
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Real-Time Object Tracking via Meta-Learning:
Efficient Model Adaptation and One-Shot Channel Pruning

Ilchae Jung,1,2 Kihyun You,1 Hyeonwoo Noh,1,2 Minsu Cho,1 Bohyung Han2

1Computer Vision Lab., POSTECH, Korea
2Computer Vision Lab. ECE, & ASRI, Seoul National University, Korea

{chey0313, kihyun13, shgusdngogo, mscho}@postech.ac.kr, bhhan@snu.ac.kr

Abstract

We propose a novel meta-learning framework for real-time
object tracking with efficient model adaptation and channel
pruning. Given an object tracker, our framework learns to
fine-tune its model parameters in only a few gradient-descent
iterations during tracking while pruning its network channels
using the target ground-truth at the first frame. Such a learn-
ing problem is formulated as a meta-learning task, where a
meta-tracker is trained by updating its meta-parameters for
initial weights, learning rates, and pruning masks through
carefully designed tracking simulations. The integrated meta-
tracker greatly improves tracking performance by acceler-
ating the convergence of online learning and reducing the
cost of feature computation. Experimental evaluation on the
standard datasets demonstrates its outstanding accuracy and
speed compared to the state-of-the-art methods.

1 Introduction

Recent advances in deep neural networks have drastically
improved visual object tracking technology. By learning
strong representations of target and background using con-
volutional neural networks, many algorithms (Nam and Han
2016; Nam, Baek, and Han 2016; Han, Sim, and Adam
2017; Danelljan et al. 2016; 2017a) have achieved a signif-
icant performance gain. Based on the success, recent meth-
ods (Danelljan et al. 2019; Li et al. 2019; Huang, Lucey,
and Ramanan 2017; Fan and Ling 2017; Zhu et al. 2018;
Jung et al. 2018) have further advanced network architec-
tures and training techniques for better accuracy and speed.
Such manual design choices, however, often result a subop-
timal solution in a limited exploration space eventually.

Meta-learning (Santoro et al. 2016; Andrychowicz et al.
2016; Finn, Abbeel, and Levine 2017) automates the opti-
mization procedure of a learning problem through the evalu-
ation over a large number of episodes. It facilitates exploring
a large hypothesis space and fitting a learning algorithm for
a particular set of tasks. Considering that an object tracking
algorithm aims to learn a parameterized target appearance
model specialized for individual video sequences, it is nat-
ural to adopt meta-learning for the effective optimization in

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tracking algorithms. In the context of object tracking based
on deep neural networks, an episode corresponds to a real-
ization of object tracking based on a parameterized model
for a video sequence. The execution of an episode is com-
putationally expensive and time-consuming, which makes it
difficult to incorporate meta-learning into object tracking be-
cause it requires optimization over a large number of learn-
ing episodes. Meta-Tracker (Park and Berg 2018) circum-
vents this issue by simulating a tracking episode within a
single frame. However, in this approach, meta-learning is
limited to initializing the deep neural network for target ap-
pearance modeling at the first frame, where ground-truth tar-
get annotation is available. This is because Meta-Tracker re-
lies only on the accurate ground-truth for meta-learning, al-
though tracking after the first frame involves model adapta-
tion based on estimated targets from the previous frames.

We introduce a novel meta-learning framework for ob-
ject tracking, which focuses on fast model adaptation. In
particular, our approach simulates the model adaptation by
dividing it into the following two distinct cases: (1) initial
adaptation, where the model is optimized for the one-shot
target ground-truth at the first frame and (2) online adapta-
tion, where the model is updated using the tracked targets in
previous frames. Such a fine-grained simulation enables to
capture distinct properties of two cases and allows the meta-
learned model to generalize better. In our meta-learning for
object tracking, we evaluate the learning algorithm in terms
of its expected accuracy over various situations by simulat-
ing diverse challenging scenarios with hard examples. More-
over, we develop a one-shot channel pruning technique via
meta-learning based on a single ground-truth target annota-
tion at the first frame. Our main contributions are threefold:

• We propose a meta-learning framework for object track-
ing, which efficiently optimizes network parameters for
target appearance through sophisticated simulation and
test of tracking episodes in meta-training.

• We introduce a one-shot network pruning technique
via meta-learning, which enables to learn target-specific
model compression based on only a single ground-truth
annotation available at the first frame.

• We demonstrate that our meta-tracker leads to significant

11205

speed-up and competitive accuracy on the standard bench-
mark datasets.

2 Related Work
Most of the state-of-the-art visual tracking algorithms rely
on the representations learned from deep neural networks,
and often formulate object tracking as a classification (Nam
and Han 2016; Jung et al. 2018) or a metric learning prob-
lem (Bertinetto et al. 2016; Zhu et al. 2018). While several
recent algorithms show strong representation as well as com-
putational efficiency, they still suffer from target appearance
variations in challenging situations during tracking.

A pretraining stage is commonly adopted for a tracker
to learn discriminative features for object tracking. MDNet
and its variants (Nam and Han 2016; Jung et al. 2018) em-
ploy multi-domain learning to simulate various tracking sce-
narios and learn generic target representations. Meanwhile,
(Bertinetto et al. 2016; Valmadre et al. 2017; Zhu et al. 2018)
discuss representation learning based on correlation filters.
However, these methods mainly focus on learning represen-
tations for target appearances, but the efficient optimization
of model update procedure has been rarely explored.

Meta-learning is a framework to learn a learning algo-
rithm under a certain distribution (Thrun and Pratt 1998;
Hochreiter, Younger, and Conwell 2001). It has been ex-
plored to expedite learning procedures in few-shot classi-
fication (Santoro et al. 2016; Andrychowicz et al. 2016;
Finn, Abbeel, and Levine 2017; Li et al. 2017), reinforce-
ment learning (Finn, Abbeel, and Levine 2017; Al-Shedivat
et al. 2018) and imitation learning (Duan et al. 2017). Meta-
Tracker (Park and Berg 2018) adopts this idea for object
tracking to demonstrate potential benefit for fast model up-
dates. However, it applies meta-learning only to the adapta-
tion at the first frame of an input video, and fails to show the
practical efficiency of tracking algorithms through fast on-
line model updates. Moreover, it relies on various heuristics
to establish meta-learning, e.g., learning rate adjustments,
layer selections for parameter updates, and label shuffling.

Model compression is a useful technique to reduce the
size of a deep neural network and accelerate its inference
time (Han et al. 2015; Han, Mao, and Dally 2016). A popular
approach to model compression is channel pruning (Wen et
al. 2016; He, Zhang, and Sun 2017), which aims to remove
a subset of channels in each layer based on their usefulness.
Channel pruning often involves a complex optimization task
or time-consuming validation and fine-tuning, which is not
affordable in real-time object tracking. To tackle the limita-
tion, (Choi et al. 2018) employ multiple expert autoencoders
to compress deep features for object tracking, where the tar-
gets are divided into several coarse categories and then allo-
cated to autoencoders for feature compression according to
their class labels. However, the predefined categories limit
the generality of the tracker and the multiple autoencoders
are computationally expensive to learn.

Improving the efficiency of tracking algorithms by fast
model adaptation and compression via meta-learning has
not been explored. The proposed meta-learning approach re-
sembles (Finn, Abbeel, and Levine 2017; Li et al. 2017) in
the sense that we learn initial parameters and learning rates

through meta-learning while we propose a novel method to
estimate the distribution of the target task for stable meta-
learning. Contrary to (Park and Berg 2018), our algorithm
performs more sophisticated parameter estimation without
using the complex heuristics for training. Also, our channel
pruning is based on a one-shot ground-truth available at the
first frame, and is realized within a meta-learning framework
for efficient optimization.

3 Meta-learning for Fast Adaptation

This section presents an iterative framework for optimizing
hyperparameters via meta-learning for fast model adaptation
during object tracking. Building on MAML (Finn, Abbeel,
and Levine 2017), our meta-learning framework is adapted
for object tracking and thus consists of a series of track-
ing episode simulation, model test, and meta-parameter op-
timization.

Objective

The objective of model adaptation is to minimize the stan-
dard cross-entropy loss of an output f(x;θ) ∈ R

2 from a
model parametrized by θ ∈ R

d, given an input patch x with
its binary label y ∈ {[1, 0]�, [0, 1]�}, where [1, 0]� denotes
the positive label while [0, 1]� is the negative one. Then, the
loss function is formally given by

L(D;θ) = −EpD(x,y)

[
y� log

[
Softmax

(
f(x;θ)

)]]
, (1)

where D = {(xi,yi)}Ni=1 is a dataset for learning target
appearance, which is collected from tracking results in pre-
viously frames, and pD(x,y) is the distribution of data inD.
The softmax activation function Softmax(·) normalizes the
output into a probability-like vector.

Tracking Simulation

Since the hyperparameters are meta-learned based on track-
ing simulation, the construction of realistic simulations at
training time is crucial to the generalization of the meta-
learned algorithms. The typical object tracking algorithms
consider two types of model adaptation (Nam and Han 2016;
Jung et al. 2018). One is performed at the 1st frame using
the ground-truth annotation while the other is at subsequent
frames using estimated targets in previous frames. We call
the former initial adaptation and the latter online adapta-
tion. The major difference between the initial adaptation and
the online adaptation stems from the availability of ground-
truth labels in learning. We consider this aspect in the track-
ing simulation and use a different dataset for each adaptation
during meta-learning.

Let Γ be a training video set and V ∈ Γ is an annotated
video with tracking ground-truths for a single moving tar-
get. Specifically, an annotated video V is a sequence of tu-
ples consisting of a frame and a ground-truth target anno-
tation for the frame. We define the tracking simulation as
a sequence of initial adaptation, online adaptation, and test
dataset construction in meta-training for a target annotated
in V . Unlike the standard object tracking, which aims to es-
timate targets in every frame, tracking simulation performs

11206

, 0 (;)

(;)

Figure 1: A simulated tracking episode. We meta-learn a fast model adaptation algorithm based on simulated episodes. The
model is adapted with ground-truth target Dinit in the initial adaptation and with estimated target Don in the online adaptation.
The meta-parameters (θ0

init,Ainit,Aon) are learned to minimize test loss Ltest in meta-training over multiple simulated episodes.
Ltest is defined usingDtest containing both ground-truth from upcoming frames and hard examples from other annotated videos.
The hard instances are used to simulate diverse clutter appearing in the standard object tracking.

only a single initial adaptation and a single online adaptation
on the datasets that are artificially generated from V . Follow-
ing the convention in meta-learning literatures (Santoro et al.
2016; Finn, Abbeel, and Levine 2017), we call the tracking
simulation as an episode or a simulated tracking episode.

The first step of a simulated tracking episode is the ini-
tial adaptation; the model parameter is learned for an initial
dataset Dinit by optimizing Eq. (1), where Dinit is collected
based on the target ground-truth annotation in a frame sam-
pled from V . The updated model parameter is then employed
to estimate the target states in the unseen frames sampled
from V . The estimated targets are used to construct an online
dataset Don for online model adaptation. The online adap-
tation simulates the model adaptation using noisy labels,
which commonly happens in real object tracking scenarios.
Note that the optimization of Eq. (1) during the initial and
online adaptations is guided by the hyperparameters that we
learn in the meta-learning. The final step is to collect a test
dataset Dtest for meta-training to define a test loss Ltest and a
meta-optimization loss Lmeta, which are the objective func-
tions of our meta-learning. Note that Dtest is obtained from
the ground-truth annotations in V and augmented with the
negative samples collected from all other annotated videos
in the training video set Γ − {V}. Figure 1 illustrates the
overall pipeline in a simulated tracking episode.

A simulated tracking episode results in a set of the col-
lected datasets and a series of intermediate model parame-
ters associated with the episode. Such information—datasets
and parameters—is referred to as an episode trajectory and
denoted by τ 1. The objective function for meta-learning is
defined over the trajectories from multiple episodes, where
each episode is based on an annotated video V ∈ Γ. We op-
timize the hyperparameters based on this objective function.
Algorithm 1 describes the meta-learning procedure with the
proposed simulated tracking episodes.

Meta-parameters The meta-parameterM is a set of hy-
perparameters that are optimized by our meta-learning ap-

1The formal definition of τ can be found in “Meta-parameter
optimization” subsection in page 4.

Algorithm 1 Meta-Learning for Fast Adaptation
1: Input: A Training video set Γ,

Meta-parametersM = {θ0
init,Ainit,Aon},

Output: Learned meta-parametersM∗

2: while not converged do
3: Sample a mini-batch of annotated videos from Γ
4: for all video V in a mini-batch do
5: Collect Dinit based on V
6: for all k in 1, ...,Kinit do // Eq. (2)
7: θk

init = θk−1
init −αk

init �∇θk−1
init
L(Dinit;θ

k−1
init)

end for
8: Collect Don based on V and θKinit

init
9: for all k ∈ 1, ...,Kon do // Eq. (3)

10: θk
on = θk−1

on −αk
on �∇θk−1

on
L(Don;θ

k−1
on)

end for // where θ0
on = θKinit

init
11: Collect Dtest based on V and Γ− {V}
12: Set τ = (Dinit,Don,Dtest, {θk

init}Kinit
k=1, {θk

on}Kon
k=1)

end for
13: Compute Lmeta over a mini-batch of τ // Eq. (7)
14: M← optimize(M,∇MLmeta) // Eq. (8)

end while

proach. The primary objective of meta-learning is to reduce
computational cost and maintain accuracy, and M allows
to find a better trade-off between computation and perfor-
mance by making a sophisticated control of a gradient-based
model adaptation procedure. We regard the initial model pa-
rameter θ0

init ∈ R
d as a hyperparameter. In addition, we

include learning rates as hyperparameters by extending a
conventional scalar learning rate α to a per-parameter and
per-iteration learning rate vector for the initial adaptation
Ainit = {αk

init ∈ R
d}Kinit

k=1 and the online adaptation Aon =

{αk
on ∈ R

d}Kon
k=1, where Kinit and Kon are the number of

gradient-descent iterations for the initial and online adapta-
tions, respectively. The meta-parameter is a collection of all
the hyperparameters,M = {θ0

init,Ainit,Aon}.

11207

Initial adaptation The initial adaptation uses the initial
dataset Dinit, which is constructed based on a frame and its
ground-truth annotation that are uniformly sampled from an
annotated video V; Dinit contains positive samples that are
tightly overlapped with the ground-truth annotation and neg-
ative samples that are loosely overlapped or separated from
the annotation. The procedure for sampling the positive and
negative examples is identical to the strategy of dataset col-
lection for target appearance learning in the standard object
tracking (Jung et al. 2018).

We adapt the initial model parameter θ0
init by the stochas-

tic gradient-descent method forKinit iterations using Eq. (1),
which is identical to real tracking scenarios. As a result
of the model update, we obtain a target appearance model
learned from a ground-truth annotation in a single frame.
An iteration of the initial adaptation is given by

θk
init = θk−1

init −αk
init �∇θk−1

init
L(Dinit;θ

k−1
init), (2)

where k = 1, . . . ,Kinit. The model parameter after the initial
adaptation is given by θKinit

init .

Online Adaptation The online adaptation uses the on-
line datasetDon, which includes the examples sampled from
the estimated targets. The model parameterized by θKinit

init is
adopted to estimate the target states in the sampled frames
by scoring candidate image patches. Similarly to the stan-
dard object tracking, the candidate image patches are sam-
pled from a local area centered at the ground-truth target,
and an image patch with a maximum score in each frame
is selected as an estimated target. The dataset Don contains
positive and negative samples collected based on the esti-
mated targets; the data collection strategy is identical to the
one forDinit, except that the estimated targets are used. Note
that using the estimated targets for online adaptation turns
out to be effective in handling the potential issues given by
unreliable target estimation during tracking.

For online adaptation, we update θKinit
init by stochastic gra-

dient descent forKon iterations based on Eq. (1). The formal
description of the online adaptation is given by

θk
on = θk−1

on −αk
on �∇θk−1

on
L(Don;θ

k−1
on), (3)

where θ0
on = θKinit

init and k = 1, . . . ,Kon. The model parame-
ter obtained from the online adaptation is denoted by θKon

on .

Hard example mining for meta-training

Meta-learning aims to learn the meta-parameters maximiz-
ing the expected tracking accuracy of adapted models based
on diverse tracking scenarios. In meta-training, we thus eval-
uate a trained model by testing its tracking performance. As
explored in Meta-Tracker (Park and Berg 2018), the most
straightforward choice for evaluating the model parameter
is to measure its accuracy based on the ground-truth target
annotation in the subsequent frames. However, this approach
might not be sufficient for evaluating the robustness of the
model because the dataset typically has limited diversity.
Hence, we propose to use hard example mining to evaluate
the model during testing in meta-training.

Hard example dataset The test dataset in meta-training is
a union of two datasets as Dtest = Dstd

test ∪ Dhard
test , where Dstd

test
is obtained from V andDhard

test is collected from Γ−{V}.Dstd
test

consists of both positive and negative samples for a target in
V and the strategy for collecting Dstd

test is identical to the one
for collecting Dinit, including the use of the ground-truth an-
notation. Dstd

test is essential for evaluating learned models, but
it may not be sufficient to handle diverse distracting objects.
To consider such objects, we introduceDhard

test , which consists
of the image patches obtained from the ground-truth annota-
tions sampled from Γ−{V}. We label all examples in Dhard

test
as negative. Since these negative samples are actually target
instances in the other videos, they are hard examples.

Test objective in meta-training To test the model with
the adapted model parameters θ in meta-training, we com-
pute a test loss on the test dataset Dtest, which is given by
a combination of the cross-entropy loss in Eq. (1) and the
triplet loss defined below:

Ltest(Dtest;θ) = L(Dstd
test;θ) + γLtri(Dtest;θ) (4)

where γ is a hyperparameter controlling the relative impor-
tance of the two terms. The triplet loss is defined by

Ltri(Dtest;θ) = (5)

EpDtest (x,x
+,x−)

[(
ξ +Δ(x,x+;θ)−Δ(x,x−;θ)

)
+

]
,

where pDtest(x,x
+,x−) denotes a distribution of triplets,

(x,x+,x−), determined by the sampling strategy fromDtest,
(·)+ =: max(0, ·), and ξ is a margin. Also, Δ(x1,x2;θ)
means the Euclidean distance between L2 normalized out-
puts of the model as follows:

Δ(x1,x2;θ) :=

∣∣∣∣
∣∣∣∣ f(x1;θ)

‖f(x1;θ)‖2 −
f(x2;θ)

‖f(x2;θ)‖2
∣∣∣∣
∣∣∣∣
2

. (6)

Note that hard examples are involved for the computa-
tion of the triplet loss because we draw two positive sam-
ples (x,x+) ∼ Dstd

test and a hard instance x− ∼ Dhard
test . Since

the hard examples can be positive in some videos, we have
to distinguish the hard examples from pure background in-
stances. The cross-entropy loss cannot achieve this goal, and
this is why we introduce the triplet loss and make the posi-
tive examples from a video clustered together while embed-
ding them to be separated from the positives in the rest of
videos and the backgrounds.

Meta-parameter optimization

We optimize the meta-parameters to encourage the
adapted model parameters to minimize the expected meta-
optimization loss, which is defined over multiple simulated
tracking episodes. Given an episode trajectory of a track-
ing simulation, τ = (Dinit,Don,Dtest, {θk

init}Kinit
k=1, {θk

on}Kon
k=1),

which is a collection of all the datasets and intermediate
model parameters used in the episode, we optimize the meta-
parameters using the following meta-optimization loss

Lmeta(M) = (7)

Ep(τ)

[Ltest(Dtest;θ
Kinit
init) + Ltest(Dtest;θ

Kon
on)

]
,

11208

where p(τ) is a distribution of episode trajectories, defined
by the strategy for sampling a video V from a video set Γ
and for performing tracking simulation with meta-parameter
M. As shown in Figure 1 and Eq. (7), the meta-optimization
loss adopts the test loss whose parameters θKinit

init and θKon
on are

further represented by the meta-parameters M. It implies
that our meta-optimization loss Lmeta is fully differentiable
with respect to the meta-parametersM for optimization. By
employing an optimizer such as ADAM (Kingma and Ba
2014), we update the meta-parameters using the following
gradients:

∇MLmeta = Ep(τ)

[
∂Ltest(Dtest;θ

Kinit
init)

∂θKinit
init

∂θKinit
init

∂M

+
∂Ltest(Dtest;θ

Kon
on)

∂θKon
on

{
∂θKon

on

∂M +
∂θKon

on

∂θKinit
init

∂θKinit
init

∂M
}] (8)

Eq. (8) illustrates that the meta-parameters are updated by
optimizing tracking results, which implies that the meta-
parameters M induce a strong object tracker based on the
proposed fast adaptation algorithm.

4 Meta-learning One-Shot Channel Pruning

We present how to meta-learn to remove redundant chan-
nels given a ground-truth target bounding box at the first
frame of a video. Our pruning network builds on the LASSO
regression-based channel pruning (He, Zhang, and Sun
2017) and extends it by learning to predict a channel selec-
tion mask for an entire tracking episode from the first frame
of a video. As in Section 3, our meta-learning for pruning
is trained using simulated tracking episodes and thus en-
ables the network to predict a mask appropriate for the fu-
ture frames even in a previously unseen video. We first for-
mulate the channel pruning task in a tracking episode and
discuss how to leverage meta-learning for one-shot channel
pruning. In this section, for notational simplicity, we regard
a fully-connected layer as a 1× 1 convolution layer.

Learning channel masks in a tracking simulation

We build on the LASSO pruning (He, Zhang, and Sun 2017)
that learns channel selection masks B = {βl}Ll=1, where L
is the number of layers in a CNN. The pruning network is
trained to predict mask B, which is regularized by sparsity
constraints, so that the selected maps by mask B approxi-
mate original feature maps of the CNN. A channel selection
mask βl is a real-valued vector whose dimension is identical
to the number of the channels in the lth layer. We prune the
channels corresponding to the zero-valued dimensions in βl.

Our LASSO pruning minimizes the following loss func-
tion:

Llasso(D,B;θ) = λ
∑L

l=1

∥∥βl
∥∥
1

+EpD(x)

[∑
l∈S

∥∥F l(x;θ)− F l
B(x;θ)

∥∥
2

]
,

(9)

where λ controls the degree of sparsity in channel selection
and S is a set of layers to approximate the original feature
map. F l(x;θ) denotes a feature map in the lth layer while
F l
B(x;θ) represents a feature map pruned by mask B.

Given an input image patch F 0(x;θ) = F 0
B(x;θ) =

x, unmasked network sequentially computes features by
F l+1(x;θ) = σ

(
Conv(F l(x;θ);θl)

)
, where the parame-

ters for lth layer θl and σ(·) is a non-linear activation func-
tion. Here we omit some components including pooling lay-
ers for notational simplicity. In contrast, the pruned feature
maps are computed along layers as

F l+1
B (x;θ) = βl+1 � σ(Conv(F l

B(x;θ);θ
l)
)
. (10)

To consider pruning for a simulated tracking episode, we
extend the objective of Eq. (9), defined on a dataset D, into
the following objective for an episode trajectory τ :

Lep(τ,B) = Llasso(Dinit,B;θKinit
init)

+
∑Kon

k=1 Llasso(Don,B;θk
on) + Llasso(Dtest,B;θKon

on).
(11)

This objective aims to find a single B that minimizes Llasso
over different pairs of parameters and datasets appearing in
a single simulated tracking episode.

Meta-learning for channel mask prediction

The objective of Eq. (11) uses an episode trajectory from an
entire simulated tracking episode to learn channel selection
masks. However, speeding up the object tracking requires
channels to be pruned even before the complete trajectory
for a tracking episode is collected. Therefore, we further in-
troduce one-shot channel pruning that amortizes optimiza-
tion in Eq. (11) as a prediction of B based on a dataset com-
ing from an initial frame of a video.

We build our pruning network on top of the CNN
used for object tracking. It predicts B using Dinit and θ.
The prediction is denoted by a function outputting a set
of vectors Ψ(Dinit;θ,φ) = {ψl(Dinit;θ,φ)}Ll=1, where
ψl(Dinit;θ,φ) approximates βl, a channel mask for the lth
layer of the CNN. Note that φ ∈ R

c is a parameter of
the pruning network that is not shared with the tracking
CNN. Specifically, we construct the pruning network as
ψl(Dinit;θ,φ) = 1

N

∑N
i=1 MLP

(
AvgPool

(
F l(xi;θ)

)
;φl

)
,

where MLP(·;φl) is a multi-layer perceptron parameterized
by φl associated with the lth layer, AvgPool(·) is a spatial
global average pooling, and N is the number of samples in
Dinit. Note that we pretrain θ via meta-learning for fast adap-
tation and keep it fixed while optimizing φ for training the
pruning network.

The meta-learning objective of our one-shot pruning net-
work Ψ(Dinit;θ,φ) is to minimize the loss

Lprune(φ) = Ep(τ)

[
Lep

(
τ,Ψ(Dinit;θ

Kinit
init ,φ)

)]
, (12)

which substitute B in Eq. (11) with Ψ(Dinit;θ
Kinit
init ,φ) and

train it with the samples from trajectory distribution p(τ),
which is identical to the distribution in Eq. (7). In this work,
we use θKinit

init in channel mask prediction Ψ(Dinit;θ
Kinit
init ,φ)

so that the pruning network can exploit the parameters spe-
cialized for a video using the first frame with a target an-
notation. Since θKinit

init is obtained from the initial frame of
the video, our pruning network does not incur an additional

11209

Table 1: Analysis of proposed components for meta-learning on OTB2015.
Method Don Dhard

test θ0
init Ainit Aon Prunning Succ(%) Prec(%) FPS

RT-MDNet (Jung et al. 2018) - - - - - - 65.0 88.5 42
MetaRTT

√ √ √ √ √
65.5 89.0 58

- Not using estimated target
√ √ √ √

58.6 81.2 54
- Not using hard instances

√ √ √ √
60.7 81.9 57

- Not using per-parameter / per-iteration lr (scalar lr)
√ √ √

60.9 82.8 57
MetaRTT+Prune

√ √ √ √ √ √
65.1 87.4 65

Baseline for Meta-Tracker (Park and Berg 2018)
√ √

56.8 81.2 40
- Using hard instances

√ √ √
62.7 86.2 41

computation cost in prediction at the future frames. Eq. (12)
is a meta-learning objective as it defines an outer learning
objective for an inner learning objective of Eq. (11).

5 Experiments

This section discusses the details of our approach in the
application to RT-MDNet (Jung et al. 2018) and the per-
formance of the proposed algorithm in comparisons to the
state-of-the-art methods. We present the results from three
versions of our trackers; MetaRTT is the model without one-
shot network pruning, MetaRTT+Prune is the one with prun-
ing, and MetaRTT+COCO is the model trained with addi-
tional data. The base model for all trackers is RT-MDNet.

Application to RT-MDNet

We apply our meta-learning algorithm to RT-MDNet, which
is one of the state-of-the-art real-time object trackers. For
efficient feature extraction from multiple image patches in
a frame, RT-MDNet employs a two-stage feature extraction
pipeline similar to (He et al. 2017). In the first stage, a con-
volutional neural network (CNN) computes a feature map
from an input frame. To extract the feature descriptor from
the shared feature map corresponding to an image patch,
RT-MDNet employs RoIAlign layer (He et al. 2017), where
a 3 × 3 dimensional feature map grid is interpolated and
pooled. The feature descriptor for an image patch x is em-
ployed to compute the response for the patch using three
fully connected layers, which is denoted by f(x;θ).

Our definition of parameters θ0
init includes the parameters

both before and after the RoIAlign layer. Therefore, the ini-
tial parameter θ0

init on both sides are meta-learned. However,
similarly to the original RT-MDNet, the initial and online
adaptations are not applied to the parameters for the shared
CNN both during the tracking and the tracking simulation.
Formally, there is no model adaptations in the shared CNN
layers, i.e., θk

init = θk−1
init and θk

on = θk−1
on , while the model

adaptions for the fully connected layers are given by Eq. (2)
and (3). For meta-learning one-shot channel pruning, we de-
fine S in Eq. (9) as a set of the final shared convolutional
layer and all the fully connected layers. We setKinit andKon
to 5 throughout our experiment.

Implementation details

We pretrain MetaRTT and MetaRTT+Prune on ImageNet-
Vid (Russakovsky et al. 2015), which contains more than

3,000 videos with 30 object classes labeled for video ob-
ject detection. We treat each object as a class-agnostic tar-
get to track but do not use its class label for pretraining.
We randomly select 6 frames from a single video to con-
struct an episode, and use the first frame for Dinit, the last
frame forDstd

test and the remaining frames forDon. The meta-
parameters are optimized over 40K simulated episodes using
ADAM with fixed learning rate 10−4. The network learning
the pruning mask per layer is implemented as a 2-layer per-
ceptron with a LeakyRelu activation and dropout regulariza-
tion. We optimize the network by ADAM for 30K iterations
with learning rate 5 × 10−5. Other details follow the con-
figuration of RT-MDNet. We pretrain MetaRTT+COCO on
ImageNet-Vid and the augmented version of COCO (Lin et
al. 2014). Since COCO is a dataset of images, we construct
its augmented set by artificially generating pseudo-videos
with 6 frames via random resizing and shift of the original
images as in (Zhu et al. 2018). Our algorithm is implemented
in PyTorch with 3.60 GHz Intel Core I7-6850k and NVIDIA
Titan Xp Pascal GPU.

Ablation studies

Meta-learning for fast adaptation Table 1 illustrates the
ablative results on OTB2015 (Wu, Lim, and Yang 2013),
where we show the performance of several different model
variants given by the adopted algorithm components. Specif-
ically, Don denotes whether each option employs the online
adaptation based on the estimated targets; if the correspond-
ing column is not checked, it means that meta-learning is
performed using the ground-truth labels only. Also,Dhard

test in-
dicates the use of hard examples for meta-training.

As expected, individual algorithm components make sub-
stantial contribution to improving accuracy and speed of
our tracker. Our full algorithm maintains competitive accu-
racy and achieves significant speed-up compared to the base-
line technique, RT-MDNet. For comparison with other meta-
learning approaches for object tracking, we select Meta-
Tracker (Park and Berg 2018). Unlike our meta-learning
framework, Meta-Tracker employs meta-learning only for
the initial adaptation, and it does not utilize the estimated tar-
gets for the online adaptation and the hard example mining
for meta-training. According to our experiment, the meta-
learning strategy proposed by Meta-Tracker shows relatively
poor performance compared to MetaRTT while we also ob-
serve that the success rate and the precision of Meta-Tracker
are improved by simply incorprating the component exploit-

11210

Table 2: Accuracy comparison with respect to the number of
iterations Kinit and Kon for fast adaptation on OTB2015.

Method Kinit Kon Succ (%) Prec (%) FPS

RT-MDNet

50 15 65.0 88.5 42
50 5 61.9 83.1 54
5 15 60.6 80.8 43
5 5 57.8 77.5 55

MetaRTT 5 5 65.5 89.0 58

Table 3: Analysis of one-shot channel pruning on OTB2015.
PR denotes prune rate in this table.

Method Succ (%) Prec (%) FPS PR (%)
MetaRTT 65.5 89.0 58 0
MetaRTT+Prune 65.1 87.4 65 50± 5
- No meta-learning 61.7 83.1 64 49± 6
- No adaptive pruning 60.9 81.2 59 53

ing hard examples.
Table 2 presents how the number of iterations affects per-

formance of our algorithm with meta-learning, MetaRTT, in
comparison to RT-MDNet. MetaRTT achieves better success
rate and precision while it has 38% of speed-up compared to
RT-MDNet through a more efficient model adaptation. Note
that a simple reduction of model update iterations in RT-
MDNet degrades its accuracy while increasing speed.

Meta-learning for one-shot channel pruning Table 1
presents that MetaRTT+Prune is 12% faster than MetaRTT
while achieving the almost identical success rate and pre-
cision. To analyze the proposed pruning method, we evalu-
ate two variants of pruning strategies. One is the one-shot
channel pruning without meta-learning, which optimizes
the pruning network using a simulated tracking episode
only at the first frame. The other option is the static prun-
ing, which learns a universal channel pruning mask B of-
fline for every video. Table 3 implies that both the meta-
learning with complete simulated episodes and the input
adaptive one-shot pruning are essential. It also presents that
MetaRTT+Pruning improves speed substantially by remov-
ing approximately half of the network parameters with min-
imal accuracy loss.

Comparison with state-of-the-arts trackers

We compare the variations of our algorithm—MetaRTT,
MetaRTT+Prune, and MetaRTT+COCO—to the state-of-
the-art algorithms (Nam and Han 2016; Danelljan et al.
2017a; 2016; 2017b; Fan and Ling 2017; Jung et al. 2018;
Zhu et al. 2018). We employ OTB2015 (Wu, Lim, and Yang
2015) and TempleColor (Liang, Blasch, and Ling 2015)
datasets for evaluation. Because our goal is to accelerate
tracking algorithms while maintaining their accuracy, the
comparison with real-time trackers is more important. So,
we highlight real-time trackers with solid lines in the graphs
visualizing quantitative performance while the slow meth-
ods are represented with dashed lines.

Figure 2 shows that MetaRTT and MetaRTT+COCO
outperform the compared state-of-the-art real-time trackers

0 10 20 30 40 50
Location error threshold

0

0.2

0.4

0.6

0.8

1

Pr
ec

is
io

n

Precision plots of OPE

ECO [0.910]
MetaRTT+COCO [0.899]
C-COT [0.898]
MDNet [0.890]
MetaRTT [0.890]
RT-MDNet [0.885]
MetaRTT+Prune [0.874]
DaSiamRPN [0.859]
ECO-HC [0.856]
PTAV [0.853]
DSST [0.680]

0 0.2 0.4 0.6 0.8 1
Overlap threshold

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

ra
te

Success plots of OPE

ECO [0.691]
MetaRTT+COCO [0.672]
C-COT [0.671]
MDNet [0.657]
MetaRTT [0.655]
MetaRTT+Prune [0.651]
RT-MDNet [0.650]
DaSiamRPN [0.645]
ECO-HC [0.643]
PTAV [0.638]
DSST [0.513]

Figure 2: Quantitative results on OTB2015.

0 10 20 30 40 50
Location error threshold

0

0.2

0.4

0.6

0.8

1

Pr
ec

is
io

n

Precision plots of OPE

ECO [0.800]
MetaRTT+COCO [0.798]
RT-MDNet [0.788]
MetaRTT [0.787]
C-COT [0.783]
MDNet [0.777]
MetaRTT+Prune [0.760]
ECO-HC [0.753]
DaSiamRPN [0.743]
PTAV [0.741]
DSST [0.542]

0 0.2 0.4 0.6 0.8 1
Overlap threshold

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

ra
te

Success plots of OPE

ECO [0.597]
MetaRTT+COCO [0.577]
C-COT [0.573]
MetaRTT [0.570]
RT-MDNet [0.563]
MDNet [0.563]
MetaRTT+Prune [0.552]
ECO-HC [0.551]
PTAV [0.544]
DaSiamRPN [0.539]
DSST [0.380]

Figure 3: Quantitative results on TempleColor.

Table 4: Results of our algorithms on VOT2016, UAV123.
UAV123 VOT2016

Method Succ (%) Prec (%) EAO
RT-MDNet 52.8 77.2 0.322
MetaRTT 56.9 80.9 0.346
MetaRTT+COCO 56.6 80.9 0.350
MetaRTT+Prune 53.7 77.9 0.314

on OTB2015 in terms of accuracy while MetaRTT+Prune
achieves competitive accuracy and improved speed com-
pared to MetaRTT. Figure 3 illustrates that our trackers
present outstanding performance in TempleColor as well.
These results imply that the hyperparameters meta-learned
on ImageNet-Vid work well on the standard benchmarks
without manual tuning for the benchmarks; we fix all the hy-
perparameters except the meta-parameters in both datasets.
The strong accuracy by MetaRTT+COCO also suggests that
our tracker can be further improved by pretraining with bet-
ter datasets.

Table 4 presents that the variations of our algorithm make
significant improvements on other benchmark datasets,
VOT2016 (Kristan et al. 2016) and UAV123 (Mueller,
Smith, and Ghanem 2016).

6 Conclusion

We presented a novel meta-learning framework and its appli-
cation to object tracking, which is more comprehensive and
principled than the technique introduced in the prior study.
The proposed meta-learning approach allows to learn fast
adaptation and one-shot channel pruning algorithm, which
leads to competitive accuracy and substantial speed-up. Our
tracker achieves the state-of-the-art performance compared
to the existing real-time tracking methods.

11211

Acknowledgement This work was partly supported
by Institute for Information & communications Tech-
nology Promotion(IITP) grant funded by the Korea
government(MSIT)[2014-0-00059, 2017-0-01780, 2016-0-
00563], LG-CNS Co., Ltd., Seoul, and NRF Korea (NRF-
2017M3C4A7069369).

References
Al-Shedivat, M.; Bansal, T.; Burda, Y.; Sutskever, I.; Mordatch, I.;
and Abbeel, P. 2018. Continuous Adaptation via Meta-learning in
Nonstationary and Competitive Environments. In ICLR.
Andrychowicz, M.; Denil, M.; Gomez, S.; Hoffman, M. W.; Pfau,
D.; Schaul, T.; Shillingford, B.; and De Freitas, N. 2016. Learning
to Learn by Gradient Descent by Gradient Descent. In NeurIPS.
Bertinetto, L.; Valmadre, J.; Henriques, J. F.; Vedaldi, A.; and Torr,
P. 2016. Fully-Convolutional Siamese Networks for Object Track-
ing. In ECCVW.
Choi, J.; Chang, H. J.; Fischer, T.; Yun, S.; Lee, K.; Jeong, J.;
Demiris, Y.; and Choi, J. Y. 2018. Context-Aware Deep Feature
Compression for High-Speed Visual Tracking. In CVPR.
Danelljan, M.; Robinson, A.; Khan, F. S.; and Felsberg, M. 2016.
Beyond Correlation Filters: Learning Continuous Convolution Op-
erators for Visual Tracking. In ECCV.
Danelljan, M.; Bhat, G.; Shahbaz Khan, F.; and Felsberg, M.
2017a. ECO: Efficient Convolution Operators for Tracking. In
CVPR.
Danelljan, M.; Häger, G.; Khan, F. S.; and Felsberg, M. 2017b.
Discriminative Scale Space Tracking. TPAMI 39(8):1561–1575.
Danelljan, M.; Bhat, G.; Khan, F. S.; and Felsberg, M. 2019. Atom:
Accurate tracking by overlap maximization. In CVPR, 4660–4669.
Duan, Y.; Andrychowicz, M.; Stadie, B.; Ho, O. J.; Schneider, J.;
Sutskever, I.; Abbeel, P.; and Zaremba, W. 2017. One-Shot Imita-
tion Learning. In NeurIPS.
Fan, H., and Ling, H. 2017. Parallel Tracking and Verifying: A
Framework for Real-Time and High Accuracy Visual Tracking. In
ICCV.
Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. ICML.
Han, S.; Pool, J.; Tran, J.; and Dally, W. 2015. Learning
both Weights and Connections for Efficient Neural Network. In
NeurIPS.
Han, S.; Mao, H.; and Dally, W. J. 2016. Deep Compression:
Compressed Deep Neural Networks with Pruning, Trained Quanti-
zation, and Huffman Coding. In ICLR.
Han, B.; Sim, J.; and Adam, H. 2017. Branchout: Regulariza-
tion for Online Ensemble Tracking with Convolutional Neural Net-
works. In CVPR.
He, K.; Gkioxari, G.; Dollár, P.; and Girshick, R. 2017. Mask
R-CNN. In ICCV.
He, Y.; Zhang, X.; and Sun, J. 2017. Channel Pruning for Acceler-
ating Very Deep Neural Networks. In ICCV.
Hochreiter, S.; Younger, A. S.; and Conwell, P. R. 2001. Learning
to Learn using Gradient Descent. In ICANN.
Huang, C.; Lucey, S.; and Ramanan, D. 2017. Learning Policies
for Adaptive Tracking with Deep Feature Cascades. In ICCV.
Jung, I.; Son, J.; Baek, M.; and Han, B. 2018. Real-Time MDNet.
In ECCV.
Kingma, D. P., and Ba, J. 2014. Adam: A Method for Stochastic
Optimization. arXiv preprint arXiv:1412.6980.

Kristan, M.; Leonardis, A.; Matas, J.; Felsberg, M.; Pflugfelder, R.;
Čehovin Zajc, L.; Vojir, T.; Häger, G.; Lukežič, A.; and Fernandez,
G. 2016. The visual object tracking VOT2016 challenge results.
In ECCVW.
Li, Z.; Zhou, F.; Chen, F.; and Li, H. 2017. Meta-SGD: Learn-
ing to Learn Quickly for Few Shot Learning. arXiv preprint
arXiv:1707.09835.
Li, B.; Wu, W.; Wang, Q.; Zhang, F.; Xing, J.; and Yan, J. 2019.
Siamrpn++: Evolution of siamese visual tracking with very deep
networks. In CVPR, 4282–4291.
Liang, P.; Blasch, E.; and Ling, H. 2015. Encoding Color In-
formation for Visual Tracking: Algorithms and Benchmark. TIP
24(12):5630–5644.
Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan,
D.; Dollár, P.; and Zitnick, C. L. 2014. Microsoft coco: Common
objects in context. In ECCV, 740–755. Springer.
Mueller, M.; Smith, N.; and Ghanem, B. 2016. A Benchmark and
Simulator for UAV Tracking. In ECCV.
Nam, H., and Han, B. 2016. Learning Multi-Domain Convolutional
Neural Networks for Visual Tracking. In CVPR.
Nam, H.; Baek, M.; and Han, B. 2016. Modeling and Propagat-
ing CNNs in a Tree Structure for Visual Tracking. arXiv preprint
arXiv:1608.07242.
Park, E., and Berg, A. C. 2018. Meta-Tracker: Fast and Robust
Online Adaptation for Visual Object Trackers. ECCV.
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma,
S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A.;
and Fei-Fei, L. 2015. ImageNet Large Scale Visual Recognition
Challenge. IJCV 115(3):211–252.
Santoro, A.; Bartunov, S.; Botvinick, M.; Wierstra, D.; and Lilli-
crap, T. 2016. Meta-Learning with Memory-Augmented Neural
Networks. In ICML.
Thrun, S., and Pratt, L. 1998. Learning to Learn: Introduction and
Overview. In Learning to Learn. Springer. 3–17.
Valmadre, J.; Bertinetto, L.; Henriques, J. F.; Vedaldi, A.; and Torr,
P. 2017. End-to-end Representation Learning for Correlation Filter
based Tracking. In CVPR.
Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; and Li, H. 2016. Learning
Structured Sparsity in Deep Neural Networks. In NeurIPS.
Wu, Y.; Lim, J.; and Yang, M.-H. 2013. Online Object Tracking:
A Benchmark. In CVPR.
Wu, Y.; Lim, J.; and Yang, M. 2015. Object Tracking Benchmark.
TPAMI 37(9):1834–1848.
Zhu, Z.; Wang, Q.; Li, B.; Wu, W.; Yan, J.; and Hu, W. 2018.
Distractor-Aware Siamese Networks for Visual Object Tracking.
In ECCV.

11212

