proposed structure can easily expand a new modality
while maintaining the existing modalities. That is, a new
modality can be added via training of only a new associator
between an existing auto-encoder and the new auto-encoder.
Since the associator connect only two latent spaces, if the
existing network associates N modality, N associators need
to be trained newly. In our model, this inefficiency can be
mitigated by cascading association through multiple associ-
ators. Table 3 compares the results of cascading association
and direct association for the example of MNIST, F-MNIST
and GSC dataset. The F-MNIST is utilized as a medium be-
tween MNIST and GSC. Although the cascading association
has some performance degradation, it still has good perfor-
mance compared to other algorithms presented in Table 1.

Conclusion

We proposed a novel multi-modal association network struc-
ture that consists of multiple modal-specific auto-encoders
and associators for cross-modal association. By adopting
the associators, the proposed multi-modal network can in-
corporate new modalities easily and efficiently while pre-
serving the encoded information in the latent space of each
modality. In addition, the proposed network can effectively
associate even heterogeneous modalities by designing each
latent space independently and can be trained by a small
amount of paired data in a semi-supervised manner. Based
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on the validation of our structure in experiments, future work
can attempt to implement a large-scale multi-modal associ-
ation network for practical use.
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Baltrušaitis, T.; Ahuja, C.; and Morency, L.-P. 2018. Multimodal
machine learning: A survey and taxonomy. IEEE Transactions on
Pattern Analysis and Machine Intelligence.
Bengio, Y.; Courville, A.; and Vincent, P. 2013. Representation
learning: A review and new perspectives. IEEE transactions on
pattern analysis and machine intelligence 35(8):1798–1828.
Bliss, T. V., and Collingridge, G. L. 1993. A synaptic model
of memory: long-term potentiation in the hippocampus. Nature
361(6407):31.
Buonomano, D. V., and Merzenich, M. M. 1998. Cortical plas-
ticity: from synapses to maps. Annual review of neuroscience
21(1):149–186.
Cadena, C.; Dick, A. R.; and Reid, I. D. 2016. Multi-modal auto-
encoders as joint estimators for robotics scene understanding. In
Robotics: Science and Systems.
Chaudhury, S.; Dasgupta, S.; Munawar, A.; Khan, M. A. S.; and
Tachibana, R. 2017. Conditional generation of multi-modal
data using constrained embedding space mapping. arXiv preprint
arXiv:1707.00860.
Frome, A.; Corrado, G. S.; Shlens, J.; Bengio, S.; Dean, J.;
Mikolov, T.; et al. 2013. Devise: A deep visual-semantic embed-
ding model. In Advances in neural information processing systems,
2121–2129.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-
Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014. Genera-
tive adversarial nets. In Advances in neural information processing
systems, 2672–2680.
Hebb, D. O. 1961. The organization of behavior. na.
Hu, D.; Li, X.; et al. 2016. Temporal multimodal learning in audio-
visual speech recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 3574–3582.
Kingma, D. P., and Welling, M. 2013. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradient-
based learning applied to document recognition. Proceedings of
the IEEE 86(11):2278–2324.
Lim, J.; Yoo, Y.; Heo, B.; and Choi, J. Y. 2018. Pose transform-
ing network: Learning to disentangle human posture in variational
auto-encoded latent space. Pattern Recognition Letters.
Logan, B., et al. 2000. Mel frequency cepstral coefficients for
music modeling. In ISMIR, volume 270, 1–11.
Muda, L.; Begam, M.; and Elamvazuthi, I. 2010. Voice recog-
nition algorithms using mel frequency cepstral coefficient (mfcc)

and dynamic time warping (dtw) techniques. arXiv preprint
arXiv:1003.4083.
Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; and Ng,
A. Y. 2011. Reading digits in natural images with unsupervised
feature learning.
Ngiam, J.; Khosla, A.; Kim, M.; Nam, J.; Lee, H.; and Ng, A. Y.
2011. Multimodal deep learning. In Proceedings of the 28th inter-
national conference on machine learning (ICML-11), 689–696.
Rubin, J.; Abreu, R.; Ganguli, A.; Nelaturi, S.; Matei, I.; and
Sricharan, K. 2016. Classifying heart sound recordings using
deep convolutional neural networks and mel-frequency cepstral co-
efficients. In Computing in Cardiology Conference (CinC), 2016,
813–816. IEEE.
Senocak, A.; Oh, T.-H.; Kim, J.; Yang, M.-H.; and Kweon, I. S.
2018. Learning to localize sound source in visual scenes. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 4358–4366.
Spurr, A.; Song, J.; Park, S.; and Hilliges, O. 2018. Cross-modal
deep variational hand pose estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 89–98.
Stallkamp, J.; Schlipsing, M.; Salmen, J.; and Igel, C. 2011. The
German Traffic Sign Recognition Benchmark: A multi-class clas-
sification competition. In IEEE International Joint Conference on
Neural Networks, 1453–1460.
Suzuki, M.; Nakayama, K.; and Matsuo, Y. 2016. Joint mul-
timodal learning with deep generative models. arXiv preprint
arXiv:1611.01891.
Van Praag, H.; Christie, B. R.; Sejnowski, T. J.; and Gage, F. H.
1999. Running enhances neurogenesis, learning, and long-term
potentiation in mice. Proceedings of the National Academy of Sci-
ences 96(23):13427–13431.
Wang, J.-H., and Cui, S. 2017. Associative memory cells: forma-
tion, function and perspective. F1000Research 6.
Wang, J.-H., and Cui, S. 2018. Associative memory cells and their
working principle in the brain. F1000Research 7.
Wang, K.; Yin, Q.; Wang, W.; Wu, S.; and Wang, L. 2016. A
comprehensive survey on cross-modal retrieval. arXiv preprint
arXiv:1607.06215.
Wang, Y.; van de Weijer, J.; and Herranz, L. 2018. Mix and match
networks: encoder-decoder alignment for zero-pair image transla-
tion. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 5467–5476.
Warden, P. 2018. Speech commands: A dataset for limited-
vocabulary speech recognition. arXiv preprint arXiv:1804.03209.
Wu, M., and Goodman, N. 2018. Multimodal generative models
for scalable weakly-supervised learning. In Advances in Neural
Information Processing Systems, 5580–5590.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-mnist:
a novel image dataset for benchmarking machine learning algo-
rithms. arXiv preprint arXiv:1708.07747.
Yoo, Y.; Yun, S.; Chang, H. J.; Demiris, Y.; and Choi, J. Y. 2017.
Variational autoencoded regression: high dimensional regression of
visual data on complex manifold. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 3674–3683.
Zimmermann, C., and Brox, T. 2017. Learning to estimate 3d hand
pose from single rgb images. Technical report, arXiv:1705.01389.
https://arxiv.org/abs/1705.01389.

11204


