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Abstract

Dropout regularization has been widely used in various deep
neural networks to combat overfitting. It works by training
a network to be more robust on information-degraded data
points for better generalization. Conventional dropout and
variants are often applied to individual hidden units in a layer
to break up co-adaptations of feature detectors. In this paper,
we propose an adaptive dropout to reduce the co-adaptations
in a group-wise manner by coarse semantic information to
improve feature discriminability. In particular, we showed
that adjusting the dropout probability based on local feature
densities can not only improve the classification performance
significantly but also enhance the network robustness against
adversarial examples in some cases. The proposed approach
was evaluated in comparison with the baseline and several
state-of-the-art adaptive dropouts over four public datasets of
Fashion-MNIST, CIFAR-10, CIFAR-100 and SVHN.

Introduction
Dropout is a stochastic regularization technique commonly
used in deep neural networks (DNN) (Hinton et al. 2012).
Conventionally, it works in fully-connected (FC) layers by
randomly “dropping” out the activation of a neuron with a
certain probability p for each training case. The process has
the effect of model averaging by simulating a large num-
ber of networks with different network structures, which, in
turn, making node activations in the network more robust to
the inputs.

Inspired by the original dropout, other stochastic model
averaging methods were proposed to simulate dynamic
sparsity within the network. For example, spatial dropout
(Tompson et al. 2015) removes the feature map activations
in a convolution layer to account for strong spatial correla-
tion of nearby pixels in natural images. In (Wan et al. 2013),
drop connection transfers the FC layer into a sparsely con-
nected layer in which the connections specified in weight
matrices are chosen at random during the training. Previ-
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ous studies showed that these dropout-inspired regulariza-
tion often outperformed the original dropout on several vi-
sual recognition datasets. We use both the original dropout
and spatial dropout as baselines in our experiments.

In conventional dropouts, every hidden unit is treated the
same and independently with a constant dropout probability
p. Following Binomial distribution, the expected number of
dropped units in a layer of n units is n · p despite of differ-
ent layers and samples. This causes deficiency of dropouts
(Wang, Zhou, and Bilmes 2019). To improve performance,
dropout variants were explored in mainly two aspects (Ke-
shari, Singh, and Vatsa 2019): 1) sampling dropout masks
from different distributions other than Bernoulli, and 2)
adapting the dropout probability. In particular, it was shown
that the generalization ability can be improved by dropping
nodes selectively based on some prior knowledge of the net-
work. For instance, (Keshari, Singh, and Vatsa 2019) learns
a strength parameter by stochastic gradient descent (SGD) of
the network for guiding dropout regularization of each node.
(Wang, Zhou, and Bilmes 2019) adapts the dropout proba-
bility by normalizing it at each layer and every training batch
such that the effective dropping rate on those activated units
is kept the same during the training.

Most of existing dropout regularization methods remove
individual activations in each unit independently with a fixed
or adaptive probability. We note that for object recognition,
visual structures in the input image activate the correspond-
ing regions in the convolution feature maps (He et al. 2015).
In other words, feature maps with similar activation patterns
tend to have close semantic implications. Intuitively, these
feature maps should be stochastically dropped to reduce co-
adaptations. However, they also encode information about
the intra-class variation of latent semantic features (Kim et
al. 2017). This motivates us to propose a group-wise dropout
that can adapt to the latent semantic variations while sim-
ulating dynamic sparseness in the network to improve the
object recognition performance.

In this paper, we make the following contributions:

• We propose to represent latent semantic variations with
densities of linearly uncorrelated features from the con-
volution layer. This is done by applying PCA projections
to vectorized feature maps and then bin gridding them
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in the projected space. In this way, we are able to group
feature maps with close semantic implications. We show
that, after deconvolution, the groups with higher densities
demonstrate larger visual variations in the local layouts.
• We propose to assign a self-adaptive dropout probabil-

ity to all entities within the grouped features, i.e. the
dropout probability is monotonically decreasing with the
estimated density distribution. This is to retain sufficient
sampling of interacted layouts for learning more robust
features that can account for relatively large intra-class
variations.
• We showed with extensive experimental results over four

public benchmarks that the proposed group-wise dynamic
scheme is able to significantly improve both the object
recognition accuracy and the network robustness against
white-box adversarial examples bounded by L2 and L∞
norms, respectively.

Related Work
In the literature, dropout variants were proposed by study-
ing the convolution feature maps. In spatial dropout (Tomp-
son et al. 2015), a random subset of activations in the fea-
ture maps are dropped independently to reduce spatial cor-
relations. (Poernomo and Kang 2018) proposed crossmap
dropout to simultaneously drop or retain elements at the
same coordinate on different feature maps. (Zhang, Yang,
and Feng 2018) proposed region dropout by considering
several salient regions with fixed size and relative positions
for training. However, these salient regions are not always
available for general object recognition problems.

For adaptive dropouts, (Wang and Manning 2013) showed
that dropout has a Gaussian approximation and (Kingma,
Salimans, and Welling 2015) proposed a variational dropout
by connecting the global uncertainty with the dropout rates
to optimize a generalized Gaussian dropout. (Wager, Wang,
and Liang 2013) analyzed the dropout training as a form
of adaptive regularization with an approximation of second-
order derivative. (Ba and Frey 2013) updated the element-
wise probability for the mask matrix generation accord-
ing to activation output of an overlaid binary belief net-
work. (Zhuo, Zhu, and Zhang 2015) extended the over-
laid model so that adaptive dropout rates can be learned
for different neurons or group of neurons. However, the
side-model based approaches introduce significant compu-
tation and memory overhead. (Keshari, Singh, and Vatsa
2019) proposed the guided dropout to drop network nodes
with high strength to encourage low strength nodes. (Wang,
Zhou, and Bilmes 2019) proposed to Jumpout samples the
dropout probability from a monotone decreasing distribu-
tion (e.g., the right half of a Gaussian) such that each lin-
ear piece of the network can learn better for data points
from nearby than more distant regions to improve gener-
alization of DNNs with ReLU activations. These methods
drop the unit activations independently, whereas there are
feature visualization studies have shown that the interactive
information between feature nodes can be useful for improv-
ing the performance of object recognition (Kim et al. 2017;
Du et al. 2018).

To the best of our knowledge, most of the existing dropout
regularizations were proposed to improve the generalization
performance on natural image examples. However, DNNs
are also known to be vulnerable to adversarial examples
that are carefully crafted to cause intended misclassifications
with high probability (Goodfellow, Shlens, and Szegedy
2014). The security threat is known as evasion attacks at test
time (Biggio et al. 2013; Yuan et al. 2019). An increasing
number of work is proposed for hardening DNNs to make
them more robust against adversarial examples, e.g., by ad-
versarial training (Tramèr et al. 2018) or gradient obfusca-
tion (Akhtar, Liu, and Mian 2018). In particular, stochastic
gradients are found useful to prevent the attacker from get-
ting the critical information of loss gradients from the tar-
get model in generating adversarial examples (Akhtar, Liu,
and Mian 2018). For instance, (Feinman et al. 2017) pro-
posed to turn on dropout randomization as well during the
test-time for adversarial detection by analyzing uncertainty
of the network. (Dhillon et al. 2018) proposed Stochastic
Activation Pruning (SAP) to enhance the adversarial robust-
ness of DNNs. During the forward pass, SAP stochastically
prunes a subset of the activations in each layer with pref-
erence of retaining activations with larger magnitudes (i.e.,
strengths of the nodes). The surviving activations are then
scaled up to normalize the dynamic range of the inputs to
the subsequent layer.

Table 1 summarizes some key differences between the
proposed approach and some representative dropouts that
will be compared in our evaluations. In particular, spatial
dropout is applied to individual feature maps such that ad-
jacent pixels in the dropped-out feature map are either all
dropped-out or all active. In contrast, the proposed dropout
dynamically groups the FC features or convolutional feature
maps to assign a self-adaptive dropout probability. While
guided dropout screens the neurons for dropout and SAP ad-
justs the dropout probabilities according to the magnitudes
of FC features, the proposed dropout negatively correlates
the dropout probability with the feature density distribution
in linear uncorrelated subspaces after PCA projection. In the
following sections, we shall show that the proposed strategy
of dynamic dropout can help to improve both classification
accuracy and adversarial robustness of DNNs.

Proposed Approach
In the original dropout, the same dropout probability is
shared among features, i.e., FC neurons or convolution fea-
ture maps, in a network layer. Recent studies showed that
DNN-learned features are not acting individually by them-
selves but rather having interactions in such a way that to-
gether they contribute to training a discriminative network
(Du et al. 2018). This is consistent with the interpretability
study in (Bau et al. 2017), which indicates that there exists a
special basis that aligns explanatory factors with individual
units in a hidden layer. In other words, interpretability of unit
interaction is not equivalent to random linear combinations
of units. We are inspired by these insights of deep visual
representations to propose a group-wise dynamic dropout as
follows.
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Table 1: Comparison of the proposed and the relevant dropout variants. Dropout variants of Original (Hinton et al. 2012), Bi-
ased (Poernomo and Kang 2018),Crossmap (Poernomo and Kang 2018), Spatial (Tompson et al. 2015), Guided (Keshari, Singh,
and Vatsa 2019) and Stochastic Activation Pruning (SAP) (Dhillon et al. 2018) are used for the comparison. ‘Adaptivity=Yes’
means the dropout probability is not fixed. ‘Dynamicity=Yes’ means the dropout is employed during training.

Variants Dropout strategies Adaptivity Dynamicity Hyper-parameter Time complexity
Original Random No Yes Dropout probability -
Biased Activation magnitudes Yes Yes Two dropout probabilities Two-group division

Crossmap Across feature map No Yes Dropout probability Close to Original
Spatial Entire feature map No Yes Dropout probability Close to Original
Guided Active region Yes Yes Multi-stage dropout probabilities Bins computation

SAP Neuron magnitudes Yes No Layers for dropout Distribution sampling
Proposed Feature density Yes Yes Negative correlation function PCA projection

Feature Density Estimation

We consider that some visual structures in the input image
are inherently more difficult to recognize than others due to
intra-class variations. Accordingly, we introduce the concept
of feature density by analysing the number of linearly uncor-
related deep features gathered over equally spaced grids in
low-dimension feature space.

Algorithm 1 outlines the main steps of our feature density
estimation. In particular, the PCA projection not only per-
forms dimension reduction of feature maps but also helps
to decorrelate deep features for density estimation. Taking
FDD2D for example, the first two principal components are
used to construct the 2D projection features as illustrated in
Figure 1 (a). The PCA is conducted on the entire 512 feature
maps of the last convolution layer for each of the training
samples. Let ρi be the number of FC neurons or the feature
maps located in the i-th grid, i.e. GRIDi, i= 1, · · · ,Nk, where
N denotes the number of the equally divided grids in each
dimension, k is the dimension of PCA projection space. To
obtain the feature sets {GRIDi}, the grid that the j-th feature
f ( j) located is obtained as FLOOR(( f ( j)

r −min( fr))/dr)+1
corresponding in the r-th dimension (1 ≤ r ≤ k), where
dr = (max( fr)−min( fr))/N is the space between grids and
fr is the vector of the r-th column of f when k ≥ 2.

Figure 2 illustrates the semantic implication of deep fea-

Algorithm 1 Feature Density Estimation
1: while Not Termination Condition do
2: if Dropout for Feature Map then
3: Vectorize the feature maps in the last convolution

layer X with the size of (nchannel ,nwidth,nheight) to
the size of (nchannel ,nwidth ∗nheight);

4: Set f as the PCA projection of vectorized X, where
the j-th feature f ( j) ∈ k-D (k=2 or 3);

5: else if Dropout for FC then
6: Set f as the FC features x with the size of (nFC,1),

where f ( j) ∈ k-D (k=1);
7: end if
8: Count the number of features ( f ( j)) located over

equally-spaced grids for density estimation;
9: end while
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Figure 1: Feature Density-based Dropout (FDD) for (a) con-
volution feature maps, and (b) FC neurons. The dropout
probability pi is adapted to feature density estimation in the
i-th grid, where a smaller pi is assigned to the feature group
with higher density in the PCA-reduced space.

tures using a toy model of 5-layer CNN with 512 neu-
rons in the last FC layer. We group the deep features over
equally spaced grids into three densitiy levels, namely low,
medium and high, and invert them back to the input space
by deconvolution. Figure 2(b) shows three typical inverted
representations from each group. The corresponding region
of interest (ROI) of each inverted representation is marked
with a heat map and overlaid on the original image.

It can be seen that the group of higher density features
contains more dispersed semantic information in terms of
ROI, whereas those grouped in low density are more con-
centrated in the local layout. This can be seen more clearly
in Figure 3 by averaging the heat maps in Figure 2. To quan-
tify the dispersion, we calculate the average entropy of each
grouped heatmap which is 2.045 and 3.616 for the low and
high density group in Figure 3.
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Figure 2: Inverting representations of grouped features: (a)
Density estimation over grids; and (b) Heat maps after de-
convolution showing regions of interest by the feature maps.
Inverted examples are displayed with top three responses of
activations in the color-marked groups with low, medium,
and high densities, respectively.
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Figure 3: Latent semantic feature variations by averaging
heat maps inverted from the typical feature maps of (a) low
density, (b) medium density, (c) high density, and (d) all.

Feature Density-based Dropout (FDD)
Both visual and quantitative results in Figure 2 show that
feature density is negatively correlated to latent semantic
variations. Intuitively, it requires more sampling of “facets”
to learn robust representations for high-density features
with more dispersed semantic information. This motivates
us to proposed a feature density-based dropout (FDD)
scheme by increasing the activation outputs, i.e. hidden FC
neurons or convolution feature maps.

We use the approximate feature densities ρi estimated
from Algorithm 1 to update the dropout probabilities for the
features of FC layer and feature maps in a self adative way
as follows

pi = κ
ρi

max(ρi)
+α. (1)

where pi is the dropout probability for the i-th grid, i.e.
GRIDi. The negative correlation, i.e. the feature density
and dropout probability are negatively linear mapped with
κ = −0.8,α = 0.9 to generate the dropout probabilities in
Figure 1.

Feature map dropout. Based on the updated dropout
probabilities {pi}, the proposed dropout is performed on
the j-th FC feature or the j-th convolutional feature map in
GRIDi(1≤ i≤ Nk) as follows

X ′( j)← m∗X ( j), (2)

where m ∼ Bernoulli(pi) is generated with probability pi
and multiplied with the j-th feature map of X , denoted by
X ( j).

FC feature dropout. The proposed dropout is performed
on the j-th FC feature in GRIDi(1≤ i≤ Nk) as

x′( j)← m · x( j), (3)

where x′( j) denotes the j-th feature value of x′. In this way,
the proposed dropout dynamically updates multiple dropout
probabilities, i.e. {p1, · · · , pNk}, based on feature density.
After the dropout, the cross entropy softmax function is ap-
plied to the retaining FC features or feature maps, i.e., the
updated x′ or X ′ in (2) and (3), respectively. The discrimina-
tion loss function is thus updated with

L =−ln
eW T

y η+by

∑ j eW T
j η+b j

. (4)

where y is the ground truth label of the sample, Wj is the j-
th column of the weight matrix W ; η is x′ or AvgPool(X ′),
where AvgPool is the average pooling operation. The deriva-
tives of the loss L w.r.t. the feature η and weights W , i.e.
∂L /∂η ,∂L /∂W are automatically calculated with net-
work back propagation.

Computation complexity. For feature map projection,
PCA is employed to reduce feature dimension based on
the vectorization matrix with nchannel-rows and nwidth ·nheight
columns of the feature map tensor X; PCA finally yields the
set of features projected in k-D space, i.e. f used in Algo-
rithm 1. The time complexity of PCA is O(nchannel ·D) +
O(D3), where D is the dimension product of each feature
map. The time complexity of the last convolution operator
is at least O(D · nchannel · nConvChannel), where nConvChannel >
nchannel is the number of feature maps at the last-but-one
convolution layer. In practice, the runtime cost of PCA over
GPU for all the training samples is only 0.74 seconds in
each epoch, which is negligible to the average time taken
for training the network. Comparing to SAP (Dhillon et al.
2018) with requires an additional distribution sampling, the
proposed dropout also needs significant less run-time cost.
The computing time is competitive to the guided dropout
based on our local runs.

Experimental Results
We run our experiments with ResNet-18 (He et al. 2016)
of 512 neurons in the last FC layer on a 4-kernel Nvidia
TITAN GPU Card. The learning rate is updated with co-
sine annealing and a SGD optimizer is used. All our experi-
ments include batch normalization when training ResNet18.
The batch size and learning rate are 64 and 0.01, respec-
tively. As described in Algorithm 1, we perform the pro-
posed dropout regularization of FDD-1D on FC features,
FDD-2D and FDD-3D on convolution feature maps, respec-
tively. The projected features are partitioned into 25, 52 = 25
and 33 = 27 equally-spaced grids in the 1D, 2D and 3D pro-
jection space, respectively.

We evaluated the proposed dropouts over four public
benchmarks. The Fashion-MNIST (FM) (Xiao, Rasul, and
Vollgraf 2017) is a dataset of Zalando’s article images con-
sisting of 60k training samples and 10k testing samples.
Each example is a 28x28 grayscale image, associated with
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Figure 4: Histogram of FC activations after the training with
(a) non-dropout, (b) random dropout, and (c) the proposed
group-wise dynamic dropout on Fashion-MNIST.
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Figure 5: Recognition accuracy by installing positive or
negative correlations with feature density in generating the
FDD probability. The proposed dropouts with negative cor-
relations consistently outperform the others over all four
datasets.

a label from 10 classes. The CIFAR-10 (C10) (Krizhevsky
and Hinton 2009) dataset contains 60k color images belong-
ing to 10 classes (32x32 resolution). The experiments utilize
50k training samples and 10k testing samples. CIFAR-100
(C100) (Krizhevsky and Hinton 2009) is a database with 100
classes and also has 50k training samples and 10k testing
samples. The Street View House Numbers (SVHN) (Net-
zer et al. 2011) dataset contains 73,257 training samples and
26,032 testing samples.

Dropout Analysis
Activation sparseness. An important function of dropouts
is to simulate dynamic sparseness in the network to reduce
co-adaptations of feature encoding for better generalization.
Figure 4 plots histograms of FC feature activations before
and after applying dropouts for the training. Comparing with
the original dropout, the proposed dropout is able to signifi-
cantly increase the number of de-activations or close-to-zero
activations while dampening all other activation values. This
suggests that our method works better than random dropout
in generating sparseness.

Positive or negative correlations. Setting positive corre-
lations in generating the FDD probability with feature den-
sity helps to reduce more co-adaptations of feature encoding.
However, it is also at a cost of breaking up meaningful inter-

Table 2: Comparing average recognition rates (%) of adap-
tive dropout variants and the proposed dropout on the four
datasets. Results of the dropout variants are acquired with
our local runs, followed by their standard variances (%). The
best performances are marked in bold.

Methods FM C10 C100 SVHN

Dropout
variants

Non-dropout 94.05 94.41 75.3 96.51
0.07 0.04 0.22 0.03

Original 93.97 94.24 75.59 96.52
0.02 0.2 0.1 0.09

Biased 94 94.45 75.61 96.53
0.1 0.07 0.13 0.06

Spatial 94.05 94.45 75.13 96.47
0.08 0.09 0.02 0.13

Crossmap 94 94.4 75.45 96.35
0.05 0.06 0.14 0.07

Proposed

FDD-1D 94.33† 94.65† 76.81† 96.85†
0.04 0.08 0.07 0.03

FDD-2D 94.37† 94.73† 76.83† 96.83†
0.05 0.02 0.11 0.03

FDD-3D 94.34† 94.7† 76.53† 96.8†
0.04 0.06 0.07 0.01

† denotes that the proposed dropout significantly
outperforms the original dropout under the significance
level of 0.05 with Student’s t-Test (De Winter 2013).
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Figure 6: Visualization of 2D- and 3D- PCA projections of
the 512 feature maps after applying spatial dropout (Tomp-
son et al. 2015) and the proposed FDD-2D regularization to
ResNet-18 for CIFAR-100. FDD-2D is able to drop more
features in the low-density regions over all projection space,
adapting to the underlying semantic variations while still
simulating abundant sparseness for improving performance.

actions between nodes and causing insufficient sampling of
“facets” to account for diversity. To verify the hypothesis, we
conducted experiments by setting κ = 0.8,α = 0.1 in Eq. (1)
for installing both positive and negative correlations in the
FDDs. The results are shown in Figure 5. It can be seen that
FDDs with positive correlations do not have significant im-
provement over baseline dropouts, whereas FDDs with neg-
ative correlations consistently outperform the others. Thus,
the results support our view of deep feature density.
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Comparison of Dropout Variants
To analyze the differences of the proposed dropout, i.e.
FDD-2D and the baseline of spatial dropout, the PCA pro-
jection of dropout feature maps with the spatial and the pro-
posed dropouts are presented in Figure 6. Figure 6 shows
that the numbers of the dropped features with the proposed
dropout are more uniform than the spatial dropout (Tomp-
son et al. 2015) in both the high and low density regions.
More precisely, the feature maps projected in the ovals, i.e.
the low density regions which are representative for rela-
tively concentrated features, are apt to be removed as redun-
dancy to improve the generalization ability. While the fea-
ture maps projected in the rectangles, i.e. the high density
regions which are representative for variant features, are apt
to be retained to enhance the representative ability for fea-
tures with large semantic variance.

To compare the overall performance of the proposed
dropout with the relevant dropout variants, the average
performances and their standard variances with different
dropout variants on the four datasets are shown in Table
2, where multiple independent experiments are conducted
to obtain each average performance. Notations of ‘FDD-
1D’, ‘FDD-2D’ and ‘FDD-3D’ are the abbreviations for the
proposed feature density-based dropouts with 1D feature
neurons and 2D/3D-PCA projections of vectorized feature
maps, respectively. Dropout variants of ‘Original’, ‘Biased’,
‘Spatial’ and ‘Crossmap’ are abbreviated in Table 1.

Regarding to the dropout of the FC features, the perfor-
mances of ‘Original’ and ‘FDD-1D’ in Table 2 show the pro-
posed dropout significantly outperforms the original dropout
on the four datsets under the significance level of 0.05 with
Student’s t-Test (De Winter 2013), where a large improve-
ment of 1.7% is achieved on the CIFAR-100 dataset. Re-
garding of the dropout of the feature maps, the obtained
performances of ‘Spatial’, ‘FDD-2D’ and ‘FDD-3D’ show
that the information of negative correlation between dropout
probability and feature density is useful to dynamically
adapt the dropout probabilities for different datasets. Mean-
while, the proposed FDD-2D balances the performances on
the four datasets.

Generating Adversarial Examples
Recent studies show that high-performance classifiers could
be still fooled by adversarial examples. The adversarial ro-
bustness of a model is evaluated with the recognition per-
formance against each generated adversarial example Î of
its normal counterpart I. In this work, three commonly used
attack methods are employed for the robustness evaluation:
Fast Gradient Sign Method (FGSM) (Goodfellow,

Shlens, and Szegedy 2014) introduced an efficient
one-step attack. This method uses the gradient of the
training cost function to determine the direction of the
perturbation. The adversarial examples can be generated
by Î = I+ε · sign(∇IL (I,y)), where ε is the perturbation
intensity and L (I,y) is the training loss function with
input I and label y.

Basic Iterative Method (BIM) (Kurakin, Goodfellow,
and Bengio 2017) introduced an extension of FGSM,

which applied multi-step perturbations and clipped the
perturbed values with constrained bounding.

Projected Gradient Descent (PGD) (Madry et al. 2018)
proposed an improved adversary method, which is the
multi-step variant of FGSM. A small random perturbation
is added to the original input data, whose iterative gener-
ation is further projected into the valid space for the next
step iteration to improve the success attack rate.

We generated adversarial examples using the above meth-
ods assuming the scenario of white-box attacks (Yuan et
al. 2019). That is, the adversary knows everything related
to the target network, including model architectures, hyper-
parameters, activation functions, model weights, etc. In this
case, adversarial examples are generated to attack each
“white-box” model in our experiments, respectively.

Evaluations of Adversarial Robustness
We evaluated the proposed adaptive dropout on improving
the DNN robustness against adversarial examples gener-
ated by the “white-box” settings as described in the previ-
ous section. The evaluation experiments are performed on
modified ResNet-18 with different dropout regularizations
over Fashion-MNIST and CIFAR-100. Only the input im-
age examples that can be correctly recognized in the orig-
inal datasets are used to generate adversarial examples. In
particular, we normalized the image intensity from Fashion-
MNIST with 0-1 normalization and that from CIFAR-100
with z-score normalization for image processing. Taking
FGSM for example, in L∞ norm, the normalized value of
perturbation intensity ε = 0.03,0.06,0.12 corresponds to
changing 8,16,32 pixels for the Fashion-MNIST images
while ε = 0.015,0.03,0.06 corresponds to changing 1,2,4
pixels for the CIFAR-100 images, respectively. The iteration
step in BIM and PGD is set to 10 with a step size of ε/10.

Table 3 reports the results by comparing the proposed
approach with non-dropout and the baselines under adver-
sarial perturbations bounded with typical perturbation in-
tensity value ε in L∞ norm. It can be seen that recogni-
tion accuracies of all testing methods drop even with small
perturbations. The original random dropout is particularly
sensitive to adversarial perturbations, while the proposed
FDD modifications are able to achieve significantly im-
provement over the baseline approaches in all cases. Take
our FDD-1D on the CIFAR-100 dataset as an example, it
greatly outperforms the original dropout with improvements
of 51.28%, 53.61% and 50.71% against the adversarial at-
tacks of FGSM, BIM and PGD with normalized perturbation
intensities of ε = 0.06, ε = 0.03 and ε = 0.03, respectively.
In general, the gain is 10-50% by the proposed scheme com-
paring with batch normalization only and other dropout vari-
ants. The significant better performance achieved by the pro-
posed dropout illustrate the robustness of feature density for
pixel-wise adversarial attacks.

Figure 7 plots adversarial robustness of the network by
employing different dropout regularization schemes under
an increasing perturbation intensity value of ε in L∞ and
L2 norms for the two datasets, respectively. In particular,
Figure 7 shows that the network performance by employ-
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Table 3: Recognition accuracy (%) under normalized perturbation intensity, denoted by ε , in L∞-norm against adversarial
examples generated by the FGSM, BIM and PGD attacks on the Fashion-MNIST and CIFAR-100 images, respectively. FDD-
1D and FDD-2D/3D are the proposed dropout with 1D feature neurons and 2D/3D-PCA projections of vectorized feature maps.
The top three performances are marked in bold.

Datasets Attacks Intensity Non-dropout Original FDD-1D Spatial FDD-2D FDD-3D

Fashion-MNIST

FGSM
ε = 0.03 36.35 31.43 54.92 38.1 47.39 50.87
ε = 0.06 11.95 5.85 39.62 9.93 28.38 35.96
ε = 0.12 2.13 1.65 22.98 2.5 14.22 22.41

BIM ε = 0.02 34.13 30.02 46.35 39.08 40.63 43.92
ε = 0.03 7.56 2.11 25.47 9.08 16.7 20.77

PGD ε = 0.02 34.13 30.02 46.35 39.08 40.63 43.92
ε = 0.03 8.98 2.54 27.05 11.15 17.34 21.39

CIFAR-100

FGSM
ε = 0.015 40.02 40.56 74.8 40.34 70.9 65.65
ε = 0.03 24.16 24.51 71.89 23.76 67.1 60.04
ε = 0.06 14.72 15 66.28 14.15 61.98 53.63

BIM ε = 0.015 23.47 24.29 65.63 24.49 59.32 50.09
ε = 0.03 4.32 5.89 59.5 4.72 49.45 36.64

PGD ε = 0.015 33.95 34.09 67.18 35.28 61.68 53.99
ε = 0.03 7.53 9.25 59.96 8.49 51.01 39.44
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Figure 7: Recognition accuracy (%) comparing the network with non-dropout and four dropout variants including the original
baseline against the FGSM attack with an increasing the value of normalized perturbation intensity ε in L∞ and L2 norm over
CIFAR-100 and Fashion-MNIST, respectively. The robustness of all the methods is tested with our local runs.

ing our FDD-1D regularization is significantly more salient
to small FGSM-based adversarial perturbations, up till ε =
0.06 in L∞ norm and ε = 2.5 in L2 norm, that were applied
to CIFAR-100 images. Whereas for all other methods, the
recognition accuracy declines quickly by increasing the per-
turbation intensity in generating adversarial examples. On
the Fashion-MNIST, the proposed dropout scheme still out-
performs the other comparing variants by improving the net-
work robustness against adversarial examples with larger
perturbation intensities.

Conclusion and Future Work
In this paper, we propose an adaptive dropout variant that
can simultaneously improve the network performance in
terms of the accuracy of objection recognition as well as
the robustness against adversarial examples generated by
adding small perturbations to the original image intensities.

The proposed regularization scheme works by adapting the
dropout probability to latent semantic variations of deep rep-
resentations while simulating dynamic sparseness within the
network. This is motivated by the observations and insights
that DNN-learned features are not acting individually by
themselves but rather having interactions in specific com-
binations that together contribute to the discriminative func-
tion. Accordingly, we propose to encourage diversity of fea-
ture representations for the inherently more “difficult” local
structures. This is done by negatively correlating the dropout
probability with feature density estimated in linearly uncor-
related subspaces of the deep features. Our empirical analy-
sis and experimental results support our hypothesis regard-
ing the dropout. The proposed method outperforms the base-
line and other state-of-the-art dropout variants on all four
public benchmark datasets. Our future work includes studies
of improving the network robustness using dropout-inspired
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regularization schemes under more general adversarial per-
turbation attacks such as C&W (Carlini and Wagner 2017).
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