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Abstract

Over the past decade, deep neural networks (DNNs) have
demonstrated remarkable performance in a variety of appli-
cations. As we try to solve more advanced problems, in-
creasing demands for computing and power resources has
become inevitable. Spiking neural networks (SNNs) have at-
tracted widespread interest as the third-generation of neural
networks due to their event-driven and low-powered nature.
SNNs, however, are difficult to train, mainly owing to their
complex dynamics of neurons and non-differentiable spike
operations. Furthermore, their applications have been limited
to relatively simple tasks such as image classification. In this
study, we investigate the performance degradation of SNNs
in a more challenging regression problem (i.e., object detec-
tion). Through our in-depth analysis, we introduce two novel
methods: channel-wise normalization and signed neuron with
imbalanced threshold, both of which provide fast and accu-
rate information transmission for deep SNNs. Consequently,
we present a first spiked-based object detection model, called
Spiking-YOLO. Our experiments show that Spiking-YOLO
achieves remarkable results that are comparable (up to 98%)
to those of Tiny YOLO on non-trivial datasets, PASCAL
VOC and MS COCO. Furthermore, Spiking-YOLO on a neu-
romorphic chip consumes approximately 280 times less en-
ergy than Tiny YOLO and converges 2.3 to 4 times faster
than previous SNN conversion methods.

Introduction

One of the primary reasons behind the recent success of deep
neural networks (DNNs) can be attributed to the develop-
ment of high-performance computing systems and the avail-
ability of large amounts of data for model training. How-
ever, solving more intriguing and advanced problems in real-
world applications requires more sophisticated models and
training data, which results in significant increase in com-
putational overhead and power consumption. To overcome
these challenges, many researchers have attempted to design
computationally- and energy-efficient DNNs using pruning
(Guo, Yao, and Chen 2016; He, Zhang, and Sun 2017), com-
pression (Han, Mao, and Dally 2016; Kim et al. 2015), and
quantization (Gong et al. 2014; Park et al. 2018), some of
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which have shown promising results. Despite these efforts,
the demand for computing and power resources will increase
as deeper and more complicated neural networks achieve
higher accuracy (Tan and Le 2019).

Spiking neural networks (SNNs), which are the third-
generation neural networks, were introduced to mimic how
information is encoded and processed in the human brain
by employing spiking neurons as computation units (Maass
1997). Unlike conventional neural networks, SNNs trans-
mit information via the precise timing (temporal) of spike
trains consisting of a series of spikes (discrete), rather than
a real value (continuous). That is, SNNs utilize temporal
aspects in information transmission as in biological neu-
ral systems (Mainen and Sejnowski 1995), thus providing
sparse yet powerful computing ability (Mostafa et al. 2017;
Bellec et al. 2018). Moreover, the spiking neurons inte-
grate inputs into a membrane potential when spikes are re-
ceived and generate (fire) spikes when the membrane po-
tential reaches a certain threshold, which enables event-
driven computation. Driven by the sparse nature of spike
events and event-driven computation, SNNs offer excep-
tional power efficiency and are the preferred neural net-
works in neuromorphic architectures (Merolla et al. 2014;
Poon and Zhou 2011).

Despite their excellent potential, SNNs have been lim-
ited to relatively simple tasks (e.g., image classification)
and small datasets (e.g., MNIST and CIFAR), on a rather
shallow structure (Lee, Delbruck, and Pfeiffer 2016; Wu et
al. 2019). One of the primary reasons for the limited ap-
plication scope is the lack of scalable training algorithms
due to complex dynamics and non-differentiable operations
of spiking neurons. DNN-to-SNN conversion methods, as
an alternative approach, have been studied widely in re-
cent years (Cao, Chen, and Khosla 2015; Diehl et al. 2015;
Sengupta et al. 2019). These methods are based on the idea
of importing pre-trained parameters (e.g., weights and bi-
ases) from a DNN to an SNN. DNN-to-SNN conversion
methods have achieved comparable results in deep SNNs to
those of original DNNs (e.g., VGG and ResNet); however,
results from MNIST and CIFAR datasets were competitive,
while those of ImageNet dataset were unsatisfactory when
compared with DNN’s accuracy.
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In this study, we investigate a more advanced machine
learning problem in deep SNNs, namely object detection,
using DNN-to-SNN conversion methods. Object detection
is regarded as significantly more challenging as it involves
both recognizing multiple overlapped objects and calculat-
ing precise coordinates for bounding boxes. Thus, it requires
high numerical precision in predicting the output values of
neural networks (i.e., regression problem) instead of select-
ing one class with the highest probability (i.e., argmax func-
tion) as performed in image classification. Based on our in-
depth analysis, several issues arise when object detection is
applied in deep SNNs: a) inefficiency of conventional nor-
malization methods and b) absence of an efficient implemen-
tation method of leaky-ReLU in an SNN domain.

To overcome these issues, we introduce two novel meth-
ods; channel-wise normalization and signed neuron with im-
balanced threshold. Consequently, we present a spike-based
object detection model, called Spiking-YOLO. As the first
step towards object detection in SNNs, we implemented
Spiking-YOLO based on Tiny YOLO (Redmon et al. 2016).
To the best of our knowledge, this is the first deep SNN for
object detection that achieves comparable results to those
of DNNs on non-trivial datasets, PASCAL VOC and MS
COCO. Our contributions can be summarized as follows:

• First object detection model in deep SNNs We present
Spiking-YOLO, a model that enables energy-efficient ob-
ject detection in deep SNNs, for the first time. Spiking-
YOLO achieves comparable results to original DNNs on
non-trivial datasets, i.e., 98%.

• Channel-wise normalization We developed a fine-
grained normalization method for deep SNNs. The pro-
posed method enables a higher, yet proper firing rate in
multiple neurons, thus leads to fast and accurate informa-
tion transmission in deep SNNs.

• Signed neuron featuring imbalanced threshold We
proposed an accurate and efficient implementation
method of leaky-ReLU in an SNN domain. The proposed
method can easily be implemented in neuromorphic chips
with minimum overheads.

Related work

DNN-to-SNN conversion

In contrary to DNNs, SNNs use spike trains consisting of a
series of spikes to convey information between neurons. The
integrate-and-fire neurons accumulate input z into a mem-
brane potential Vmem as

V l
mem,j(t) = V l

mem,j(t− 1) + zlj(t)− VthΘ
l
j(t), (1)

where Θl
j(t) is a spike, and zlj(t) is the input of jth neuron

in the lth layer with a threshold voltage Vth. zlj(t) can be
described as

zlj(t) =
∑
i

wl
i,jΘ

l-1
i (t) + blj , (2)

where w and b are weight and bias, respectively. A spike
Θ is generated when the integrated value Vmem exceeds the

threshold voltage Vth as

Θl
i(t) = U(V l

mem,i(t)− Vth), (3)

where U(x) is a unit step function. Due to the event-driven
nature, SNNs offer energy-efficient operations (Pfeiffer and
Pfeil 2018). However, they are difficult to train which has
been one of the major obstacles when deploying SNNs in
various applications (Wu et al. 2019).

The training method of SNNs consists of unsupervised
learning with spike-timing-dependent plasticity (STDP)
(Diehl and Cook 2015) and supervised learning with gradi-
ent descent and error back-propagation (Lee, Delbruck, and
Pfeiffer 2016). Although STDP is biologically more plau-
sible, the learning performance is significantly lower than
that of supervised learning. Recent works proposed a super-
vised learning algorithm with a function that approximates
the non-differentiable portion (integrate-and-fire) of SNNs
(Jin, Zhang, and Li 2018; Lee, Delbruck, and Pfeiffer 2016)
to improve the learning performance. Despite these efforts,
most previous works have been limited to the image classi-
fication task and MNIST dataset on shallow SNNs.

As an alternative approach, the conversion of DNNs to
SNNs has been recently proposed. (Cao, Chen, and Khosla
2015) proposed a DNN-to-SNN conversion method that ne-
glected bias and max-pooling. In subsequent work, (Diehl
et al. 2015) proposed data-based normalization to improve
the performance in deep SNNs. (Rueckauer et al. 2017)
presented an implementation method of batch normaliza-
tion and spike max-pooling. (Sengupta et al. 2019) ex-
panded conversion methods to VGG and residual architec-
tures. Nonetheless, most previous works have been limited
to the image classification task (Park et al. 2019).

Object detection

Object detection locates a single or multiple object(s) in an
image or video by drawing bounding boxes, then identify-
ing their classes. Hence, an object detection model consists
of not only a classifier that classifies objects but also a re-
gressor that predicts the precise coordinates (x- and y-axis)
and size (width and height) of the bounding boxes. Because
predicting precise coordinates of bounding boxes is critical,
object detection is considered to be a much more challeng-
ing task than image classification, where an argmax function
is used to simply pick one class with the highest probability.

Region-based CNN (R-CNN) (Girshick et al. 2014) is
considered to be one of the most significant advances in ob-
ject detection. To improve detection performance and speed,
various extended versions of R-CNN have been proposed,
namely fast R-CNN (Girshick 2015), faster R-CNN (Ren
et al. 2015), and Mask R-CNN (He et al. 2017). Neverthe-
less, R-CNN based networks suffer from a slow inference
speed due to multiple-stage detection schemes and thus are
not suitable for real-time object detection.

As an alternative approach, one-stage detection methods
have been proposed, where the bounding box information is
extracted, and the objects are classified in a unified network.
In one-stage detection models, “Single-shot multi-box de-
tector” (SSD) (Liu et al. 2016) and “You only look once”
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Figure 1: Normalized maximum activation via layer-wise
normalization in each channel for eight convolutional lay-
ers in Tiny YOLO. Blue and red lines indicate the average
and minimum of the normalized activations, respectively.

(YOLO) (Redmon and Farhadi 2018) achieve the state-of-
the-art performance. Particularly, the YOLO has superior in-
ference speed (FPS) without a significant loss of accuracy,
which is a critical factor in real-time object detection. Thus
we selected Tiny YOLO as our object detection model.

Methods

In object detection, recognizing multiple objects and draw-
ing bounding boxes around them (i.e., regression problem)
poses great challenges: high numerical precision is required
to predict the output value of the network. When object de-
tection is applied in deep SNNs using conventional DNN-
to-SNN conversion methods, it suffers from severe perfor-
mance degradation and is unable to detect any objects. Our
in-depth analysis highlights possible explanations for this
performance degradation: a) an extremely low firing rate in
numerous neurons and b) lack of an efficient implementation
method of leaky-ReLU in SNNs. To overcome these compli-
cations, we propose two novel methods: channel-wise nor-
malization and signed neuron with imbalanced threshold.

Channel-wise data-based normalization

Conventional normalization methods In a typical SNN,
it is vital to ensure that a neuron generates spike trains ac-
cording to the magnitude of the input and transmits those
spike trains without any information loss. However, infor-
mation loss can occur from under- or over-activation in the
neurons given a fixed number of time steps. For instance,
if a threshold voltage Vth is extremely large or the input is
small, then a membrane potential Vmem will require a long
time to reach Vth, thus resulting in a low firing rate (i.e.,
under-activation). Conversely, if Vth is extremely small or
input is large, then Vmem will most likely exceed Vth and
the neuron will generate spikes regardless of the input value
(i.e., over-activation). It is noteworthy that the firing rate can

where 

where 

Filter ( )

= max ( ) = max ( )

Normalized Filter ( ~

~

)

DNN-to-SNN 
Conversion

(Channel-wise 
normalization)

Figure 2: Proposed channel-wise normalization; Al
j is jth

activation matrix (i.e., feature map) in layer l.

be defined as N
T , where N is the total number of spikes in

a given time step T . The maximum firing rate will be 100%
since a spike can be generated at every time step.

To prevent under- or over-activation in the neurons, both
the weights and the threshold voltage need to be carefully
chosen for sufficient and balanced activation of the neuron
(Diehl et al. 2015). Various data-based normalization meth-
ods (Diehl et al. 2015) have been proposed. Layer-wise nor-
malization (Diehl et al. 2015) (abbreviated to layer-norm) is
one of the most well-known normalization methods; layer-
norm normalizes weights in a specific layer using the maxi-
mum activation of the corresponding layer, calculated from
running the training dataset in a DNN. This is based on
an assumption that the distributions of the training and test
datasets are similar. In addition, note that normalizing the
weights using the maximum activation will have the same
effect as normalizing the output activation. Layer-norm can
be calculated by

w̃l = wlλ
l−1

λl
and b̃l =

bl

λl
, (4)

where w, λ, and b are the weights, the maximum activations
calculated from the training dataset, and bias in layer l, re-
spectively. As an extended version of layer-norm, (Rueck-
auer et al. 2017) introduced an approach that normalizes the
activations using the 99.9th percentile of the maximum ac-
tivation; this increases the robustness to outliers and ensures
sufficient firing of neurons. However, our experiments show
that when object detection is applied in deep SNNs using the
conventional normalization methods, the model suffers from
significant performance degradation.

Analysis of layer-norm limitation Figure 1 represents
the normalized maximum activation values in each chan-
nel obtained from layer-norm. Tiny YOLO consists of eight
convolutional layers; the x-axis indicates the channel index
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Figure 3: Firing rate distribution for layer-norm and channel-
norm on channel 2 of Conv1 layer (Tiny YOLO)

and the y-axis represents the normalized maximum activa-
tion values. The blue and red lines indicate the average and
minimum values of the normalized activations in each layer,
respectively. As highlighted in Figure 1, for a specific convo-
lutional layer, the deviation of the normalized activations on
each channel is relatively large. For example, in the Conv1
layer, the normalized maximum activation is close to 1 for
certain channels (e.g., channels 6, 7, and 14) and 0 for other
channels (e.g., channels 1, 2, 3, 13, and 16). The same can
be said for the other convolutional layers. Clearly, layer-
norm yields exceptionally small normalized activations (i.e.,
under-activation) in numerous channels that had relatively
small activation values prior to the normalization.

These extremely small normalized activations were unde-
tected in image classification, but can be extremely prob-
lematic in solving regression problems in deep SNNs. For
instance, to transmit 0.7, 7 spikes and 10 time steps are re-
quired. Applying the same logic, transmitting 0.007 would
require 7 spikes and 1000 time steps without any loss of
information. Hence, to send either extremely small (e.g.,
0.007) or precise (e.g., 0.9007 vs. 0.9000) values without
any loss, a large number of time steps is required. The num-
ber of time steps is considered as the resolution of the in-
formation being transmitted. Consequently, extremely small
normalized activations yield low firing rates which results in
information loss when the number of time steps is less than
what it needs to be.

Proposed normalization method We propose a more
fine-grained normalization method, called channel-wise nor-
malization (abbreviated to channel-norm) to enable fast
and efficient information transmission in deep SNNs. Our
method normalizes the weights by the maximum possible
activation (the 99.9th percentile) in a channel-wise manner
instead of the conventional layer-wise manner. The proposed
channel-norm can be expressed as

w̃l
i,j = wl

i,j

λl−1
i

λl
j

and b̃lj =
blj
λl
j

, (5)

where i and j are indices of channels. Weights w in a layer l
are normalized (same effect as normalizing the output acti-
vation) by maximum activation λl

j in each channel. As men-
tioned before, the maximum activation is calculated from
the training dataset. In the following layer, the normalized
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Figure 4: Firing rate of 16 channels in Conv1 layer for layer-
norm and channel-norm of Tiny YOLO

activations must be multiplied by λl−1
i to obtain the original

activation prior to the normalization. The detailed method is
depicted in Algorithm 1 and Figure 2.

Normalizing the activations in the channel-wise man-
ner eliminates extremely small activations (i.e., under-
activation), which had small activation values prior to the
normalization. In other words, neurons are normalized to ob-
tain a higher yet proper firing rate, which leads to accurate
information transmission in a short period of time.

Algorithm 1: Channel-wise normalization
// Calculate maximum activation (λ) for each channel from

training dataset

1 for l in layers do
2 for j in output channels do

3 λl
j = max (Al

j) // A = activation matrix

// Apply channel-norm on inference (test dataset)

4 for l in layers do
5 for j in output channels do

6 b̃lj = blj / λl
j // b = bias

7 for i in input channels do
8 if l = first layer then

9 w̃l
i,j= wl

i,j / λl
j // w = weight

10 else

11 w̃l
i,j = wl

i,j / λl
j λ

l−1
i

Analysis of the improved firing rate In Figure 3, the x-
and y-axes indicate the firing rate and the number of neu-
rons that produce a specific firing rate on a log scale, respec-
tively. For channel-norm, numerous neurons generated a fir-
ing rate of up to 80%. In layer-norm, however, most of the
neurons generated a firing rate in the range between 0% and
3.5%. This is a clear indication that channel-norm eliminates
extremely small activations and that more neurons are pro-
ducing a higher yet proper firing rate. In addition, Figure 4
presents the firing rate in each channel in the convolutional
layer 1. Evidently, channel-norm produces a much higher fir-
ing rate in majority of the channels. Particularly in channel 2,
channel-norm produces a firing rate that is 20 times higher
than that of layer-norm. Furthermore, Figure 5 presents a
raster plot of the spike activity from 20 sampled neurons. It
can be seen that numerous neurons are firing more regularly
when channel-norm is applied.

Our detailed analysis verifies that the fine-grained
channel-norm normalizes activations better, preventing in-
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Figure 5: Raster plot of 20 sampled neurons’ spike activity;
layer-norm (left) vs. channel-norm (right)

sufficient activation that leads to a low firing rate. In other
words, extremely small activations are normalized properly
such that neurons can transmit information accurately in a
short period of time. These small activations may not be
significant and have little impact on the final output of the
network in simple applications such as image classification;
however, they are critical in regression problems and signif-
icantly affect the model’s accuracy. Thus, channel-norm is a
viable solution for solving more advanced machine learning
problems in deep SNNs.

Signed neuron featuring imbalanced threshold

Limitation of leaky-ReLU implementation in SNNs
ReLU, one of the most commonly used activation functions,
retains solely positive input values and discards all negative
values; f(x) = x when x ≥ 0, otherwise f(x) = 0. Unlike
ReLU, leaky-ReLU contains negative values with a leakage
term, slope of α, which is typically set to 0.01; f(x) = x
when x ≥ 0, otherwise f(x) = αx (Xu et al. 2015).

Most previous DNN-to-SNN conversion methods have
focused on converting integrate-and-fire neurons to ReLU,
while completely neglecting the leakage term in the negative
region of the activation function. Note that negative activa-
tions account for over 51% in Tiny YOLO. To extend the
activation function bound to the negative region in SNNs,
(Rueckauer et al. 2017) added a second Vth term (−1).
Their method successfully converted BinaryNet (Hubara et
al. 2016) to SNNs, where the BinaryNet activations were
constrained to +1 or −1 on CIFAR-10.

Currently, various DNNs use leaky-ReLU as an activa-
tion function, yet an accurate and efficient method of imple-
menting leaky-ReLU in an SNN domain has not been pro-
posed. Leaky-ReLU can be implemented in SNNs by sim-
ply multiplying negative activations by the slope α in ad-
dition to a second Vth term (−1). However, this is not bi-
ologically plausible (the spike is a discrete signal) and can
be a formidable challenge when employed on neuromorphic
chips. For instance, additional hardware would be required
for the floating-point multiplication of the slope α.

The notion of imbalanced threshold We herein intro-
duce a signed neuron featuring imbalanced threshold (here-
inafter abbreviated as IBT) that can not only interpret both
positive and negative activations, but also accurately and ef-
ficiently compensate for the leakage term in the negative re-
gions of leaky-ReLU. The proposed method also retains the
discrete characteristics of the spikes by introducing a differ-
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Figure 6: Overview of proposed signed neuron featuring im-
balanced threshold; two possible cases for a spiking neuron

ent threshold voltage for the negative region, Vth,neg. The
second threshold voltage Vth,neg is equal to the Vth divided
by the negative of the slope, −α, and Vth,pos is equal to Vth

as before. This would replicate the leakage term (slope α) in
the negative region of leaky-ReLU. The underlying dynam-
ics of signed neuron with IBT are represented by

fire(Vmem) =

⎧⎨
⎩
1 if Vmem ≥ Vth,pos(Vth)

−1 if Vmem ≤ Vth,neg(− 1
αVth)

0 otherwise, no firing.
(6)

As shown in Figure 6, if the slope α = 0.1 then the threshold
voltage responsible for a positive activation Vth,pos is 1V ,
and that for a negative activation, Vth,neg, is −10V ; there-
fore, Vmem must be integrated ten times more to generate a
spike for the negative activations in leaky-ReLU.

It is noteworthy that a signed neuron also enables im-
plementation of excitatory and inhibitory neurons, which is
more biologically plausible (Dehghani et al. 2016; Wilson
and Cowan 1972). Using signed neurons with IBT, leaky-
ReLU can be implemented accurately in SNNs and can di-
rectly be mapped to the current neuromorphic architecture
with minimum overhead. Moreover, the proposed method
will create more opportunities for converting various DNN
models to SNNs in a wide range of applications.

Evaluation

Experimental setup

As the first step towards object detection in deep SNNs, we
used a real-time object detection model, Tiny YOLO, which
is a simpler but efficient version of YOLO. We implemented
max-pooling and batch-normalization in SNNs according to
(Rueckauer et al. 2017). Tiny YOLO is tested on non-trivial
datasets, PASCAL VOC and MS COCO. Our simulation is
based on the TensorFlow Eager and we conducted all exper-
iments on NVIDIA Tesla V100 GPUs.
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Figure 7: Experimental results of Spiking-YOLO on PASCAL VOC (left) and MS COCO (right) for various configurations
(normalization methods + signed neuron w/ IBT + decoding scheme); maximum mAP is in parentheses.

Experimental results

Spiking-YOLO detection results To verify and analyze
the functionalities of the proposed methods, we investigated
the effects of the presence or absence of channel-norm and
signed neuron with IBT. As depicted in Figure 7, when
both channel-norm and signed neuron with IBT are ap-
plied, Spiking-YOLO achieves a remarkable performance of
51.83% and 25.66% on VOC PASCAL and MS COCO, re-
spectively. The target mAP of Tiny YOLO is 53.01% (PAS-
CAL VOC) and 26.24% (MS COCO). In fact, channel-norm
outperforms layer-norm in detecting objects by a large mar-
gin, especially on PASCAL VOC (53.01% vs. 48.94%), and
converges faster. For instance, to reach the maximum mAP
of layer-norm (48.94), channel norm only requires approxi-
mately 3,500 time steps (2.3x faster). Similar results are ob-
served in MS COCO where channel-norm converges even
faster than the layer-norm (4x faster). Please refer to Table 1
for more detailed results.

Table 1: Experiment results for Spiking-YOLO (mAP %)

Signed
neuron

Norm.
method

PASCAL VOC (53.01)a MS COCO (26.24)a

Vmem Spike count Vmem Spike count

w/out IBT Layer 3.86 6.87 0.74 2.82
Channel 5.61 7.31 0.74 3.02

w/ IBT Layer 48.94 46.29 24.66 20.93
Channel 51.83 47.19 25.66 21.54

a Target mAP in parentheses

Notably, without the proposed methods, the model failed
to detect objects, reporting 6.87% and 2.82% for VOC PAS-
CAL and MS COCO, respectively. When channel-norm is
applied, the model still struggles to detect objects, report-
ing approximately 7.31% and 3.02% at the best. This is a
great indication that signed neuron with IBT accurately im-
plements the leakage term in leaky-ReLU. Thus, the rest of
the experiments were conducted using signed neuron with
IBT as the default.

For further analysis, we performed additional experiments
on two different output decoding schemes: one based on ac-
cumulated Vmem, and another based on spike count. The

quotient from Vmem / Vth indicates the spike count, and the
remainder is rounded off. This remainder will eventually be-
come an error and lost information. Therefore, the Vmem-
based output decoding scheme is more precise for interpret-
ing spike trains; Figure 7 verifies this assertion. The Vmem-
based output decoding scheme outperforms the spike-count-
based scheme and converges faster in channel-norm.

Figure 8 illustrates the efficacy of Spiking-YOLO in de-
tecting objects as the time step increases. For each example,
the far-left image (Tiny YOLO) shows the ground truth la-
bel that Spiking-YOLO attempts to replicate. In the top-left
example (three ships), after only 1000 time steps, Spiking-
YOLO with channel-norm successfully detects all three ob-
jects. Meanwhile, Spiking YOLO with layer-norm failed to
detect any objects. After 2000 time steps, it starts to draw
bounding boxes around the objects, but there are multiple
bounding boxes drawn over a single object, and their sizes
are all inaccurate. The detection performance improves as
the time steps increase but is still unsatisfactory; 5000 time
steps are required to reach the detection performance of the
proposed channel-norm. This remarkable performance of
Spiking-YOLO is also shown in the other examples in Fig-
ure 8. The proposed channel-norm shows a clear advantage
in detecting multiple and microscopic objects accurately in
a shorter period of time.

Spiking-YOLO energy efficiency To investigate energy
efficiency of Spiking-YOLO, we considered two different
approaches: a) computing operations of Spiking-YOLO and
Tiny YOLO in digital signal processing b) Spiking-YOLO
on neuromorphic chips vs. Tiny YOLO on GPUs.

Firstly, most operations in DNNs occur in convolutional
layers where the multiply-accumulate (MAC) operations
are primarily responsible during execution. SNNs, however,
perform accumulate (AC) operations because spike events
are binary operations whose input is integrated (or accu-
mulated) into a membrane potential only when spikes are
received. For a fair comparison, we focused solely on the
computational power (MAC and AC) used to execute object
detection on a single image. According to (Horowitz 2014),
a 32-bit floating-point (FL) MAC operation consumes 4.6 pJ
(0.9 + 3.7 pJ) and 0.9 pJ for an AC operation. A 32-bit inte-
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Time step 1,000

Figure 8: Object detection results (Tiny YOLO vs. Spiking-YOLO with layer-norm vs. Spiking-YOLO with channel-norm)

ger (INT) MAC operation consumes 3.2 pJ (0.1 + 3.1 pJ) and
0.1 pJ for an AC operation. Based on these measures, we cal-
culated the energy consumption of Tiny YOLO and Spiking-
YOLO by multiplying FLOPs (floating-point operations)
and the energy consumption of MAC and AC operations cal-
culated, as shown below. FLOPs of Tiny YOLO are reported
on (Redmon 2016), and that for Spiking-YOLO are calcu-
lated during our simulation. Figure 9 shows that regardless
of the normalization methods, Spiking-YOLO demonstrates
exceptional energy efficiency, over 2,000 times better than
Tiny-YOLO for 32-bit FL and INT operations.
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Figure 9: Energy comparison of Tiny YOLO and Spiking-
YOLO for MAC and AC operations; 32-bit FL (left) and
32-bit INT (right)

Secondly, SNNs on neuromorphic chips offer excellent
energy efficiency, which is an important and desirable aspect
of neural networks (Pfeiffer and Pfeil 2018). We compare
the energy consumption of Tiny YOLO and Spiking-YOLO
when each ran on the latest GPU (Titan V100) and neu-
romorphic chip (TrueNorth), respectively. The power and
GFLOPS (Giga floating-point operation per second) of Titan
V100 were obtained from (NVIDIA 2017), and GFLOPS/W
for TrueNorth is reported on (Merolla et al. 2014). We define
one time step as equal to 1ms (1 kHz synchronization signal
in (Merolla et al. 2014)).

Based on our calculations shown in Table 2, Spiking-
YOLO consumes approximately 280 times less energy than
Tiny YOLO when ran on TrueNorth. As mentioned in the
experimental results, the proposed channel-norm converges

much faster than layer-norm; therefore, the energy consump-
tion of Spiking-YOLO with channel-norm is approximately
four times less than that with layer-norm as they have similar
power consumption. Note that contemporary GPUs are far
more advanced computing technology, and the TrueNorth
chip was first introduced in 2014. As neuromorphic chips
continue to develop and have better performance, we can
expect even higher energy and computational efficiency.

Table 2: Energy comparison of Tiny YOLO (GPU) and
Spiking-YOLO (neuromorphic chips)

Tiny YOLO

Power (W) GFLOPS FLOPs Energy (J)

250 14,000 6.97E+09 0.12

Spiking-YOLO

Norm.
methods

GFLOPS
/ W FLOPs Power (W) Time

steps Energy (J)

Layer 400 5.28E+07 1.320E-04 8,000 1.06E-03
Channel 400 4.90E+07 1.225E-04 3,500 4.29E-04

Conclusion

In this paper, we have presented Spiking-YOLO, the first
SNN model that successfully performs object detection by
achieving comparable results to those of the original DNNs
on non-trivial datasets, PASCAL VOC and MS COCO. In
doing so, we proposed two novel methods. We believe that
this study represents the first step towards solving more ad-
vanced machine learning problems in deep SNNs.
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