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Abstract

In this work, we introduce a novel weakly supervised ob-
ject detection (WSOD) paradigm to detect objects belong-
ing to rare classes that have not many examples using trans-
ferable knowledge from human-object interactions (HOI).
While WSOD shows lower performance than full supervi-
sion, we mainly focus on HOI as the main context which
can strongly supervise complex semantics in images. There-
fore, we propose a novel module called RRPN (relational re-
gion proposal network) which outputs an object-localizing
attention map only with human poses and action verbs. In
the source domain, we fully train an object detector and the
RRPN with full supervision of HOI. With transferred knowl-
edge about localization map from the trained RRPN, a new
object detector can learn unseen objects with weak verbal su-
pervision of HOI without bounding box annotations in the
target domain. Because the RRPN is designed as an add-on
type, we can apply it not only to the object detection but also
to other domains such as semantic segmentation. The experi-
mental results on HICO-DET dataset show the possibility that
the proposed method can be a cheap alternative for the cur-
rent supervised object detection paradigm. Moreover, qualita-
tive results demonstrate that our model can properly localize
unseen objects on HICO-DET and V-COCO datasets.

Introduction
In a decade, object detection has become one of the most
successful fields in computer vision with various appli-
cations (Ren et al. 2015; Dai et al. 2016; Redmon et
al. 2016; Liu et al. 2016). Most of the successful mod-
els have emerged after the release of large scale datasets
(e.g. PASCAL VOC, MS-COCO (Everingham et al. 2010;
Lin et al. 2014)) with bounding box annotations. Given input
images, conventional object detection models can localize
boxes with the corresponding class scores. Thus, they nor-
mally require manually annotated bounding boxes contain-
ing accurate coordinate values and object labels for training.

However, annotating bounding boxes is time-consuming
and labor-intensive. It can also be difficult to expand the vol-
ume of a dataset by adding more object classes or adding
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Figure 1: 1) Two different types of description of an object.
A is human’s way of identifying an object while B is for
machines. 2) Manually annotating time for three tasks. Bear-
man et al. (Bearman et al. 2016) estimated annotation times
for image level, bounding box and pixel level. At rightmost,
annotating time of relation sentence can be similar to that of
image-level since only action verb “hold” is added.

more images. Therefore, researches to reduce those costs in
various ways have drawn attentions these days.

Weakly supervised object detection (WSOD) has been
proposed to tackle the aforementioned problems (Zhu et al.
2017; Shi, Caesar, and Ferrari 2017; Jie et al. 2017). It is
to detect objects within images by weak supervision such as
image-level labels. At the cost of lowered annotation cost,
WSOD performs worse than full supervision.

To overcome a limitation of weak supervision, some ap-
proaches (Shi, Caesar, and Ferrari 2017) rely on another
type of full supervision with transfer learning. Transferred
knowledge from a source domain could support weak super-
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vision in a target domain. However, annotating other types
of labels such as segmentation mask is also expensive.

Our main intuition is that supervision of machines is to-
tally different from that of humans. For example, Fig. 1(1)
shows different ways of identifying objects between humans
and machines. While we should provide accurate coordinate
values of object boxes for machines, humans usually recog-
nize new objects from contexts. Contexts also can reinforce
supervision without much additional efforts.

Especially, how objects are related to human actions can
be practical and advantageous since information about a hu-
man can be a proper evidence for recognizing contexts in an
image. Moreover, humans can easily express contexts with
sentences as shown in Fig. 1(1), so that linguistic labels can
be a key to reduce annotation cost for humans as shown in
Fig. 1(2). Compared to other annotating costs (Bearman et
al. 2016), the cost of annotating a relation sentence such as
“person, hold, bottle” can be almost similar to that of image-
level annotation. Thus, we propose a novel paradigm to learn
unseen objects based on human-object interaction (HOI).

Our key idea is to exploit transferable knowledge from
HOI contexts annotated by language as is in (Chao et al.
2018). Specifically, we propose a novel module that predicts
object locations from HOI. Since the actual coordinate val-
ues can not be specified, we use an attention map as localiza-
tion results to connect it with a bounding box. Moreover, in
order to train a full object detector (e.g. Faster-RCNN (Ren
et al. 2015)) in an end-to-end fashion, we design a new mod-
ule as an add-on type.

The objective of this paper is to make our model learn ad-
ditional rare classes with weak verbal supervision annotated
easily by human. During the first stage, strong supervision
on non-rare classes teach our model to localize a proper lo-
cation with a human pose and an action verb. In the next
stage, only weak supervision with transferred knowledge
keeps training an object detector for unseen rare classes.

Our main contributions can be summarized as follows:

• We define a new weakly-supervised object detection
scheme which mainly relies on interactions between a hu-
man and objects without box annotations.

• We propose a novel module called RRPN (Relational Re-
gion Proposal Network) to localize boxes by using the lo-
cation of a human and verb embeddings.

• The proposed RRPN is designed as a universal add-on
type that can be easily adapted into existing models such
as Faster-RCNN.

Our experiments validate that our model outperforms
baselines on the HICO-DET (Chao et al. 2018) dataset and
can effectively transfer the knowledge to other dataset such
as V-COCO (Gupta and Malik 2015).

Related works

Weakly Supervised Object Localization and Detection
Most of the weakly supervised object localization and de-
tection methods have been proposed based on an image-
level supervision. With cheaper but weaker annotations,

studies (Bilen and Vedaldi 2016; Diba et al. 2017; Kan-
torov et al. 2016; Oquab et al. 2015; Tang et al. 2017;
Jie et al. 2017) mainly tried to enhance performance by mul-
tiple instance learning (MIL). In MIL, a bag is defined as a
collection of regions in an image. It is labeled as positive if
at least one object is positive and labeled as negative if all
the objects are negative.

Tang et al. 2018 have proposed proposal cluster learn-
ing algorithm to learn refined instance classifier. Yang et
al. 2019 have proposed activity-driven WSOD, which also
exploits action classes as contextual information to localize
objects without box annotations. However, those works has
generated box proposals using Selective Search (Uijlings et
al. 2013), which is a rule-based algorithm. Since the box
proposal method cannot be trained, there is a fundamen-
tal limitation which proper proposals hardly exist in novel
data. Uijlings, Popov, and Ferrari 2018 have addressed a new
WSOD framework that revisits knowledge transfer for train-
ing object detectors on target classes. Since this work has
optimized a box proposal network for target classes by MIL,
box generators can be insufficiently trained with rare classes
due to a lack of contextual information. Our method resolves
the aforementioned issues with a novel box proposal module
that can transfer knowledge using an HOI dataset.
Human-object interaction Visual recognition of HOI is
crucial for comprehending a scene in an image. Early work
studied mutual context of human pose and objects (Yao and
Fei-Fei 2010) and Bayesian model (Gupta and Davis 2007;
Gupta, Kembhavi, and Davis 2009) with handcraft features.
Recently, with success of deep learning, Chao et al. 2015 in-
troduced a new large-scale benchmark, “Humans Interacting
with Common Objects” (HICO), for HOI recognition, which
was expanded for detection problems in HICO-DET (Chao
et al. 2018). In order to solve HICO-DET datasets, vari-
ous approaches have been proposed. In (Chao et al. 2018),
combined features from human proposals and object regions
were used to solve HOI detection. Gkioxari et al. 2018 pro-
posed a human and object detector-based approach estimat-
ing a density map based on Faster-RCNN architecture. A re-
cent approach (Qi et al. 2018) generates the HOI graph and
propagates message between nodes to infer relationships in a
parsing graph. In this paper, rather than directly solving HOI
problems, we exploit contextual information in HICO-DET
to construct a weakly-supervised object detector.

Algorithm Overview

An overview of our algorithm is illustrated in Fig. 2. Let
D = {(Ii, yi)}Ni=1 is the data set, where yi is the label of the
image Ii and N is the number of images. The image label yi
is organized as a tuple as shown below:

yi = {(Hj
verb, O

j
bbox, O

j
cls)}Mj=1 (1)

where, Oj
bbox, O

j
cls are the bounding box and the class of an

object in the image, Hj
verb is the action verb corresponding

to the object, and M is the number of tuples in the image
Ii. To evaluate the proposed method, we divided D into two
sub-categories based on the number of objects in a class:
non-rare (source classes) DS and rare (target classes) DT .
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Figure 2: Overview of our algorithm. 1) During the training
phase for source classes, RRPN is also trained to predict at-
tention map from human-object interaction. 2) In the target-
class training phase, an object detector is trained using the
ground truth class label, and the box label provided by the
trained RRPN. In other words, our problem focuses solely
on solving the weakly supervised object detection problem
on the target classes. 3) As a result, the trained object de-
tector for target classes can infer box coordinates and object
classes with only an image input.

Note that, there is no object class duplicates but all action
verbs are overlapped between two subcategory datasets.

For DS , we normally train the first object detector (blue
circle in Fig. 2) with full supervision using (Oj

bbox, O
j
cls).

Along with training of the object detector, we also train an
object localizer (red circle) called RRPN with newly defined
inputs. Since the RRPN should learn how to localize an ob-
ject only with the information on a human and an action
verb, we use the image Ii, the verb Hj

verb, and the pose of
the human Hj

pose as inputs. The Hj
verb simply comes from yi

but the human pose Hj
pose is extracted from an image Ii with

an existing human pose estimation method. As a results, the
RRPN predicts an attention map Ãj

i of an object location
in the i-th image from human’s action and appearance. We
optimize losses regarding the object class and the location
using Oj

bbox and Oj
cls for the object detector, but create a

Gaussian map of Oj
bbox and use it as a ground truth in the

training of the attention map of the RRPN. In this phase,
since the ground truth bounding box location is available,
the RRPN can learn common knowledge between objects
and human actions.

For DT , we assume that only object class information
Oj

cls and the action verb Hj
verb are available but the bound-

ing box information is not. To fill the absence of Oj
bbox, we

exploit learned knowledge inferred by the RRPN with the
same kinds of inputs as the training phase for the source
classes. Since the output of RRPN is an attention map, we
extract a coordinate by thresholding it and generate pseudo
bounding box Ôj

bbox. Then, we normally train the second
object detector (green rectangle in Fig. 2) for DT . Since we
already have used all action verbs to train the RRPN in the

previous phase and transfer the same parameters in the train-
ing phase for the target classes, it can infer an object loca-
tion with a human pose and an action verb. In Fig. 2, after
the RRPN already learned to localize unseen object “Apple”
with verb “EAT” and grabbing pose in the training phase of
DS , it can infer a proper location as a pseudo ground truth
Ôj

bbox. In conclusion, we use weak supervision by human
actions to train a full object detector.

Eventually, the trained object detector in the second phase
can predict objects in DT only with an input image Ii as
shown in Fig. 2. Although we have not shown the real loca-
tion of “Apple”, it is possible to predict the class score and
the coordinate of an “Apple” object.

In this scheme, we can additionally train new object de-
tector for unseen rare classes without bounding box anno-
tations. Moreover, since we already trained the RRPN with
strong supervisions, we need smaller amount of data in tar-
get classes compared to other WSOD algorithms. Our ex-
periments validate that our target domain which contains
extremely rare object classes is trained successfully by our
method.

Architecture

Fig. 3 depicts the overall architecture of the proposed algo-
rithm. The proposed algorithm consists of two modules, in-
cluding the RRPN and the object detector. More precisely, it
means that RRPN can be combined with the conventional
architecture such as the Faster-RCNN. RRPN is a multi-
stage encoder-decoder network, which is responsible for
predicting an object-location-centric attention map Aj

i from
a multi-domain integrated feature map. The other module,
object detector, is a conventional object detector which is
trained for a given input image using the ground truth label
Ocls and the bounding box Obbox .

In order to exploit the knowledge of interaction, we train
DT after the training of DS is done. Since, however, we do
not account for the continual learning, DS and DT do not
share parameters for the object detector. While the object de-
tector is trained for DS with supervision, at the same time,
RRPN is also trained to learn the knowledge from interac-
tions between a human and an object through action verbs.
Then, the object detector is trained for DT without object
bounding boxes, i.e. in a weakly supervised way, using the
transferred knowledge from DS .

Training on the Source classes DS

DS are object classes on which data can be easily acquired.
Training on DS is a standard supervised object detection
procedure by using ground truth class and box labels for all
the objects. The main purpose of training on DS is to predict
an object location from a human-object interaction. There-
fore, RRPN is also trained at the same time as the training
of the object detector. The detailed training procedure for
Faster-RCNN is applied in the same way as the original pa-
per. The training procedure of RRPN is as follows.

Relational Region Proposal Network (RRPN) RRPN is
designed to be universally applicable to various task’s mod-
els, including other object detectors, in an add-on manner,
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Figure 3: Overall network architecture of the proposed algorithm. Relational Region Proposal Network (RRPN) at the top is
mounted on a basic Faster-RCNN model at the bottom. In RRPN, a combined feature Fint from verb, pose and image produces
an attention map through a network which has four blocks. With source classes, the RRPN is trained with a Gaussian mask
from the ground truth bounding box. However, with target classes, the RRPN generates a pseudo ground truth bounding box so
that Faster-RCNN can be optimized.

and can share the backbone network with other model for
image features to improve memory efficiency.

As mentioned above, RRPN predicts attention map Ãj
i for

a given image Ii using a multi-domain feature map F i,j
int ∈

R
C×H×W as an input, where C,W,H are the depth, width

and height of the feature map. Fint is obtained by
F i
int = {F i,j

int}Mj=1 = {(F j
img ⊕ F j

pose ⊕ F j
verb)}Mj=1, (2)

where, Fimg , Fpose, Fword are the image feature, pose fea-
ture, and verb feature obtained by their corresponding mod-
els fimg(Ii, θimg), fpose(Ii, θpose), fword(H

j
act, θverb), and

⊕ is the matrix concatenation. Here, θx is the corresponding
model parameters. The convolution operation for F i

int com-
putes the object existence probability for a combination of
F j
img , F j

pose, and F j
verb at a specific location on Ii.

As in (2), we used three feature maps to utilize contexts
from various domains in a given dataset, and each feature
map has its own contribution. The pose and word feature are
responsible for the visual context of the human’s location
and action, and the distinguishable linguistic context for the
human’s action, respectively. The image feature is responsi-
ble for representing the whole scene as well as the object of
interest. The details for each feature maps are as follows:
Pose feature We use the well-known human pose estima-
tion model, OPENPOSE (Cao et al. 2017), to extract pose
features. OPENPOSE predicts the location of human body
joints using image or video as an input. The output consists
of channels corresponding to each joint and a channel rep-
resenting background information. In this paper, we used a
pose estimation model with 19 channels including 18 joints
and 1 background. In order to feed distinct information of
human pose to the RRPN, we exploit the 18 channels except
for the background channel as the pose feature.
Verb feature The widely used GloVe-twitter-27B-25d
model (J. Pennington and Manning 2014) is applied as the

word embedding model for the verb. Since a word is embed-
ded into a vector, one needs to convert it into a tensor form
for integration with other features. While F j

img and F j
pose

may have different spatial-wise activations depending on Ii,
F j
verb must have the same value regardless of positions. In

designing F j
verb, we also take this consideration into ac-

count. In order to match the spatial dimension with others,
the verb feature is copied to every spatial position. So that
dimension of F j

verb is converted from R
25 to R

25×H×W . By
stacking a depth-wise word vector at all spatial positions, we
can conduct a convolution operation using the same verbal
information at all position of F j

img . Note that, among the
HICO-DET datasets, tuples with ‘No interaction’ verb la-
bels were excluded from training and validation phases for
accurate evaluation of the proposed algorithm.

Image feature The proposed algorithm makes use of the
representative two-stage object detection model, Faster-
RCNN. It consists of a feature extractor, a back-bone net-
work, and a region proposal network (RPN). The output fea-
ture map of the back-bone network of the Faster-RCNN is
used as the image feature for the RRPN. When training on
the target classes, the parameters of the backbone network
are reused, but the parameters of RPN are reset.

Multi-domain feature map F i,j
int is then fed into the net-

work to predict attention map Aj
i . In order to robustly detect

objects in various sizes, we designed the network architec-
ture which has four blocks as in (Wang and Shen 2018): an
Encoder block fen, two decoder blocks fde1, fde2 and an
attention block fatt. fen takes F i,j

int as an input and outputs
two feature maps with different spatial dimensions. Then,
each output feature map feeds into fde1 and fde2, respec-
tively. The output feature maps of fde1 and fde2 having the
same spatial dimension are concatenated and inputted to the
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attention block resulting in an attention map Ãj
i as

Ãj
i = fatt[fde1{f1

en(F
i,j
int)} ⊕ fde2{f2

en(F
i,j
int)}]. (3)

The output of RRPN is an attention map which empha-
sizes the location where the object is likely to be located.
To train attention maps, we create a Gaussian map Aj

i , as
a ground truth attention map, using Oj

bbox. RRPN is trained
using Aj

i as the label. We use pixel-wise binary cross en-

tropy loss (BCE) Latt between (Aj
i ,

˜
Aj

i ).
The total loss for training on the source classes including

RRPN and object detector is shown below:

Ltotal = Ldet + λLatt, Ldet = Lcls + Lloc (4)

where, λ is a hyper-parameter balancing between the two
losses and Ldet is the loss for the Faster-RCNN. In the ob-
ject detector point of view, the proposed algorithm on DS

is trained in the same way as the conventional supervised
objected detection algorithms.

Training On the Target classes DT

The object detector for DT should be trained without Obbox.
Therefore, we define this problem as a weakly supervised
object detection (WSOD) problem. We use Õbbox as an al-
ternative to the missing Obbox utilizing RRPN learned in the
source classes training phase. It is expected that the trained
RRPN can predict locations of unseen objects i.e. DT , since
it is trained to predict the object location using a human
pose, an action (verb) and an image feature. The training
process on DT using the trained RRPN is as follows:

The Fpose, Fverb, and Fimg are fed into the trained RRPN.
We apply a threshold to obtain a pseudo bounding box from
the output attention map as

Ãj
i =

{
1, if, Ãj

i > δ

0, otherwise
(5)

where, δ is a pre-defined threshold. The largest bounding
box containing a valid value in Ãj

i is called Õj
bbox. The

pseudo ground truth bounding boxes {Õj
bbox}Mj=1 obtained

from the attention maps {Ãj
i}Mj=1 of all tuples in the image

Ii are collected together and used as bounding box labels
Õbbox for training an object detector. In this step, a different
type of object detector from the one trained in DS training
phase can be used for training. The object detector is trained
to minimize detection loss using Ocls and Õbbox.

Experiment

In this section, we evaluate the performance of the proposed
WSOD algorithm. To the best of our knowledge, no previ-
ous studies have been conducted on the relationship between
object detection and HOI. Nevertheless, we conducted the
performance comparison with prior works on HICO-DET.

Dataset and Pre-processing

HICO-DET dataset consists of 47,776 images (38,118 train-
ing and 9,658 testing) classified into 117 actions (verb) and

80 object classes, and the object classes are the same as MS-
COCO dataset. The ground truth labels consist of a tuple of
(Hact, Obbox, Ocls) as in (1). Note that, the RRPN is trained
based on tuples, so images containing multiple tuples are
fed multiple times. The total number of tuples is 151,276
(117,871 training and 33,405 testing), and we use 131,560
tuples (102,450 training and 29,110 testing) excluding the
tuples corresponding to the action label ‘no-interaction’.

In order to construct the problem environment, the whole
dataset is divided into source and target datasets according to
the frequency of the object class. Our basic experiment is set
up with 116 verbs excluding ‘no interaction’. The number of
object classes are 70 for DS and 10 for DT . In order to more
clearly show the effectiveness of RRPN, in the experiment
for qualitative result, we use 5 verbs and 10 DS and 70 DT .
Other hyperparameters remain the same as the basic set up.

We also verified the proposed algorithm on V-COCO
dataset for qualitative analysis. The purpose of evaluation
on the V-COCO dataset is to show that the knowledge can
be transferred from one dataset to other. Details on both
datasets are described in the supplementary material.

Metrics

We use mean Average Precision (mAP) and Recall as eval-
uation metrics. Because RRPN produces one bounding box
for one tuple (action), Recall is used to measure how accu-
rate the location of an object corresponding to an action is. In
other words, Recall evaluates the objectness of Ã predicted
by RRPN, and is calculated as the ratio of tuples for which
IoU > 0.5. On the other hand, the object detector detects
all the objects in an image at once. Therefore, we use the
mAP in measuring the performance of Faster-RCNN which
are the standard metrics for object detectors.
DS and DT in Recall are the performance of the RRPN’s

agent after the training on DS . When training on DT , RRPN
is fixed and not trained. Note that Recall is measured on test
set for DS and on both training and test set for DT .

Comparison with prior works

We conduct experiments to compare with prior works on
HICO-DET as shown in Table 1. First two columns repre-
sent overall results of original algorithms in AD (Yang et
al. 2019) and PCL (Tang et al. 2018). However, both results
are only able to show performance of all object classes with
an entire dataset. Since our method is designed for transfer
learning, we experiment to validate PCL on each of source
and target domains. As a result, our best model with image,
pose and verb has 17.19% which is 4 times better than the
result of PCL on DT . Moreover, our model only with the
image feature outperforms PCL on DT . Although a direct
apple-to-apple comparison is difficult, we can see that our
method is far better than the compared methods.

Comparison with different feature combination

We experiment to verify the performance of different feature
combinations. We train and test the RRPN using the same
types of feature for both DS and DT in each experiment. Ta-
ble 2 shows the performances of RRPN and Faster-RCNN as
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Table 1: Comparison of the mAP with other WSOD algo-
rithms on HICO-DET. (PCL* is tested by ourselves, § is
trained on the entire dataset and † is trained on DS and DT

separately. I : Fimg , P : Fpose, V: Fverb, W : Weakly super-
vised object detection, λ = 10, δ = 0.1)

Methods AD PCL PCL* Ours (I) Ours (I+P+V)
DS(W ) - - 4.80§ 5.01† - -
DT (W ) - - 0.01§ 4.75† 9.57 17.19
Total 5.39 3.62 4.42§ - - -

Table 2: Performance comparison of different feature com-
bination. (Notations, λ, and δ are the same as Table 1)

I P V Recall@.5 (RRPN) mAP@.5 (Faster-RCNN)
DS (%) DT (%) DS DT (W) DT (S)

� � � 47.69 28.64 30.34 17.19 29.37
� 42.00 22.75 23.57 9.57 22.07
� � 41.42 22.13 24.17 10.07 25.15
� � 46.34 23.84 29.97 16.34 30.28

Recall and mAP, respectively, using different combinations
of features. DT (W ) in mAP is the results of our WSOD, and
DS and DT (S) are the results of full supervision.

Our full model combining all three features in the top of
Table 2 shows the highest performance in both Recall and
mAP among all combinations. The mAP of DT (W ) has
17.19%, which is 7.62% better than image-only model and
the Recall of the DT is 28.64% which is about 5% higher
than other combinations. Moreover, the mAP score of our
full model is only 4.88% lower than image-only fully su-
pervised model in DT (S). Compared to models of full su-
pervision DT (S), we believe that the mAP score of our full
model can meaningfully show that it can be trained despite
weak supervision of rare classes.

In the middle, using Fimg alone, Recall for DT has
22.75% and mAP (DT (W )) are much lower than mAP
(DT (S)). It means that RRPN could not be trained solely
by Fimg . The two results in the bottom are the performance
for combined features. When Fpose is combined with Fimg ,
Recall degrades and mAP increases slightly. It can show that
Fpose that is extracted from an image is redundant unless it
interacts with a verb. Combining Fverb with Fimg , however,
Recall and mAP significantly increase and mAP(DT (S))
also increases. It is interesting that it might be more effec-
tive for not only RRPN but also Faster-RCNN when using
combination of features from other domain.

Comparison with different λ and δ

In experiments in Table 3, we focus on verifying the effect
of shared parameters such as λ in (4) and δ in (5).

In top of Table 3, according to the change of the λ in (4),
the ratio of the loss weight in RRPN is determined. When λ
is zero, due to untrained RRPN, Recall and mAP for DT (W )
have the lowest score while mAP for DS has the highest
score. On the other hand, Recall and mAP are the highest
at λ = 10 with performance improvements of 17.45% and
15.58% compared to λ = 0, respectively. On the contrary,

Table 3: Comparison of quantitative result of λ and δ (Nota-
tions are the same as Table 1)

parameter Recall@.5 (RRPN) mAP@.5 (Faster-RCNN)
λ δ DS (%) DT (%) DS DT (W) DT (S)
0 0.1 11.64 11.19 31.06 1.61 25.57
1 0.1 41.51 24.46 23.87 9.27 25.43
5 0.1 46.37 23.37 30.10 14.38 26.11

10 0.1 47.69 28.64 30.34 17.19 29.37
15 0.1 46.65 23.07 23.32 15.85 25.45
20 0.1 43.17 26.00 22.68 15.75 22.92
10 0.05 48.22 29.41 30.27 9.41 25.04
10 0.10 47.69 28.64 30.34 17.19 29.37
10 0.15 39.67 17.96 30.40 14.01 26.66
10 0.20 34.14 16.72 30.22 13.24 30.39

on some levels of λ, we can see that the performance degra-
dation for not only DT (W ) but also DS .

This can be understood as an effect of parameter shar-
ing for image feature extractor between RRPN and an object
detector. As mentioned earlier, RRPN is a universal add-on
type module which can be adapted to various computer vi-
sion tasks. To effectively utilize these advantages, we share
the backbone network of RRPN and the object detector in
consideration of memory efficiency. Therefore, the RRPN
and the object detector affect each other through the back-
bone network during training.

In bottom of Table 3, according to the δ in (5), the size
of the pseudo bounding box is determined. A small δ makes
the size of the boxes increase, while a large δ makes the box
small or disappear. As δ increases, partial information of the
object is trained. For example, in the case of an apple, only
the central part of the apple is trained with high δ, which
causes many false positive. On the other hand, lowering the
threshold of the box, Faster-RCNN is trained not only with
an object but also with backgrounds. It is interesting that δ
affect differently to both metrics where Recall gets higher
when δ gets smaller but mAP get the highest score when
δ = 0.1. We believe that the RRPN can easily learn object-
ness with a larger box due to small δ, but classification of ob-
jects could be more difficult due to inaccurate localization.
Therefore, too small or too large δ causes a degradation of
mAP, and we have found the suitable value, δ = 0.1, through
the experiments by selecting the value with the highest per-
formance in DT (W ).

Qualitative results

Fig. 4 shows the qualitative results of the proposed algo-
rithm on DT . The first column indicates input images and
the last column indicates output attention maps inferred by
the corresponding actions. We can see that RRPN predicts
an accurate attention map on unseen object classes in DT .
Furthermore, it can be seen that the pattern of the predicted
attention map differs depending on the verb. For example,
while ‘hold’ shows a strong activation value near the hu-
man hand, ‘ride’ tends to activate at the bottom of a person.
Based on this, we can confirm that the object location can
be estimated based on the interaction between the verb and
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Figure 4: (Left) Input image with pose, (middle) ground truth Gaussian attention mask (A) in yellow, and (Right) predicted
attention map (Ã). Red box is pseudo object box , blue box is ground truth and white box indicates the human in action. (V)
the last row is the result on the V-COCO dataset. Note that a white box is used solely for visually representing an acting human
in an image and is not used in training on DT .

Input Image Image Image + Pose

Image + Verb Pose + Verb All

Figure 5: Comparison of predicted attention maps trained
only by the image feature and by various integrated features
with [glove, hold]. The predicted attention maps show differ-
ent activations depending on the role of each feature map.

the pose. The role of the pose can be found in the example
of [Truck, Ride]. Despite that two trucks exist in an image,
the activation of a truck on which the human is riding shows
stronger than the other. This can be seen as a contribution of
Fpose to the object localization. We also verified the perfor-
mance of RRPN on the object from a different dataset, V-
COCO. The RRPN is trained using DS of HICO-DET and
predicts the attention map of DT of V-COCO. The bottom
row shows the predicted attention map on V-COCO. We can
see that the proposed algorithm can also predict the object
location accurately on images even from other datasets.

Fig. 5 depicts the comparison of predicted attention map
between different feature combinations on [glove, hold]. As

described in section 5, the pattern of the resulting attention
map can be changed by the combination of features. Since
“Glove” is an unseen class, backbone has no information to
extract reliable feature, so that RRPN cannot predict the lo-
cation of an object accurately using only Fimg . However,
if RRPN is trained using more than two features including
Fimg , RRPN can infer the location of an object based either
on Fpose or on Fverb. Specifically, Fimg +Fverb predicted a
more distinguishable attention map for an object, compared
to Fimg + Fpose feature map. Since Fimg and Fpose are ex-
tracted from the same image, some of the information can be
redundant between two features. On the other hand, Fverb

is able to provide useful information to Fint because it is
extracted from a different domain, language. Consequently,
the location of an object can be predicted precisely when we
use all three features. On the contrary, if RRPN trained us-
ing only Fpose and Fverb without Fimg , the output attention
map only activates around the human. Thus, it can be un-
derstood that Fverb plays a role of providing supplementary
information to Fimg about the object of interest.

Conclusion

In this paper, we proposed a novel weakly-supervised
scheme for object detection problems. We introduced the
RRPN which can universally localize objects in an image
with information on human poses and action verbs. Using
transferable knowledge from the RRPN, we can continu-
ously train any object detector for unseen objects with weak
verbal supervision describing HOI. We validated our method
based on the results on HICO-DET dataset and the perfor-
mances show the possibility of our method for a new WSOD
training scheme. Our work shows sufficient potentials to
overcome the inefficiency of the supervised training scheme
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in recent deep learning. Also, we can develop our method
in the direction to the continual learning since we already
suggested a novel method to transfer common knowledge to
localize objects with HOI.
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