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Abstract

Joint learning of super-resolution (SR) and inverse tone-
mapping (ITM) has been explored recently, to convert legacy
low resolution (LR) standard dynamic range (SDR) videos
to high resolution (HR) high dynamic range (HDR) videos
for the growing need of UHD HDR TV/broadcasting appli-
cations. However, previous CNN-based methods directly re-
construct the HR HDR frames from LR SDR frames, and are
only trained with a simple L2 loss. In this paper, we take
a divide-and-conquer approach in designing a novel GAN-
based joint SR-ITM network, called JSI-GAN, which is com-
posed of three task-specific subnets: an image reconstruction
subnet, a detail restoration (DR) subnet and a local contrast
enhancement (LCE) subnet. We delicately design these sub-
nets so that they are appropriately trained for the intended
purpose, learning a pair of pixel-wise 1D separable filters via
the DR subnet for detail restoration and a pixel-wise 2D local
filter by the LCE subnet for contrast enhancement. Moreover,
to train the JSI-GAN effectively, we propose a novel detail
GAN loss alongside the conventional GAN loss, which helps
enhancing both local details and contrasts to reconstruct high
quality HR HDR results. When all subnets are jointly trained
well, the predicted HR HDR results of higher quality are ob-
tained with at least 0.41 dB gain in PSNR over those gener-
ated by the previous methods. The official Tensorflow code is
available at https://github.com/JihyongOh/JSI-GAN.

Introduction

High dynamic range (HDR) videos can more realistically
represent natural scenes, with higher bit depth per pixel and
rich colors from a wider color gamut. They can be viewed
on HDR TVs, which also tend to be UHD (Ultra High Def-
inition) with very high resolution. However even with the
latest UHD HDR TVs, the vast majority of the transmitted
visual contents are still low resolution (LR), standard dy-
namic range (SDR) videos. There are also abundant exist-
ing legacy LR SDR videos, which brings about the need for
appropriate conversion technologies that can generate high
resolution (HR) HDR videos from LR SDR videos. This can
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Figure 1: Qualitative comparison against other methods. Our
method can reconstruct fine lines with realistic textures.

be achieved by joint super-resolution (SR) and inverse tone-
mapping (ITM), where SR up-scales LR videos to HR, and
ITM up-converts SDR videos to HDR.

In joint SR-ITM, it is important to restore details while
up-scaling the image resolution, and to enhance local con-
trast while increasing the signal amplitudes. In this paper, we
take a ‘divide-and-conquer’ approach by dividing this joint
problem into three sub-tasks: image reconstruction (IR), de-
tail restoration (DR), and local contrast enhancement (LCE).
A single subnet is dedicated for each of the tasks, but all
subnets are jointly trained for the same goal of joint SR-
ITM. To overcome the limitations of conventional shared-
convolution filters over input channels in each layer, we de-
sign a pair of pixel-wise 1D separable filters in the DR sub-
net for detail restoration and a pixel-wise 2D local filter in
the LCE subnet for contrast enhancement. Moreover, the 1D
separable and 2D local filters are designed to be scalable
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to up-scaling factors. This approach is inherently different
from the approaches that directly produce the output HR
HDR images. Furthermore, each input frame is divided into
its base layer and a detail layer component by the guided fil-
ter (He, Sun, and Tang 2012). In our composite framework,
the DR subnet, LCE subnet and the IR subnet are optimally
combined to finally produce faithful HR HDR results.

Generative adversarial networks (GANs) have been
widely applied in low level vision tasks, such as SR, where
they tend to generate images with high subjective (percep-
tual) quality but low objective quality (e.g. PSNR, SSIM,
etc.). For joint SR-ITM, direct generation of output images
based on the conventional GAN-based methods can lead to
unsatisfying results with lack of details and unnatural local
contrasts, since simultaneously enhancing the local contrast
and details while increasing both the bit-depth and the spa-
tial resolution becomes a very challenging task in training
GAN-based frameworks. Therefore, our GAN-based joint
SR-ITM method, called JSI-GAN, incorporates a novel de-
tail loss that enforces its generator to mimic the perceptually
realistic details in the ground truth, and a feature-matching
loss that helps mitigate the drop in objective performance by
stabilizing the training process.

Our contributions are summarized as follows:

• We first propose a GAN framework for joint SR-ITM,
called JSI-GAN, with a novel detail loss and a feature-
matching loss that enable the restoration of realistic de-
tails and force stable training.

• The generator of JSI-GAN is designed to have task-
specific subnets (DR/IR/LCE subnets) with pixel-wise 1D
separable filters for local detail improvement and a 2D lo-
cal filter for local contrast enhancement by considering
local up-sampling operation given the up-scaling factor.

• The DR subnet focuses on the high frequency components
to elaborately restore the details of the HR HDR output,
while the LCE subnet effectively restores the local con-
trast by focusing on the base layer component of the LR
SDR input.

Related Work

Pixel-Wise or Pixel-Aware Filter Learning

In convolution layers, the same convolution kernels are ap-
plied on all spatial positions of the input, and once trained,
the same kernels are used for any input image. Therefore,
to consider pixel-wise and sample-wise diversity, Braban-
dere et al. first introduced dynamic filter networks (De Bra-
bandere et al. 2016) in video and stereo prediction, where
position-specific filters are predicted through a CNN and ap-
plied as an inner product on each pixel position of the input
image. Since a different filter is applied to each pixel, and
different filters are predicted from different input images,
they allow for sample-specific and position-specific filtering.
This operation is called dynamic local filtering.

This concept was successfully utilized in other video-
related tasks, such as frame interpolation (Niklaus, Mai, and
Liu 2017b) and video SR (Jo et al. 2018). Niklaus et al.’s
first idea (Niklaus, Mai, and Liu 2017a) was similar to that

of (De Brabandere et al. 2016) with 2D local filters being
predicted, named as adaptive convolution. Their extended
work (Niklaus, Mai, and Liu 2017b) with two 1D separable
filters (horizontal/vertical) allowed to enlarge the final re-
ceptive field with the same number of parameters. For filter
generation networks, the receptive field for the final output
is solely defined by the size of the generated filter, imply-
ing that the depth or kernel sizes in the middle layers do not
affect the final receptive field. Jo et al. used 3D-CNNs and
added an up-sampling feature in generating the 2D filters
(dynamic up-sampling filters), while incorporating a con-
ventional residual network with direct reconstruction.

In our architecture, we design (i) the DR subnet with
pixel-wise 1D separable horizontal and vertical filters to cap-
ture the distinct details; (ii) the LCE subnet with pixel-wise
2D local filters so that it can focus on the local region con-
trast. With the same number of filter parameters, 1D sep-
arable filters are coarse representations of a larger region,
whereas 2D filters are finer representations of a local recep-
tive area. In our framework, the DR subnet, LCE subnet and
the IR subnet are combined to produce the final HR HDR
images.

Generative Adversarial Networks

A GAN-based framework is typically composed of a gen-
erator and a discriminator, which are trained in an adver-
sarial way, to force the generator to synthesize realistic im-
ages that are indistinguishable by the discriminator (Good-
fellow et al. 2014). Many advanced techniques and variants
of GANs have achieved significant performance improve-
ments in various computer vision tasks, especially in im-
age restoration, such as image dehazing (Qu et al. 2019),
SR (Wang et al. 2018; Ledig et al. 2017), denoising (Chen
et al. 2018a) and image enhancement (Chen et al. 2018b).
These methods adopted various GAN-based frameworks to
improve the perceptual quality for their individual purposes,
and they generally train the main network as the generator,
which is first trained with a pixel-wise norm-based loss, and
is then fine-tuned by introducing an adversarial loss with the
discriminator.

Motivated by the enhanced perceptual quality of GAN-
based methods, we also design a GAN-based framework
for joint SR-ITM. However, simply adopting conventional
GANs for joint SR-ITM leads to difficulty in training the
network for a more complex task of jointly improving
the local variations of contrast and details along with up-
converting to both higher bit depth per pixel and larger spa-
tial resolution. To guide the generator in a more effective
way to fool the discriminator and generate perceptually re-
alistic HR HDR results with the GAN-based framework, we
propose a novel detail GAN loss, which jointly optimizes a
second discriminator for the detail components decomposed
from the HR HDR prediction and the ground truth. We also
employ the feature-matching loss that is measured in the fea-
ture space of the discriminator to reduce the drop in objec-
tive performance for a more stable training.
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Figure 2: Network architecture of JSInet (Generator).

Joint SR-ITM

Deep-learning-based joint SR-ITM is a recent topic rising
with the advent of UHD HDR TVs. The first CNN-based
joint SR-ITM method (Kim and Kim 2018) took a multi-
task learning approach and focused on the advantages of
performing the individual SR and ITM tasks simultaneously,
along with the joint SR-ITM task. The more recent method
is the Deep SR-ITM (Kim, Oh, and Kim 2019), where the
input is decomposed, and element-wise modulations are in-
serted to introduce spatially-variant operations. We also use
the decomposed input for the DR subnet, but our architec-
ture incorporates pixel-wise filters of two kinds: separable
1D kernels and 2D local kernels with up-sampling that are
used to generate the final HR HDR output by filtering oper-
ations. Moreover, our network is a GAN-based framework,
differing from the previous methods.

Proposed Method

We propose a GAN-based framework for joint SR-ITM,
called JSI-GAN, where the generator, JSInet, is composed
of three different task-specific subnets.

Network Architecture (Generator)

In joint SR-ITM, it is important to restore the high frequency
details and enhance local contrast with the increase in image
resolutions and pixel amplitudes to generate a high quality
HR HDR image. Therefore, we design three subnets ded-
icated for each of these subtasks as a divide-and-conquer
approach: the image reconstruction (IR) subnet reconstructs
a coarse HR HDR image; the detail restoration (DR) subnet
restores the details to be added on the coarse image; and the

local contrast enhancement (LCE) subnet generates a local
contrast mask to boost the contrast in this image. A detailed
structure of JSInet is depicted in Fig. 2.

Detail Restoration (DR) Subnet For the DR subnet, the
input is the detail layer Xd, containing the high frequency
components of the LR SDR input image X . Xd is given by,

Xd = X �Xb, (1)
where Xb is the guided filtered output of X , and � de-
notes element-wise multiplication, as in (Kim, Oh, and Kim
2019). In our implementations, a small value 10−15 is added
to the denominator to prevent Xd from diverging in case Xb

approaches zero. Xd is utilized to generate horizontal and
vertical 1D separable filters. Formally, a residual block (Res-
Block) RB is defined as,

RB(x) = (Conv ◦RL ◦ Conv ◦RL)(x) + x, (2)
where x is the input to the ResBlock, Conv is a convolution
layer, and RL is a ReLU activation. Then, the horizontal 1D
filter fh

1D is obtained by,

fh
1D = (Conv ◦RL ◦RB4 ◦ Conv)(Xd), (3)

where RBn denotes a serial cascade of n ResBlocks. The
vertical 1D filter fv

1D can be obtained in the same way as Eq.
(3). As shown in Fig. 2, all layers except the last convolution
layer are shared when producing fh

1D and fv
1D.

Each of the two last convolution layers consists of 41 ×
scale × scale output channels, where 41 is the length
of the 1D separable kernel, each applied onto its corre-
sponding grid location, and scale × scale takes into ac-
count the pixel shuffling operation for the up-scaling fac-
tor scale. Hence, this dynamic separable up-sampling oper-
ation (∗̇s) applies two 1D separable filters while producing
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the spatially-upscaled output. Then, the final filtered output
of the DR subnet is given by,

D = Xd ∗̇s (fv
1D, fh

1D). (4)
The generated 1D kernels are position-specific, and also
detail-specific, as different kernels are generated for differ-
ent detail layers, unlike convolution filters that are fixed af-
ter training. In our implementations, fv

1D was first applied to
the detail layer via local filtering for each scale channel, fol-
lowed by applying fh

1D on its output. Finally, pixel shuffle
was applied on the final filtered output with scale × scale
channels for spatial up-scaling. With the same number of
parameters, the 1D separable kernels represent a wider re-
ceptive field (2k parameters), but as a coarse approximation
compared to a 2D kernel (k2 parameters). In our case, the
separable 1D kernels of size k = 41 can be compared to the
2D kernel of size k = 9, with similar number of parameters.

Local Contrast Enhancement (LCE) Subnet The base
layer Xb, obtained through guided filtering, is used as the
input to the LCE subnet. The LCE subnet generates a 9 ×
9 2D local filter at each pixel grid position. As in the DR
subnet, it is also an up-sampling filter, and has 9×9×scale×
scale output channels in the last layer. The 2D filter f2D is
then given by,

f2D = (Conv ◦RL ◦RB4 ◦ Conv)(Xb). (5)
With the 2D local filter predicted, dynamic 2D up-sampling
operation (∗̇) is performed, and 2 × sigmoid(x) is applied
so that the the output lies in the range [0, 2] with the middle
value at x = 0 being 1. Formally, the final output Cl of the
LCE subnet is given as,

Cl = 2× sigmoid(Xb ∗̇ f2D). (6)
As Cl is considered an LCE mask, and is element-wisely
multiplied onto the sum of the two outputs from the IR and
DR subnets, the JSInet converges better with the scaled sig-
moid function. Without it, the pixel values of the initial pre-
dicted outputs (after multiplying with Cl) are too small, en-
tailing much longer training time for the final HR HDR out-
put of JSInet to reach an appropriate pixel range.

Image Reconstruction Subnet For the IR subnet, the LR
SDR input X as itself is entered, to first produce the inter-
mediate features iIR as shown in Fig. 2, given by,

iIR = (RB ◦ Conv)(X). (7)
Then, iIR is concatenated with iDR from the DR subnet,
and the final output I of the IR subnet is directly generated
(without local filtering) as,

I = (Conv◦PS◦RL◦Conv◦RL◦RB3)([iIR, iDR]),
(8)

where PS is a pixel-shuffle operator and [x, y] is the con-
catenation of x and y in the channel direction.

Then, the final HR HDR prediction P is generated by
adding the details (D) to I followed by multiplying the con-
trast mask (Cl) to the result, given by,

P = (I +D)× Cl. (9)
We provide an ablation study on the three subnets and
demonstrate that they are acting according to their given
tasks in the later sections of the paper.
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Figure 3: Discriminator architecture of JSI-GAN.

GAN-based Framework

Discriminator We employ a GAN-based framework,
where the discriminator is designed as shown in Fig. 3 with
spectral normalization (Miyato et al. 2018) for stable learn-
ing. The discriminator distinguishes the predicted HR HDR
image (P ) generated by the generator and the ground truth
image (Y ) alternatively during training. As shown in Fig. 3,
when the input x (P or Y ) is given to the discriminator Df ,
the output is obtained by,

Df (x) = (BN ◦ FC1 ◦BN ◦ FC512 ◦ LRL

◦BN ◦ 4Conv2 ◦DB4 ◦ LRL ◦ 3Conv1)(x). (10)

where BN is batch normalization (Ioffe and Szegedy 2015),
LRL is a Leaky ReLU (LReLU) activation (Maas, Hannun,
and Ng ) with a slope size of 0.2, FCk is a fully-connected
layer with k output channels, and kConvs denotes k × k
kernels with a stride s. The input sizes (H × H) and output
channels (c) for each layer are specified as (H, c) on the left
of each layer/block in Fig. 3. DBn denotes n-times serially
connected DisBlocks, where DB (DisBlock) is given as,

DB(x) = (LRL ◦BN ◦ 3Conv1 ◦ LRL

◦BN ◦ 4Conv2)(x). (11)

Adversarial Loss The RaHinge GAN loss (Jolicoeur-
Martineau 2019) is adopted as a basic adversarial loss for
efficient training, which is given by

LD
adv = E

Y
[max(0, Q̃

(−)
Y,P )] + E

P
[max(0, Q̃

(+)
P,Y )] (12)

LG
adv = E

P
[max(0, Q̃

(−)
P,Y ))] + E

Y
[max(0, Q̃

(+)
Y,P ))] (13)

where LD
adv and LG

adv denote the RaHinge GAN losses for
the discriminator Df and the generator G, respectively, and
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Q̃
(±)
P,Y = 1 ± D̃P,Y with D̃P,Y = Df (P ) − EY Df (Y ).

It should be noted in Eq. (13) that LG
adv contains both

the Y and P , meaning that the generator is trained by
gradients from both the Y and P during the adversar-
ial training. We also use a feature-matching loss Lfm =
∑4

i=1 ‖fmi(Y )− fmi(P )‖2, where the L2 loss is mea-
sured between feature maps fmi(·) of Y and P , from the
first LReLU output of the i-th DisBlock as shown in Fig. 3.
However, simple utilization of the above two losses is insuf-
ficient to effectively train the generator for joint SR-ITM.

Detail GAN Loss We propose a novel detail GAN loss
Ld
adv for the joint SR-ITM task, in order to enforce more

stable training and generate visually pleasing HR HDR re-
sults. Ld

adv is calculated according to Eq. (12) and Eq. (13)
by replacing Y with Yd and P with Pd, where the subscript d
denotes the detail layer component of the original image. For
Ld
adv , we adopt a second discriminator (D2) distinguished

from the first discriminator (D1), both of which have the
same architecture as shown in Fig. 3, but D2 alternatively
takes two inputs Pd and Yd, calculated by Eq. (1). Ld

adv not
only guides the generator for a more stable training but also
helps improve both local contrasts and details in the pre-
dicted HR HDR images.

Total Loss The total loss for our proposed GAN-based
framework for joint SR-ITM is given by

LD1
= LD1

adv, LD2
= λd · Ld,D2

adv , (14)

LG = λrec · ‖Y − P‖2 + λadv · (LG
adv + λd · Ld,G

adv)

+ λfm · (Lfm + λd · Ld
fm), (15)

where the superscript d means the loss for detail layer com-
ponents (Pd, Yd). We provide another ablation study on the
losses Lfm and Ld, and especially show the effect of the
newly proposed Ld

adv , in the later sections of the paper.

Experiment Results

Experiment Conditions

For training, the generator was first pre-trained based only
upon the L2 loss with the initial learning rate of 10−4, which
is then decreased by a factor of 10 at epochs 200 and 225,
of total 250 epochs, yielding the JSInet. Then it was fine-
tuned based on a stable GAN-based framework with three
losses (LG, LD1

, LD2
) at the initial learning rate of 10−6

that linearly decays to zero from the 5-th epoch of total 10
epochs, which finally yields the JSI-GAN. For training, we
used three Adam optimizers (Kingma and Ba 2015) for min-
imizing LD1 , LD2 and LG, and all convolution weights were
initialized by the Xavier method (Glorot and Bengio 2010).
The generator G and the two discriminators (D1, D2) are
trained alternatively by the three corresponding Adam opti-
mizers. The weighting parameters for the losses were empir-
ically set to λrec = 1, λadv = 1, λfm = 0.5 and λd = 0.5.

In the generator, the kernel size of the convolution filters
were set to 3 × 3 with 64 output channels, except for the

Table 1: Ablation study on the subnets.
Variant (a) (b) (c) (d) (e) (f)

IR � � � � � �
DR � �(-) � � �(-) �

LCE � � � � � �

PSNR 35.44 35.89 35.88 35.67 35.68 35.99

SSIM 0.9756 0.9762 0.9773 0.9761 0.9756 0.9768
*(-): Subtraction instead of division to obtain the detail layer.
**PSNR is measured in dB.

last layer that predicts local filters for the DR subnet and
the LCE subnet, and the layer before pixel shuffle for the
IR subnet. The structure of both D1 and D2 has the channel
outputs of c = 32. The LR SDR patches of size 80 × 80
(H = 80) or 40 × 40 (H = 40) were cropped from 8-
bit YUV frames in BT.709 (ITU-R 2002) for scale factor 2
and 4 respectively, and the ground truth (HR HDR) patches
of size 160 × 160 (H = 160) were cropped from the cor-
responding 10-bit YUV frames in BT.2020 (ITU-R 2014)
color container after PQ-OETF (SMPTE 2014), following
the setting in previous work (Kim, Oh, and Kim 2019). For
training and testing the JSI-GAN, we utilized the 4K HDR
dataset used in (Kim, Oh, and Kim 2019) and adopted Ten-
sorflow 1.13 in our implementations.

Performance of JSInet

We first investigate the performance of JSInet that is trained
solely on the L2 loss without the GAN framework, by ana-
lyzing the efficacy of its three subnets.

Ablation Study of Subnets We first performed an abla-
tion study on the three subnets in JSInet, by retraining differ-
ent variants of the network. Table 1 shows the PSNR/SSIM
performance of six combinations (variants) of the three sub-
nets, where the IR subnet is essential for all cases. As shown
in column (c) of Table 1, employing the DR subnet to the IR
subnet brings 0.44 dB gain in PSNR, and additionally using
the LCE subnet in column (f), further increases the PSNR
by 0.11 dB, resulting in a total 0.55 dB gain over only using
the IR subnet in column (a). It is also noted that the LCE
subnet brings a higher performance gain when fused with
the IR subnet (column (d)) with 0.23 dB gain, meaning that
the LCE subnet is complementarily beneficial with the DR
subnet.

We have also provided the experiment results for a dif-
ferent decomposition strategy, subtraction, on the input im-
ages instead of division in Eq. (1), with the sign (-) in Table
1. For the structure in column (b) and (c), there is minimal
difference in PSNR, although division yields slightly better
performance for SSIM. However, when the LCE subnet is
jointly utilized, division outperforms subtraction by a larger
margin of 0.31 dB in PSNR, since for column (e), as the
local contrast map Cl (obtained from the base layer) is mul-
tiplied to the coarse image I with the added details D in Eq.
(9), the subtraction operation is unmatched with the multi-
plication operation.

Some additional results not marked in Table 1 were the
following. (i) If the concatenation of iDR was removed,

11291



Figure 4: Visualization of the subnet predictions.

Table 2: Combinations of direct reconstruction and filter
generation for the network with IR/DR subnets.

IR subnet direct filter direct
DR subnet direct direct filter
PSNR (dB) 35.73 34.14 35.88

SSIM 0.9765 0.9662 0.9773

there was a 0.02 dB drop in PSNR from the network in Table
1 (c). (ii) If feature maps iLCE from the LCE subnet were
additionally concatenated along with iIR and iDR, there was
a 0.25 dB drop in PSNR from the network in Table 1 (f).
Note that only iIR and iDR are stacked in the final genera-
tor architecture of our proposed JSInet in Fig. 2. (iii) If the
image X was stacked with Xd for the input of the DR sub-
net, following the idea of providing guidance to the detail
layer in (Kim, Oh, and Kim 2019), there was actually a mini-
mal decrease, or no difference in PSNR, when experimented
with the network in Table 1 (b) and Table 1 (c), respectively.

Visual Analysis To verify that each of the subnets is fo-
cusing on their dedicated tasks, the intermediate predictions
(I,D,Cl) of the subnets and the final prediction P are vi-
sualized in Fig. 4. For visualization, I, |D|, Cl and P were
first linearly scaled to a maximum value of 8 bits/pixel, and
|D| was further scaled by 64 for better visualization. In Fig.
4, the added details D are invariant to the brightness context
(1st and 2nd rows) and lighting conditions (3rd row), fo-
cusing only on the edges and texture as intended. The LCE
mask Cl effectively modulates the local contrast, producing
the final P with enhanced contrast.

Filter Generation Module To analyze the benefits of gen-
erating local filters, we performed an experiment with the
combinations of direct reconstruction and kernel generation
for a simple network with only the IR and DR subnet, as
shown in Table 2. For the DR subnet, it is important to apply
location-varying filters, as uniform convolution operations

Variant (b)Variant (a) Ground TruthVariant (c)

Figure 5: Effect of the weight parameters λfm and λd.

Table 3: Ablation study on the losses.
Scale ×2 ×4

Variant (a) (b) (c) (d) (e) (f)
λfm � � � � � �
λd � � � � � �

PSNR (dB) 33.73 35.63 35.73 32.11 33.48 33.50

SSIM 0.9643 0.9754 0.9763 0.9478 0.9577 0.9572

would blur the high frequency details. If the detail map D is
directly generated, there is a performance drop of 0.15 dB in
PSNR, as shown in Table 2. Moreover, if the filter genera-
tion module is used for the IR subnet, there is a drastic drop
in PSNR performance compared to the proposed combina-
tion in the last column. For the LCE subnet, we employ a
2D filter generation module so that local information can be
considered. If 1D separable kernels were predicted instead
for the LCE subnet, there was a 0.07 dB drop in performance
gain.

Performance of JSI-GAN

We also conducted an ablation study on the efficacy of var-
ious losses in terms of weighting parameters λfm and λd,
to investigate their effects. Table 3 shows the average PSNR
(dB) and SSIM performance of the JSI-GAN variants, each
of which was trained via combinations with/without λfm

and λd, for scales ×2 and ×4. If JSI-GAN is only trained
with the basic adversarial loss where λrec = 1, λadv = 1,
λfm = 0 and λd = 0, severe performance degradation is ob-
served with at most 2 dB drop in PSNR (variants (a) and (d)).
By comparing variants (b) to (a) and (e) to (d), additionally
adopting the feature-matching loss Lfm between P and Y
helps significantly in improving objective performance, with
1.9dB and 1.37dB gain in PSNR, respectively. Finally, our
proposed detail GAN loss Ld

adv between Pd and Yd allows
for further improvements in the quantitative performance as
shown in variants (c) and (f) of Table 3.

The effect of the losses is also shown qualitatively in Fig.
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Table 4: Quantitative Comparison.
Method Scale PSNR (dB) SSIM mPSNR (dB) MS-SSIM HDR-VDP (Q) Inf. Time [s] No. Parameters
EDSR+Huo et al. ×2 29.76 0.8934 31.81 0.9764 58.95 - -
EDSR+Eilertsen et al. ×2 25.80 0.7586 28.22 0.9635 53.51 - -
Multi-purpose CNN ×2 34.11 0.9671 36.38 0.9817 60.91 0.49 250K
Deep SR-ITM ×2 35.58 0.9746 37.80 0.9839 61.39 5.02 2.50M
JSInet (w/o GAN) ×2 35.99 0.9768 38.20 0.9843 60.58 1.72 1.45M
JSI-GAN (w/ GAN) ×2 35.73 0.9763 37.96 0.9841 60.80 1.72 1.45M
EDSR+Huo et al. ×4 28.90 0.8753 30.92 0.9693 55.59 - -
EDSR+Eilertsen et al. ×4 26.54 0.7822 28.75 0.9631 53.88 - -
Multi-purpose CNN ×4 33.10 0.9499 35.26 0.9758 56.41 0.34 283K
Deep SR-ITM ×4 33.61 0.9561 35.73 0.9748 56.07 4.06 2.64M
JSInet (w/o GAN) ×4 33.74 0.9598 35.93 0.9759 56.45 1.05 3.03M
JSI-GAN (w/ GAN) ×4 33.50 0.9572 34.82 0.9743 56.41 1.05 3.03M
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Figure 6: Visual comparison: JSInet and JSI-GAN.

5. Just simply adopting the basic GAN loss not only de-
grades the quantitative performance, but also severely de-
teriorates the visual qualities with the checkerboard artifacts
and unnatural details/contrasts, as shown in the leftmost col-
umn in Fig. 5. Although the feature-matching loss helps the
generator improve the overall visual quality when compar-
ing the variant (b) to (a), the proposed detail-component-
related losses (Ld,D

adv , Ld,G
adv , Ld

fm) additionally improve both
visual qualities and objective performances comparing the
variant (c) to the variants (a) and (b). As a result, the final
JSI-GAN enables the restoration of realistic details with sta-
ble training while allowing for high objective quality of the
HR HDR predictions.

Visual Comparison: JSInet and JSI-GAN

We also compare the visual results of the JSInet (without
GAN) and JSI-GAN (with GAN). Although there is a slight
drop in the performance of JSI-GAN in terms of PSNR (dB)
in Table 4, there are some qualitative differences as shown
in Fig. 6. Since JSInet is only trained via reconstruction
loss (L2) without the GAN framework, the visual results of
JSInet shown in the 1st row of Fig. 6 tends to be blurred in

general. By comparing the row (b) to row (a) in 1st and 2nd
column in Fig. 6, both local details and contrasts are boosted
by utilizing proposed GAN-based framework. Furthermore,
the ringing artifacts or color artifacts observed in the homo-
geneous regions (especially in background) of the results by
JSInet, shown in 3rd and 4th columns of Fig. 6, are also en-
hanced by JSI-GAN.

Comparison with Other Methods

We compare our JSI-GAN with the two previous joint SR-
ITM methods, the Multi-purpose CNN (Kim and Kim 2018)
and Deep SR-ITM (Kim, Oh, and Kim 2019). The proposed
JSI-GAN is trained on the same data as Deep SR-ITM, and
the Multi-purpose CNN was re-trained on the same data.
Additionally, the JSI-GAN is also compared with the cas-
cades of an SR method, EDSR (Lim et al. 2017), and two
ITM methods (Huo et al. 2014; Eilertsen et al. 2017). Note
that Huo et all’s method is not data-driven, and thus invari-
ant to training data. Since Eilertsen et al.’s method was de-
signed to be trained only for saturated pixel regions, it was
not trained with our data that does not contain enough satu-
rated pixel regions (unlike luminance-map-type data used in
their dataset). The pre-trained model of EDSR as provided
in the official code is used. The previous methods were com-
pared following the experiment protocol on the ITM predic-
tion pipeline and visualization as described in Deep SR-ITM
(Kim, Oh, and Kim 2019).

Quantitative Comparison The quantitative comparison
of the proposed JSInet and JSI-GAN against the previous
methods is given in Table 4. The performance is measured
using error-based metrics such as PSNR and mPSNR, and
structural metrics such as SSIM and MS-SSIM, as well as
HDR-VDP-2.2.1 (Mantiuk et al. 2011), which is able to
measure the performance degradation in all luminance con-
ditions. The CNN-based joint SR-ITM methods outperform
the cascaded methods by a large margin, and our JSInet out-
performs the other methods in all cases except for HDR-
VDP for scale factor 2. The proposed JSI-GAN also shows
good quantitative performance, thanks to the stable training
that mitigates the drop in objective performance metrics.

Additionally, we provide the inference time in seconds
and the number of parameters for the joint SR-ITM meth-
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Figure 7: Qualitative Comparison.

ods, which are denoted as Inf. Time and No. Parameters in
Table 4, when converting to 4K target resolution measured
with an NVIDIA TITAN Xp GPU. Note that only the gener-
ator parameters are computed for JSI-GAN, and the number
of parameters increases proportionally with the scale factor
due to the parameters dedicated for the local filters.

Qualitative Comparison The qualitative comparison of
the proposed JSI-GAN is given in Fig. 1 and Fig. 7. In Fig. 1,
our method is able to reconstruct the fine lines on the win-
dow, produce more tree-like textures, and generate correct
horizontal patterns on the wall. Likewise in Fig. 7, JSI-GAN
generates fine details with enhanced contrast without arti-
facts in the homogeneous regions, thanks to the task-specific
subnets and the detail component-related losses.

Conclusion

In this paper, we first proposed a GAN-based framework for
joint SR-ITM, called JSI-GAN, where the generator (JSInet)
jointly optimizes the three task-specific subnets designed
with pixel-wise 1D separable filters for fine detail restora-
tion and pixel-wise 2D local filters for contrast enhance-

ment. These subnets were carefully designed for their in-
tended purposes to boost the output performance. Moreover,
we also proposed a novel detail GAN loss alongside the con-
ventional GAN loss, which helps enhancing both the local
details and contrasts for generating high quality HR HDR
reconstructions. We analyzed the efficacy of the subnet com-
ponents and the weighting parameters for losses with inten-
sive ablation studies. Our proposed JSI-GAN, which is ap-
plicable for directly converting LR SDR frames to HR HDR
ones in real-world applications, achieves the state-of-the-art
performance over the previous methods.
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