
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Deep Generative Probabilistic Graph
Neural Networks for Scene Graph Generation

Mahmoud Khademi, Oliver Schulte
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

{mkhademi, oschulte}@sfu.ca

Abstract

We propose a new algorithm, called Deep Generative Prob-
abilistic Graph Neural Networks (DG-PGNN), to generate a
scene graph for an image. The input to DG-PGNN is an im-
age, together with a set of region-grounded captions and ob-
ject bounding-box proposals for the image. To generate the
scene graph, DG-PGNN constructs and updates a new model,
called a Probabilistic Graph Network (PGN). A PGN can be
thought of as a scene graph with uncertainty: it represents
each node and each edge by a CNN feature vector and de-
fines a probability mass function (PMF) for node-type (ob-
ject category) of each node and edge-type (predicate class)
of each edge. The DG-PGNN sequentially adds a new node
to the current PGN by learning the optimal ordering in a
Deep Q-learning framework, where states are partial PGNs,
actions choose a new node, and rewards are defined based on
the ground-truth. After adding a node, DG-PGNN uses mes-
sage passing to update the feature vectors of the current PGN
by leveraging contextual relationship information, object co-
occurrences, and language priors from captions. The updated
features are then used to fine-tune the PMFs. Our experiments
show that the proposed algorithm significantly outperforms
the state-of-the-art results on the Visual Genome dataset for
scene graph generation. We also show that the scene graphs
constructed by DG-PGNN improve performance on the vi-
sual question answering task, for questions that need reason-
ing about objects and their interactions in the scene context.

1 Introduction

Visual understanding of a scene is one of the most important
objectives in computer vision. Over the past decade, there
have been great advances in relevant tasks such as image
classification and object detection. However, understanding
a scene is not only recognizing the objects in the scene. The
interactions between objects also play a crucial role in visual
understanding of a scene. To represent the semantic con-
tent of an image, previous work proposed to build a graph
called scene graph (Krishna et al. 2016; Lu et al. 2016;
Li et al. 2017), where the nodes represent the objects and the
edges show the relationships between them (see Figure 1).

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This paper therefore introduces a new algorithm, Deep Gen-
erative Probabilistic Graph Neural Networks (DG-PGNN),
to generate a scene graph for an image.

Figure 1: A scene graph represents semantic content of an
image via a graph. We leverage region-grounded captions to
construct a scene graph. The graph is useful to answer visual
questions such as What color is the umbrella? (the attributes
of node umbrella) and What is the woman in white pants
holding? (the relationship triplet woman-holding-umbrella).

An efficient scene graph generation model needs to lever-
age visual contextual information as well as language priors.
Previous work proposed to learn a contextualized represen-

11237

tation for nodes and edges either by sending messages across
a fixed complete graph (Xu et al. 2017), where each node
is potentially an object, or by assuming a fixed linear or-
dering for the bounding-boxes and applying a bidirectional
LSTM (Zellers et al. 2018). The node and edge representa-
tions are then used to infer the node-types and edge-types.
However, these models cannot leverage the rich latent graph-
structured nature of the input. Unlike these approaches, our
method is well-designed for graph-structured input data; we
simultaneously build the graph and fine-tune the predictions,
as we get new information about the scene.

We introduce a new graph neural network model, Proba-
bilistic Graph Network (PGN), to represent a scene graph
with uncertainty. The PGN is a probabilistic extension to
Graph Network (Battaglia et al. 2018). In a PGN, each node
and each edge is represented by a CNN feature vector, and
the degree of belief about node-type (object category) of
a node and edge-type (predicate class) of an edge is rep-
resented by a probability mass function (PMF). Our novel
DG-PGNN algorithm constructs a PGN as follows. It se-
quentially adds a new node to the current PGN by learning
the optimal ordering in a Deep Q-learning framework, where
states are partial PGNs, actions choose a new node, and re-
wards are defined based on the ground-truth scene graph of
the input image. After adding a new node, DG-PGNN uses
message passing to update the feature vectors of the cur-
rent PGN by leveraging contextual relationship information,
object co-occurrences, and language priors from captions.
The updated features are then used to fine-tune the PMFs.
Our experiments show that DG-PGNN substantially outper-
forms the state-of-the-art models for scene graph generation
on Visual Genome dataset.

We also evaluate the usefulness of DG-PGNN by apply-
ing it to the visual question answering (VQA) task. In spite
of recent advances in VQA, current VQA models often fail
on sufficiently new samples, converge on an answer after lis-
tening to only a few words of the question, and do not alter
their answers across different images (Agrawal, Batra, and
Parikh 2016). Our point of departure is that success at VQA
task requires a rich representation of the objects and their vi-
sual relationships in an image, which identifies the attributes
of these objects, and supports reasoning about the role of
each object in the scene context (Figure 1). To apply DG-
PGNN to the VQA task, we first construct a scene graph for
the image. Then, the predicted scene graph is used to pro-
duce a representation of the image and question information
by attending to the nodes and edges which are relevant to the
question. This enables our model to answer questions which
need reasoning about objects and their interactions. In sum-
mary, our contributions are the following:

• A new graph neural network model for representing the
uncertainty associated with a scene graph.

• A new scene graph construction algorithm that combines
deep feature learning with probabilistic message passing
in a completely differentiable probabilistic framework.
The DG-PGNN sequentially adds a new node to the graph
in a reinforcement learning (RL) framework. The motiva-
tion for using RL is that a graph can be generated through

sequentially choosing components, and Markov decision
process is an effective framework for sequential deci-
sion making. RL provides a scalable and differentiable
approach for structure prediction tasks. Although we fo-
cus on the scene graph generation task, the DG-PGNN
is a generic neural method for feature learning with la-
tent graph structures, when the structure is unknown in
advance, e.g. knowledge graph construction from texts.

• To the best of our knowledge, this is the first work that ex-
plicitly exploits textual information of an image to build a
scene graph. Textual information is a rich source of infor-
mation about object attributes and relationships.

2 Related Work

Our work is related to several areas in computer vision, nat-
ural language processing and deep learning.

Scene Graph Generation. Johnson et al.(2015) proposed
a model based on a conditional random field that reasons
about various groundings of potential scene graphs for an
image. Liang, Lee, and Xing(2017) proposed a model for
visual relationship and attributes detection based on rein-
forcement learning. In their method, to extract a state fea-
ture, they used the embedding of the last two relationships
and attributes that were searched during the graph construc-
tion. This will lead to limited representational power since
the resulting representation depends on the order that the
algorithm selects node and edges. Hence, this method may
generate different representations for the same graph. Li et
al.(2017) described a Multi-level Scene Description Net-
work, to address the object detection, region captioning, and
scene graph generation tasks jointly. They aligned object,
phrase, and caption regions by applying a dynamic graph
using spatial and semantic links. Then they applied a fea-
ture refining schema to send messages across features of the
phrase, object, and caption nodes via the graph.

Lu et al.(2016) introduced a model to detect a relatively
large set of relationships using language priors from se-
mantic word embeddings. Xu et al.(2017) use an RNN for
scene graph generation, which learns to improve its pre-
dictions iteratively through message passing across a scene
graph. Zellers et al.(2018) proposed to learn a contextual-
ized representation for nodes and edges with a bidirectional
LSTM, based on a fixed linear ordering for the bounding-
boxes. In Newell and Deng(2017), the authors proposed to
train a CNN which takes in an image and produces a scene
graph in an end-to-end framework. Tang et al.(2019) utilize
dynamic tree structures that put the objects in an image into
a visual context to improve scene graph generation accuracy.

VQA. Most VQA models compute an attention weight
of spatially localized CNN features based on the question.
The weighted local features are then used to predict an
answer (Xiong, Merity, and Socher 2016). Nam, Ha, and
Kim(2016) proposed a joint attention-based model, Dual
Attention Networks, for both image and question informa-
tion. Fukui et al.(2016) use a multimodal compact bilinear
(MCB) pooling to get a joint representation for the input im-
age and question. In Teney, Liu, and van den Hengel(2016),
authors introduced a VQA model based on structured repre-

11238

sentations of both scene contents and questions for abstract
scenes with a limited number of object classes, a small set
of discrete features for each object, and only spatial rela-
tionships among them. While highly effective, a limitation
is that the scene graph must be given at the test time.

Graph Neural Networks. Battaglia et al.(2018) reviewed
recent work on graph neural networks extensively. Graph
neural network models have been proposed for feature learn-
ing from graph-structured inputs. They have been used for
various range of tasks that need rich relational structure
such as visual scene understanding (Santoro et al. 2017) and
learning to represent programs (Allamanis, Brockschmidt,
and Khademi 2017). Li et al.(2015) proposed a model called
Gated Graph Neural Network. Given the graph structure and
the edge types, their model can be applied to each node to get
a node representation which takes into account contextual
information from the neighbor nodes. However, the graph
structure and edge-types are not often given in tasks such as
scene graph generation. This prohibits the use of this model
for many real-world tasks.

In this work, we propose a probabilistic framework to
build a graph neural network. Recent deep generative mod-
els of graphs include Li et al.; Johnson(2018; 2017). John-
son(2017) proposed an extension to Gated Graph Neural
Networks which can learn to construct and modify a graph
using textual input. They applied the proposed extension to
solve some bAbI tasks successfully. A key problem, how-
ever, is that their model has to select an ordering to add the
nodes to the graph, which may not be optimal.

3 Proposed Algorithm

In this section, we first introduce the Probabilistic Graph
Network (PGN). Then, we explain how to construct a com-
plete PGN with N nodes using all bounding-box proposals
of the input image, where N is the number of bounding-
boxes. This complete PGN provides initial node feature vec-
tors, edge feature vectors, and PMFs for the DG-PGNN al-
gorithm. Next, we describe how to encode the captions. Af-
ter that, we explain the DG-PGNN algorithm to generate a
scene graph for an image. Starting from a null PGN, the al-
gorithm sequentially adds a new node to the current PGN.
At each step, the algorithm has two major parts:
• A Q-learning framework which is responsible for select-

ing the next node.
• PGN updates which update the current PGN after adding

the new node and edges.
Whenever we add a new node to the current PGN, we con-
nect the new node to each node of the current PGN using
two directed edges (see Figure 2).

The PMFs of the edge between the new node and each
node in the current PGN, the feature vector of the new node,
and the feature vector of the new edges are initialized by
copying the corresponding feature vectors and PMFs from
the complete PGN. Then, the node features, edge features,
and PMFs of the current graph are updated by exploiting vi-
sual contextual information as well as the region-grounded
captions of the image, hence reducing uncertainty about ob-
jects and predicate classes. We use a GRU to implement an

update. After completion of the algorithm, we eliminate the
edges which have a probability less than 0.5 and the nodes
with background node-type from the last PGN. The remain-
ing graph is the predicted scene graph.

Probabilistic Graph Networks. A Probabilistic Graph
Network (PGN) is defined based on a given (scene) graph
G = (V, E), where V is a set of nodes (bounding-boxes),
and E is a set of probabilistic adjacency matrices. Each
| V | × | V | matrix Ek ∈ E represents a probabilis-
tic adjacency matrix for edge-type (predicate class) k. That
is, for each k ∈ {1, . . . ,K}, Ek(u, v) is the probability
that there exists an edge of type k going from node u to
node v, where K is the number of edge-types. We write
eu,v = [E1(u, v), . . . , EK(u, v)]� ∈ R

K for the PMF from
u to v. The sum of the entries of a PMF must equal 1. We re-
lax this condition for edges, to allow zero or multiple edges
with various edge-types from u to v. Each edge e = (u, v)
has an edge representation (feature) hu,v ∈ R

D. All edges
from u to v with different edge-types share the same edge
representation. Also, each node v has a node representation
hv ∈ R

D and a node-type PMF nv ∈ R
M , where M is

the number of node-types (including “background”), and ith
entry of nv is the probability that node v has type i.

Constructing a Complete PGN. Given an image dataset
with ground-truth annotations, we first train an object de-
tector. For this purpose, we use the Tensorflow Object De-
tection API. We use faster rcnn nas trained on MS-COCO
dataset as the pretrained model. Given an image, the out-
put of the object detector is a set of object bounding-boxes
with their objectness scores, classification scores, bounding-
box coordinates, and feature vectors. We denote the feature
vector of bounding-box v by h◦

v . Each bounding-box v is
specified by its coordinates B(v) = (vx, vy, vx′ , vy′) and
a confidence score p(v), where (vx, vy) and (vx′ , vy′) are
the top-left and bottom-right corners of the bounding-box.
We use N = 256 bounding-boxes per image with the high-
est objectness scores. We also extract a feature vector for
each edge e = (u, v) denoted by h◦

u,v from the union of
bounding-boxes u, and v. For this purpose, we first feed the
image to 152-layer ResNet, pretrained on ImageNet, and ob-
tain 1024 feature maps from the last 14 × 14 pooling layer.
Then, we apply a Region of Interest pooling layer (Girshick
2015), based on the coordinates of each bounding-box, to
get 1024 features maps of size 7×7. Next, we use two fully-
connected layers with ReLU activation to get a 512-d feature
vector denoted by h◦

u,v .
We may obtain a node-type PMF n◦

v for each candidate
bounding-box v based on the classification scores of v. How-
ever, to incorporate global context, we sort the bounding-
boxes based on their confidence score, and apply a bidi-
rectional LSTM in an Encoder-Decoder architecture (sim-
ilar to (Zellers et al. 2018)) to obtain a node-type PMF n◦

v
for each node, and an edge-type PMF e◦u,v for each pair of
the nodes. The Encoder-Decoder architecture is explained
in the supplementary materials (https://grlearning.github.io/
papers/135.pdf). Note that the order of the bounding-boxes
are not crucial here, since the e◦u,v , n◦

v are just initial values
and they will be updated later during the execution of the
DG-PGNN algorithm.

11239

Caption Encoding. We use a region-grounded caption-
ing model from https://github.com/jcjohnson/densecap to
extract a set of descriptions for the input image, e.g. a
cloudy sky, woman holding umbrella. Each caption c has a
bounding-box B(c) and a confidence score. We map the one
hot representation of each word to a semantic space of di-
mensionality D via a D×n word embedding matrix, where
n is the size of a dictionary which is created using all train-
ing captions (and questions for VQA task). To initialize the
word embeddings, we apply skip-gram training to all ques-
tions and captions, and concatenate the skip-gram vectors
with the pretrained GloVe vectors. The last hidden state of
a GRU is used to encode a caption. We reset the GRU after
presenting each caption.

Deep Q-learning for Node Selection

Starting from a null graph, we sequentially add a new node
to the current graph in a Deep Q-learning framework, where
a state is a PGN, each action chooses a new node, and re-
wards are defined based on the ground-truth scene graph.
We use two fully-connected layers with a ReLU activation
function to implement the Q-network. Let the current state
be a partial PGN denoted by s. The input to the Q-network
is defined as
φ = φ(s) = [g,p,d,h1, . . . ,hN ,n1, . . . ,nN ,o

n,oe] (1)
where g, is a global feature vector extracted from the last
layer of 152-layer ResNet, on and oe are graph-level repre-
sentations of the current PGN initialized to 0, p ∈ R

N is
a confidence score vector defined as p = [p(1), . . . , p(N)],
and vector d ∈ R

N is defined as: d(v) = 1 if v is selected
before, otherwise d(v) = 0. The feature vector φ provides
a history about the nodes, node-types, and edge-types which
were selected before. Thus, the Q-network can exploit infor-
mation about co-occurrence of the objects for selecting the
next node. For example, if the current graph has a node with
type street, it is likely that the image contains object car; so
the Q-network is more likely to select a bounding-box with
a high node-type probability for car.

At each step, we select an action from the set A =
{v : d(v) = 0} ∪ {STOP}, where STOP is a special ac-
tion that indicates the end of graph construction. The re-
ward function for taking action a at state s is defined as:
r(a, s) = 1 if there exists a ground-truth box v such that
IoU(B(a),B(v)) ≥ 0.5, otherwise r(a, s) = −1, where IoU
stands for Intersection over Union.

After each 3000 steps, the Q-network trainable param-
eters θ are copied to θ̂ which are used to compute the
target Q-values. This helps stabilize the optimization. To
reduce correlation between samples and keep experiences
from the past episodes, we use an experience replay tech-
nique (Mnih et al. 2013; 2015). To update the parameters of
the Q-networks, we choose a random minibatch from the re-
play memory. Let (φ̂, ŝ, â, r̂, φ̂′, ŝ′) be a random transition
sample. The target Q-value for the network is obtained as

ŷ = r̂ + γmaxv∈Â′ Q
(
φ(ŝ′ + v); θ̂

)
(2)

where Â′, is a set of actions that can be taken in state ŝ′,
and ŝ′ + v is obtained by adding node v to ŝ′. Finally, the

Figure 2: Scene graph generation using DG-PGNN.

parameters of the model are updated as follows:

θ′ = θ + α
(
ŷ −Q

(
φ(ŝ+ â);θ

))∇θQ
(
φ(ŝ+ â);θ

)
(3)

To train the model, we use ε-greedy learning, that is, with
probability ε a random action is selected, and with proba-
bility 1 − ε an optimal action is selected, as indicated by
the Q-networks. For test images, we construct the graph by
sequentially selecting the optimal actions (bounding-boxes)
based on the highest Q-values until it selects the STOP.

Probabilistic Graph Network Updates

Node Representation Updates. We compute a new node
representation h′

v for each node v, every time that we ex-
tend the graph. This allows to exploit information about co-
occurrence of objects. For example, if the current graph has
a node with type building, it is likely that the graph contains
window. For each node v in the current PGN, an ideal node
representation must take into account the information from
every node which has an edge to v based on the strength of
the edge. The update equations are as follows

av =
∑K

k=1

∑
u∈V Ek(u, v)hu,v (4)

h′
v = GRU(av,hv) (5)

where, V is the set of the nodes in the current PGN. In-
tuitively, av is the aggregation of massages from all nodes
to v weighted by the strength of their outgoing edge to v.
The update mechanism first computes the node activations
av for each node v. Then, a (one-step) GRU is used to up-
date node representation for each node by incorporating in-
formation from the previous node representation hv . Note
that unlike (Li et al. 2017; Xu et al. 2017), our message

11240

propagation mechanism is based on strength of the edges,
not the predefined structure of the graph, since Ek is proba-
bilistic. Also, our message passing scheme is part of a larger
RL-based architecture. Thus, unlike these work which use
all candidate boxes, in our DG-PGNN the massages propa-
gate through the partial graph that has been constructed by
DG-PGNN, not the complete graph.

Edge Representation Updates. After updating the node
representations, we compute a new edge representation h′

u,v

for each edge e = (u, v). This allows to exploit contextual
relationship information. For example, if the type of node u
is man, and the type of node v is horse, it is likely that the
edge-type of e = (u, v) be riding. We use a (one-step) GRU
to update the edge representations as

h′
u,v = GRU([hu,hv],hu,v) (6)

Caption-Guided Updates. If a word of a caption refers
to a node-type, then it is useful to update the node repre-
sentation of a node which is located at the region of the cap-
tion based on the encoded caption. For example, for a yellow
umbrella, it is useful to update the node representation of a
node that is located at the region of the caption, such that the
new representation increases the degree of the belief that the
node-type of the node is umbrella; or man is riding a horse
increases the chance that an edge that is located at the region
of the caption has type riding. Given a new node v, if there is
a caption c such that IoU(B(c),B(v)) ≥ 0.5, we update the
node representation of v as h′

v = GRU([c,nv],hv), where,
c is the encoded caption. Similarly, if there is a caption c
and a node u such that IoU(U(u, v),B(c)) ≥ 0.5, where U
stands for union of two boxes, we update the edge represen-
tation of (u, v) and (v, u) as

h′
u,v = GRU([c, eu,v],hu,v) (7)

h′
v,u = GRU([c, ev,u],hv,u) (8)

Graph-Level Representation. We obtain a graph-level
representation on using the node representations as

on = ψ
(∑

v σ
(
f n(nv,hv)

)� ψ
(
gn(nv,hv)

))
(9)

where, f n and gn are two neural networks, ψ is the hy-
perbolic tangent function, and σ

(
f(nv,hv)

)
is an attention

weight vector that decides which nodes are related to the
current graph-level representation. Similarly, we obtain a
graph-level representation oe using edge representations as

oe = ψ
(∑

u,v σ
(
f e(eu,v,hu,v)

)� ψ
(
ge(eu,v,hu,v)

))
(10)

These two representations provide a summary of the current
graph for the Q-network.

Node-Type Probability Updates. To compute a new
node-type PMF for node v, we apply a GRU and a softmax
layer

n′
v = softmax

(
GRU([hv,o

n,oe],nv)
)

(11)
where, the softmax function guarantees that sum of the

probability of all node-types for node v, is 1.
Edge-Type Matrix Updates. We update the edge-type

probability vectors as follows
ru,v = σ

(
W(1)ψ

(
W(2)x+ b(1)

)
+ b(2)

)
(12)

zu,v = σ
(
W(3)ψ

(
W(4)x+ b(3)

)
+ b(4)

)
(13)

e′u,v = eu,v � (1− ru,v) + (1− eu,v)� zu,v (14)

where x = [hu,v,nv,hv,nu,hu], and the weight matrices
and biases are trainable parameters. This update grantees
that the updated probabilities are between 0 and 1.

Parameter Updates. We update the parameters of the
proposed model after updating the node-type PMFs and the
edge-type matrices. For these updates, we minimize the fol-
lowing loss functions
Ln = −∑

v n
�
v · log(n′

v) + (1− n�
v) · log(1− n′

v) (15)
Le = −∑

u,v e
�
u,v · log(e′u,v) + (1− e�u,v) · log(1− e′u,v)

(16)
where, n�

v and e�u,v denote the ground-truth for PMF of node
v, and edge-type probabilities of edge e = (u, v). That is,
n�
v(m) = 1 if there is a ground-truth bounding-box u of

node-typem such that IoU(u, v) ≥ 0.5, otherwise n�
v(m) =

0. Similarly, e�u,v(k) = 1 if there is a ground-truth edge e =
(u′, v′) of type k such that IoU(U(u, v),U(u′, v′)) ≥ 0.5,
otherwise e�u,v(k) = 0.

DG-PGNN for VQA. We use the last hidden state of a
GRU to obtain an encoded question denoted by q. Then, we
obtain question-guided graph-level representations as

on
q = ψ

(∑
v σ(hv � q)� ψ(hv � q)

)
(17)

oe
q = ψ

(∑
u,v σ(hu,v � q)� ψ(hu,v � q)

)
(18)

where, we used MCB to implement �. This allows to in-
corporate information from the question for computing the
attention weights for each node and edge using the sigmoid
function. The candidate answers are also encoded by the last
hidden state of a GRU and concatenated with on

q and oe
q us-

ing a neural network layer as p̂ = σ
(
wf([on

q,o
e
q,a]) + b

)

where, a is the encoded answer choice, f is a ReLU non-
linear layer, and w, b are trainable parameters. The binary
logistic loss −p log(p̂) − (1 − p) log(1 − p̂) is used, where
p is 1.0 for an image-question-answer triplet, if the answer
choice is correct, otherwise p is 0.

Training Details and Optimization. The discount fac-
tor γ is set to 0.85 and ε is annealed from 1 to 0.05 dur-
ing the first 50 epochs, and is fixed after epoch 50. For
VQA, the loss is minimized using RMSprop optimization
algorithm with learning rate 0.0001 and minibatches of size
100. To prevent overfitting, dropout with probability 0.5 and
early stopping are applied. D is set to 512. For each image,
we use up to 10 captions with a confidence score greater
than 1.0. During training, all parameters are tuned except
for the weights of the CNN and caption generation compo-
nent to avoid overfitting. We use default values for all hyper-
parameters of the object detector API. Our model takes two
days to train on two NVIDIA Titan X GPUs.

4 Experiments
For each task, we introduce the datasets, baseline models
and evaluation metric that we use in our experiments. Then,
the results are presented and discussed.

Scene Graph Generation Task

Dataset. The Visual Genome dataset (Krishna et al. 2016)
contains 108, 077 images. We used Visual Genome ver-

11241

sion 1.4 release. This release contains cleaner object an-
notations (Xu et al. 2017). Annotations provide subject-
predicate-object triplets. A triplet means that there is an edge
between the subject and the object and the type of the edge
is indicated by the predictate. Following (Xu et al. 2017),
we use the most frequent 150 object categories and 50 pred-
icates for scene graph prediction task. This results in a scene
graph of about 11.5 objects and 6.2 relationships per image.
The training and test splits contains 70% and 30% of the
images, respectively.

Metrics. Top-K recall (Rec@K) is used as the metric,
which is the fraction of the ground truth relationship triplets
subject-predicate-object hit in the top-K predictions in an
image. Predictions are ranked by the product of the node-
type probability of the subject, the node-type probability of
the object, and the edge-type probability of the predicate.
Following (Xu et al. 2017), we evaluate our model based on
three tasks as follows:

• Predicate classification (PRED-CLS) task: to predict the
predicates of all pairwise relationships of a set of objects,
where the location and object categories are given.

• Scene graph classification (SG-CLS) task: to predict the
predicate and the object categories of the subject and ob-
ject in all pairwise relationships, where the location of the
objects are given.

• Scene graph generation (SG-GEN) task: to detect a set of
object bounding-boxes and predict the predicate between
each pair of the objects, at the same time. An object is
considered to be properly detected, if it has at least 0.5
Intersection over Union overlap with a bounding-box an-
notation with the same category.

Baseline Models. We compare our model with several
baseline models including the state-of-the-art models (Tang
et al. 2019; Zellers et al. 2018; Newell and Deng 2017). Lu
et al.(2016) uses language priors from semantic word em-
beddings, while Xu et al.(2017) uses an RNN and learns to
improves its predictions iteratively through message passing
across the scene graph. After a few steps the learned features
are classified. Moreover, three ablation models help evaluate
the impact of each component of DG-PGNN:

• DG-PGNN◦ is the initial complete PGN without applying
the DG-PGNN (e = (u, v) is pruned if e◦u,v is less than
0.5, and v is deleted if n◦

v is less than 0.5)

• DG-PGNN− is the same as DG-PGNN except that it does
not use captions.

• DG-PGNN† is the same as the full model (DG-PGNN),
but it uses the VGG features instead of ResNet.

Results and Discussion. Our experimental results are re-
ported in Table 1. The results show that DG-PGNN outper-
forms the state-of-the art models for scene graph genera-
tion task. Both DG-PGNN and Xu et al.(2017) leverage the
power of RNNs to learn a feature vector for each bounding-
box. DG-PGNN incorporates captions and contextual infor-
mation of the image via information propagation to con-
struct precise scene graphs. However, Xu et al.(2017) suffers
from imbalanced classification problem (often there is no

edge between a pair of objects). DG-PGNN† results (com-
paring to DG-PGNN) show the effect of backbone CNN
(VGG versus ResNet) is insignificant. This is because our
algorithm uses strong contextual information to compensate
for the detection errors caused by applying the VGG.

PRED-CLS SG-CLS SG-GEN
Model R@50 R@100 R@50 R@100 R@50 R@100
SG-LP1 27.88 35.04 11.79 14.11 00.32 00.47
SG-IMP2 44.75 53.08 21.72 24.38 03.44 04.24
MSDN3 63.12 66.41 19.30 21.82 7.73 10.51
GRCNN4 54.2 59.1 29.6 31.6 11.4 13.7
PIX2GR5 68.0 75.2 26.5 30.0 9.7 11.3
MOTIF6 65.2 67.1 35.8 36.5 27.2 30.3
VCTREE7 66.4 68.1 38.1 38.8 27.9 31.3
DG-PGNN◦ 63.5 65.3 34.2 34.8 26.1 28.8
DG-PGNN− 67.3 70.1 38.6 39.2 30.2 31.8
DG-PGNN† 69.0 72.1 39.3 40.1 31.2 32.5
DG-PGNN 70.1 73.0 39.5 40.8 32.1 33.1

Table 1: Recall for predicate classification, scene graph
classification, and scene graph generation tasks on Visual
Genome dataset. The References are: Lu et al.(2016)1, Xu et
al.(2017)2, Li et al.(2017)3, Yang et al.(2018)4, Newell and
Deng(2017)5, Zellers et al.(2018)6, and Tang et al.(2019)7.

VQA Task

Datasets. Visual7W (Zhu et al. 2015) includes 47, 300 im-
ages which occurs in both Visual Genome and MS-COCO
datasets. The training, validation and test splits, contains
50%, 20%, 30% of the QA pairs, respectively. We train and
evaluate our model on telling questions of the Visual7W.
This set uses six types of questions: what, where, when, who,
why, how. For evaluation, Visual7W provides four candidate
answers.

We also evaluated our model on the test set of CLEVR
(https://cs.stanford.edu/people/jcjohns/clevr/) dataset (John-
son et al. 2017a). CLEVR evaluates different aspects of vi-
sual reasoning such as attribute recognition, counting, com-
parison, logic, and spatial relationships. Each object in an
image has the following attributes: shape (cube, sphere, or
cylinder), size (large or small), color (8 colors), and mate-
rial (rubber or metal). An object detector with 96 classes is
trained using all combinations of the attributes. The predi-
cates are left, right, in front, behind, same size, same color,
same shape, and same material. We created a scene graph
for each training image using the provided annotations. We
concatenate the normalized coordinates of each bounding-
box with the features vector that we extract from Region of
Interest pooling layer. This helps to detect spatial relation-
ships between objects.

Baseline Models. For Visual7W, we compare our models
with Zhu et al.(2015), MCB (Fukui et al. 2016), MAN (Ma
et al. 2018), and MLP (Jabri, Joulin, and Van Der Maaten
2016). MCB leverages the Visual Genome QA pairs as addi-
tional training data and the 152-layer ResNet as a pretrained
model. This model took the first place in the VQA Chal-
lenge workshop 2016. MAN utilized a memory-augmented
neural network which attend to each training exemplar to
answer visual questions, even when the answers happen
infrequently in the training set. The MLP method uses
image-question-answer triplets to score answer choices. For

11242

CLEVR, we compare our DG-PGNN− with several base-
lines proposed by Johnson et al.(2017a) as well as state-
of the art models PROGRAM-GEN (Johnson et al. 2017b)
and CNN+LSTM+RN (Santoro et al. 2017). N2NMN (Hu
et al. 2017) learns to predict a layout based on the ques-
tion and compose a network using a set of neural modules.
CNN+LSTM+RN learns to infer a relation using a neural
network model called Relation Networks. PROGRAM-GEN
exploits supervision from functional programming which is
used to generate CLEVR questions.

Model What Where When Who Why How Avg
HUMAN1 96.5 95.7 94.4 96.5 92.7 94.2 95.7
LSTM-ATT1 51.5 57.0 75.0 59.5 55.5 49.8 54.3
CONCAT+ATT2 47.8 56.9 74.1 62.3 52.7 51.2 52.8
MCB+ATT2 60.3 70.4 79.5 69.2 58.2 51.1 62.2
MAN3 62.2 68.9 76.8 66.4 57.8 52.9 62.8
MLP4 64.5 75.9 82.1 72.9 68.0 56.4 67.1
DG-PGNN− 65.4 77.1 83.0 74.1 68.8 57.3 68.0
DG-PGNN 66.8 78.3 84.4 75.6 70.0 58.2 69.3

Table 2: Accuracy Percentage on Visual7W. The refer-
ences are: Zhu et al.(2015)1, Fukui et al.(2016)2, Ma et
al.(2018)3, Jabri, Joulin, and Van Der Maaten(2016)4.

Model All Exist Count Cmp-Int Q-At Cmp-At
HUMAN1 92.6 96.6 86.7 86.5 95.0 96.0
Q-TYPE MODE1 41.8 50.2 34.6 51.0 36.0 51.3
LSTM1 46.8 61.1 41.7 69.8 36.8 51.3
CNN+BOW1 48.4 59.5 38.9 51.1 48.3 51.8
CNN+LSTM1 52.3 65.2 43.7 67.1 49.3 53.0
CNN+LSTM+MCB1 51.4 63.4 42.1 66.4 49.0 51.0
CNN+LSTM+SA1 68.5 71.1 52.2 73.5 85.3 52.3
N2NMN2 83.3 85.7 68.5 85.0 90.0 88.8
CNN+LSTM+RN 3 95.5 97.8 90.1 93.6 97.9 97.1
PROGRAM-GEN4 96.9 97.1 92.7 98.7 98.2 98.9

DG-PGNN− 96.1 98.0 91.2 94.2 98.1 97.8

Table 3: Accuracy Percentage on CLEVR. The references
are: Johnson et al.(2017a)1, Hu et al.(2017)2, Santoro et
al.(2017)3, and Johnson et al.(2017b)4.

Results. Tables 2 and 3 reports our experimental results
on Visual7W and CLEVR datasets, respectively. For Vi-
sual7W, the results show that our algorithm outperforms
MCB, MAN, and MLP for VQA task. This is because the
scene graph provides a rich intermediate representation to
answer questions involving objects and their relationships.
For CLEVR, our algorithm achieves comparable results with
the state of the art. We emphasize that, unlike PROGRAM-
GEN, our algorithm does not exploit supervision from func-
tional programming.

Qualitative Examples

Figures 3, 4, and 5 illustrate some scene graphs generated by
our model. The DG-PGNN predicts a rich semantic repre-
sentation of the given image by recognizing objects, their lo-
cations, and relationships between them. For example, DG-
PGNN can correctly detect spatial relationship (bowl on ta-
ble, tree behind girl, and cube behind cylinder), and inter-
actions (girl riding horse and girl wearing shirt). The DG-
PGNN can correctly recognize girl (instead of woman), and
zebra in snow (instead of zebra in grass).

Figure 3: Examples of scene graphs generated by DG-
PGNN on Visual Genome dataset.

Figure 4 shows two examples of VQA by DG-PGNN† on
CLEVR dataset. Figures 5 shows examples of VQA by DG-

11243

PGNN on Visual7W dataset. For each question, the nodes
and edges with the highest attention weight are specified.

Figure 4: Examples of VQA by DG-PGNN† on CLEVR
dataset. For each question, the nodes and edges with the
highest attention weight are specified.

Figure 5: An example of scene graph generation and VQA
by DG-PGNN on Visual7W dataset. For each question, the
nodes and edges with the highest attention weight are spec-
ified. The DG-PGNN can correctly detect spatial relation-
ships wall beside zebra and zebra behind fence. Also, the
DG-PGNN can correctly recognize zebra in snow (instead
of zebra in grass which occurs more frequently).

5 Conclusion

We presented a new generative graph neural network, Deep
Generative Probabilistic Graph Neural Networks, which
generates a scene graph for an image. Our experiments show
that the proposed algorithm significantly outperforms the
state-of-the-art results on Visual Genome dataset for scene
graph generation task. The scene graphs constructed by DG-
PGNN improve performance on VQA task on Visual7W and
CLEVR datasets. A future research direction is to train an
end-to-end model which learns to answer visual question
about an image by constructing a scene graph for the image.

References

Agrawal, A.; Batra, D.; and Parikh, D. 2016. Analyzing
the behavior of visual question answering models. arXiv
preprint arXiv:1606.07356.
Allamanis, M.; Brockschmidt, M.; and Khademi, M. 2017.
Learning to represent programs with graphs. arXiv preprint
arXiv:1711.00740.

11244

Battaglia, P. W.; Hamrick, J. B.; Bapst, V.; Sanchez-
Gonzalez, A.; Zambaldi, V.; Malinowski, M.; Tacchetti, A.;
Raposo, D.; Santoro, A.; Faulkner, R.; et al. 2018. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261.
Fukui, A.; Park, D. H.; Yang, D.; Rohrbach, A.; Darrell,
T.; and Rohrbach, M. 2016. Multimodal compact bilinear
pooling for visual question answering and visual grounding.
arXiv preprint arXiv:1606.01847.
Girshick, R. 2015. Fast r-cnn. arXiv preprint
arXiv:1504.08083.
Hu, R.; Andreas, J.; Rohrbach, M.; Darrell, T.; and Saenko,
K. 2017. Learning to reason: End-to-end module networks
for visual question answering. In Proceedings of the IEEE
International Conference on Computer Vision, 804–813.
Jabri, A.; Joulin, A.; and Van Der Maaten, L. 2016. Re-
visiting visual question answering baselines. In European
conference on computer vision, 727–739. Springer.
Johnson, J.; Krishna, R.; Stark, M.; Li, L.-J.; Shamma, D.;
Bernstein, M.; and Fei-Fei, L. 2015. Image retrieval using
scene graphs. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 3668–3678.
Johnson, J.; Hariharan, B.; van der Maaten, L.; Fei-Fei, L.;
Lawrence Zitnick, C.; and Girshick, R. 2017a. Clevr: A di-
agnostic dataset for compositional language and elementary
visual reasoning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2901–2910.
Johnson, J.; Hariharan, B.; van der Maaten, L.; Hoffman, J.;
Fei-Fei, L.; Lawrence Zitnick, C.; and Girshick, R. 2017b.
Inferring and executing programs for visual reasoning. In
Proceedings of the IEEE International Conference on Com-
puter Vision, 2989–2998.
Johnson, D. D. 2017. Learning graphical state transitions.
In International Conference on Learning Representations
(ICLR).
Krishna, R.; Zhu, Y.; Groth, O.; Johnson, J.; Hata, K.;
Kravitz, J.; Chen, S.; Kalantidis, Y.; Li, L.-J.; Shamma,
D. A.; et al. 2016. Visual genome: Connecting language and
vision using crowdsourced dense image annotations. arXiv
preprint arXiv:1602.07332.
Li, Y.; Tarlow, D.; Brockschmidt, M.; and Zemel, R. 2015.
Gated graph sequence neural networks. arXiv preprint
arXiv:1511.05493.
Li, Y.; Ouyang, W.; Zhou, B.; Wang, K.; and Wang, X. 2017.
Scene graph generation from objects, phrases and region
captions. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 1261–1270.
Li, Y.; Vinyals, O.; Dyer, C.; Pascanu, R.; and Battaglia, P.
2018. Learning deep generative models of graphs. arXiv
preprint arXiv:1803.03324.
Liang, X.; Lee, L.; and Xing, E. P. 2017. Deep variation-
structured reinforcement learning for visual relationship and
attribute detection. In Computer Vision and Pattern Recogni-
tion (CVPR), 2017 IEEE Conference on, 4408–4417. IEEE.
Lu, C.; Krishna, R.; Bernstein, M.; and Fei-Fei, L. 2016.

Visual relationship detection with language priors. In Euro-
pean Conference on Computer Vision, 852–869. Springer.
Ma, C.; Shen, C.; Dick, A.; Wu, Q.; Wang, P.; van den Hen-
gel, A.; and Reid, I. 2018. Visual question answering with
memory-augmented networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
6975–6984.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529.
Nam, H.; Ha, J.-W.; and Kim, J. 2016. Dual attention
networks for multimodal reasoning and matching. arXiv
preprint arXiv:1611.00471.
Newell, A., and Deng, J. 2017. Pixels to graphs by associa-
tive embedding. In Advances in neural information process-
ing systems, 2171–2180.
Santoro, A.; Raposo, D.; Barrett, D. G.; Malinowski, M.;
Pascanu, R.; Battaglia, P.; and Lillicrap, T. 2017. A simple
neural network module for relational reasoning. In Advances
in neural information processing systems, 4967–4976.
Tang, K.; Zhang, H.; Wu, B.; Luo, W.; and Liu, W. 2019.
Learning to compose dynamic tree structures for visual con-
texts. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 6619–6628.
Teney, D.; Liu, L.; and van den Hengel, A. 2016. Graph-
structured representations for visual question answering.
CoRR, abs/1609.05600 3.
Xiong, C.; Merity, S.; and Socher, R. 2016. Dynamic
memory networks for visual and textual question answering.
arXiv preprint arXiv:1603.01417.
Xu, D.; Zhu, Y.; Choy, C. B.; and Fei-Fei, L. 2017. Scene
graph generation by iterative message passing. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, volume 2.
Yang, J.; Lu, J.; Lee, S.; Batra, D.; and Parikh, D. 2018.
Graph r-cnn for scene graph generation. arXiv preprint
arXiv:1808.00191.
Zellers, R.; Yatskar, M.; Thomson, S.; and Choi, Y. 2018.
Neural motifs: Scene graph parsing with global context. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 5831–5840.
Zhu, Y.; Groth, O.; Bernstein, M.; and Fei-Fei, L. 2015.
Visual7w: Grounded question answering in images. arXiv
preprint arXiv:1511.03416.

11245

