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Abstract

Social media has been widely used among billions of people
with dramatical participation of new users every day. Among
them, social networks maintain the basic social characters
and host huge amount of personal data. While protecting user
sensitive data is obvious and demanding, information leak-
age due to adversarial attacks is somehow unavoidable, yet
hard to detect. For example, implicit social relation such as
family information may be simply exposed by network struc-
ture and hosted face images through off-the-shelf graph neu-
ral networks (GNN), which will be empirically proved in this
paper. To address this issue, in this paper, we propose a novel
adversarial attack algorithm for social good. First, we start
from conventional visual family understanding problem, and
demonstrate that familial information can easily be exposed
to attackers by connecting sneak shots to social networks.
Second, to protect family privacy on social networks, we pro-
pose a novel adversarial attack algorithm that produces both
adversarial features and graph under a given budget. Specif-
ically, both features on the node and edges between nodes
will be perturbed gradually such that the probe images and
its family information can not be identified correctly through
conventional GNN. Extensive experiments on a popular vi-
sual social dataset have demonstrated that our defense strat-
egy can significantly mitigate the impacts of family informa-
tion leakage.

Introduction
We are living in the era of modern technology and now our
lives are surrounded by social media networks. These net-
works allow us to connect and share our everyday activ-
ities with friends, family and others, but notably some of
them are user sensitive data. It is our attention to protect
those “explicit” sensitive data like credentials by all means,
nonetheless other information gets leaked through an “im-
plicit” manner. And this social information is critical to cer-
tain group of people. For example, it can be imagined how
furious the celebrity will be when their family members pho-
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Figure 1: A sneak shot by someone can be used to find out
the family information of the target through social network.

tos (especially children) are exposed without their permis-
sion. On the other hand, with the rapid development in AI,
and especially the new wave caused by deep learning and
newly developed tools ready for various social data, we usu-
ally have limited knowledge about what additional informa-
tion will be inferred from the social networks. For example,
people’s browsing and reading interests (Google Chrome),
shopping habits (Amazon), and movie preferences (Netflix)
have been analyzed by advanced algorithms, and it is our
feeling that these algorithms know us better than ourselves.
In fact, all these services and convenience are supposed to
serve for social good under the permission of the users, but
sometimes unintentional leakage could occur. This becomes
more likely for the user groups of limited knowledge or time
for inspection, and puts their privacy at risk.

Here we conceptually demonstrate with an unintentional
information leakage scenario on the social network. The
photo of a targeted person is first captured by the attacker
without permission. Then by connecting this photo to exist-
ing social networks (e.g., Facebook), the attacker may not
only find the identity of the target, but also his/her private
family information through dedicated algorithms, e.g., graph
neural networks (GNN) (Zhang, Cui, and Zhu 2018), which
will be experimentally demonstrated later. This idea is vi-
sualized in Figure 1. Generally, people have no willing to
disclose personal data in such a manner, but it has already
been out of our control, as long as people remain connected
by the society and the Internet.

In fact, such risk is NOT rare on the Internet, and could
be quickly transmitted and propagated through AI algo-
rithms in an automatic manner. To parse the visual informa-
tion of images on social media, off-the-shelf tools rooted in
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convolutional neural network (CNN) has proved their val-
ues on a variety of visual recognition tasks (Krizhevsky,
Sutskever, and Hinton 2012; He et al. 2016). Most impor-
tantly, recent research claims that family and kin relation
can be identified through facial images and social context
in the photo (Guo, Dibeklioglu, and Van der Maaten 2014;
Shao, Xia, and Fu 2014). On the other hand, graph neural
networks have been widely used for networked data for bet-
ter representation and downstream tasks such as node classi-
fication, link prediction, community discovery and anomaly
detection. It does not only model the network topology, but
also the attributes themselves on the nodes, which may work
effectively with other multi-modal deep features.

The above family information leakage is rather a so-
cial network problem, as both visual features of face and
their social context in and beyond the photo are criti-
cal. Recent attempts mainly focus on the social context in
the photos (Guo, Dibeklioglu, and Van der Maaten 2014;
Shao, Xia, and Fu 2014). In fact, images are not alone but
usually attached and hosted by social networks, and con-
nections among them can be made up by identity, family
connections, friendship, or working relation. If we follow
a similar way but only target on family information based
on visual features as well as graph topology, it turns out to
a valuable semi-supervised learning problem on the graph,
which, to the best of our knowledge, has not yet been ex-
plored. In this research work, we hypothesize that this will
cause an even severe information leakage, and demonstrate
by the experiments in later sections. Thus, our research goal
is to effectively protect social privacy in this regard through
a new adversary learning model.

Adversarial samples (Goodfellow, Shlens, and Szegedy
2014) have attracted substantial attention in the field of secu-
rity, which however, originated from a few intriguing obser-
vations on deep visual features. It has shown that by adding
tiny noises, the pre-trained deep learning models can be eas-
ily fooled. To that end, more and more works have been
proposed for better “attacks” and “defense” strategies. No-
tably, most of existing adversarial sample studies focus on
visual or high-dimensional data, a necessary condition for
attacks in this regimen. It comes to our attention recently
that graph may also be subject to adversarial attacks by flip-
ping the edges therein. This naturally leads to the following
question: “can we use both adversarial samples and graph
for social good?” To achieve this goal, we first demonstrate
by the facts of family information leakage on social net-
works through graph neural network modeling. Second, we
develop a novel joint adversarial attack modeling based on
both node features and graph to effectively perturb the social
network under the given budget and thus avoid the leakage
of family information. In brief, the contributions of this pa-
per can be summarized as:

• Demonstrate the family information is at risk on social
network through plain graph neural networks.

• Propose a joint adversarial attack modeling on both fea-
tures and graph structure for family privacy protection.

• Quantitatively and qualitatively shows the effectiveness of
our framework on networked visual family datasets.

Related Work
Visual Family Understanding
Early works on visual family understanding focus on two
well-defined face image based problems: (1) kinship veri-
fication, (2) family recognition. Kinship verification refers
to identifying kin relation between two given samples,
based on the evidence from psychology and cognitive sci-
ences (Daly and Wilson 1982; Alvergne, Faurie, and Ray-
mond 2007) that human faces convey similar characteris-
tics among family members. Such approaches may be ap-
plied to family album organization, social media mining and
can be used in issues such as human trafficking and finding
missing children, in refugee crisis, etc. (Yan and Hu 2018;
Robinson et al. 2018). Family recognition on the other hand
attempts to identify the family from a pool of family data
for the probe sample, which becomes even challenging with
the increasing number of families in the wild. To validate
this research, a few visual family and kinship datasets have
been released recently, including Families in the Wild (FIW)
(Robinson et al. 2018), KinFaceW (Lu et al. 2013), Family-
101 (Fang et al. 2013), TSKinFace (Qin, Tan, and Chen
2015), etc. In this paper, we focus on family recognition but
from a social network perspective. Different from existing
works, both visual information and graph topology will be
considered, and we cast the original family recognition prob-
lem to a semi-supervised learning on the graph.

Graph and Network Embedding
As a fundamental work for networked data, embedding (or
network data dimensionality reduction) has been widely ex-
plored for decades. Early work focuses on graph embedding
for better feature extraction for data distributed on manifold
including (Belkin and Niyogi 2002; Roweis and Saul 2000;
Yan et al. 2007). In the era of social networks, networked
data become another research focus, and various network
embeddings have been proposed including (Perozzi, Al-
Rfou, and Skiena 2014; Grover and Leskovec 2016). It is
not until recently that deep learning philosophy has been
successfully integrated with network embedding, i.e., Graph
Neural Networks (GNN) (Zhang, Cui, and Zhu 2018) and
promotes a series of methods including Graph Convolutional
Neural Network (GCN) (Kipf and Welling 2016), ChebyNet
(Defferrard, Bresson, and Vandergheynst 2016), and Graph-
SAGE (Hamilton, Ying, and Leskovec 2017). While these
approaches are originally proposed for networked data such
as citation network, protein network, etc., they could also be
the foundation of this research which may be directly ap-
plied to our social network based family recognition.

In this research, we will explore two aspects of GNN.
Namely, (1) how to apply GNN to challenging family recog-
nition problem to simulate the scenario of information leak-
age; (2) adversarial graph to protect the family privacy. To
our knowledge, both of them are not explored in the previ-
ous research.

Adversarial Samples and Graph
Adversarial sample was first introduced by by Szegedy et al.
in (Szegedy et al. 2013) and further interpreted in (Goodfel-
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Figure 2: Framework Overview.

low, Shlens, and Szegedy 2014). The following works have
significantly promoted this thought and spawn considerable
intriguing “attack” and “defense” strategies. See two recent
survey works (Akhtar and Mian 2018; Yuan et al. 2019) for
more details. Leading works along this line usually attempt
to perturbed features of the target by deviating them from
the original gradient directions including FGSM (Goodfel-
low, Shlens, and Szegedy 2014), I-FGSM (Xie et al. 2018),
MI-FGSM (Dong et al. 2018), Papernot’s method (Papernot
et al. 2016) and C&W method (Carlini and Wagner 2017;
Ozdag 2018). The generated adversarial examples usually
target at high-dimensional data. The added small perturba-
tions to the original images will then misguide the classifier.
Attacks are also designed based on human visual sensitivity
(Shen et al. 2019). Different from existing works and their
motivations, we carry this idea in another direction where
we take advantage of adversarial samples to safeguard the
privacy of family on social networks.

A recent trend is adversarial graph that accounts for at-
tacks launched towards graph topology (Sun et al. 2018),
which has not been well discussed in adversarial samples
regime. Under the network environment, attackers are al-
lowed to inject false data such as creating fake followers
on social networks. In brief, approaches in this line can be
divided into two groups, namely, (1) graph poisoning (Bo-
jchevski and Günnemann 2019); (2) graph evasion (Zügner
and Günnemann 2019). While the first one targets at the
original graph such that the perturbed graph may affect the
model training, the second one gets involved during the
testing time. In this work, we take advantage of the recent
graph poisoning work (Bojchevski and Günnemann 2019)
to perturb the graph and flip the edges. In this way, we are
more likely to discover the key connections that will poten-
tially avoid the family information leakage. The contami-
nated graph will then be fed to the learning model (GNN)
during the running time. This will work together with the
adversarial samples to better protect the privacy.

Social Kinship Modeling
Social Family Recognition (SFR)
In this section, we will demonstrate that family recognition
can be well addressed under the network environment by

casting it to a semi-supervised learning problem on the so-
cial networks. Therefore, we will be able to prove our hy-
pothesis that family understanding is rather a social network
problem, which we formally name as social family recogni-
tion (SFR). Conventional visual family recognition (VFR) is
to train a multi-class classifier first, and then assign family
labels to each probe image in the running time. Therefore,
the familial visual features are the key to success. Even with
the most recent deep features designed for visual kinship,
e.g., SphereNet (Liu et al. 2017), the accuracy is far from
acceptable. Next, we simulate the social network environ-
ment and construct a graph to host labeled family images,
unlabeled images and sneak shot by attackers.

Attack simulation on graph The overall framework il-
lustration can be found in Figure 2. Assume on existing so-
cial networks, there is accessible public information for each
subject such as name (identity), family information (family
tag), as well as large amount of unlabeled data that attackers
can only view their profile photos. There is also pairwise in-
formation encoding the relations between two subjects such
as same identity and have kin relation on the networks. In ad-
dition, based on the visual similarity of two faces, attackers
can link the sneak shot to the most similar faces via off-the-
shelf deep features. Afterwards, the sneak shot is latched to
the networks and attacks would be launched. This is illus-
trated in the first step of Figure 2.

Family Recognition on the Graph
First, let us define G = (V,E) be an attributed and undi-
rected graph where V denotes the set of nodes and E de-
notes the set of edges. Further let A ∈ {0, 1}N×N be an ad-
jacency matrix and X ∈ R

N×D represents the node features
where N is the number of samples, and D is the dimen-
sion of the input feature. Next, we formally model the social
family recognition as a semi-supervised learning problem on
the graph. Assume the labeled and unlabeled image feature
matrices are XL ∈ R

D×NL and XU ∈ R
D×NU , respec-

tively, and the corresponding label vector is yL ∈ R
NL .

Our goal (i.e., attacker’s aim) is to find out the mapping
fG : ([XL, XU ]) �→ ([yL, yU ]) as well as the label vector
yU ∈ R

NU for the unlabeled samples.
Second, we will elaborate the graph construction process.
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In our graph, each node represents visual features generated
by the state-of-the-art kinship descriptors, while edges en-
code the relation between two nodes. Without loss of gen-
erality and as explained before, we consider three different
edges: (1) identity (ID); (2) kinship (KIN); (3) k nearest
neighbor (KNN). ID edges link nodes of the same identity,
and similarly KIN edges link two nodes of the same family
label. To avoid isolated nodes, we apply KNN graphs to our
problem. By varying the number of images with family la-
bels or of same identity, and the number of neighbors k, we
are allowed to generate different simulated social networks.

Next, we will take advantage of the recent GNN model to
solve the proposed SFR on graph (Kipf and Welling 2016).
Basically, we will take both labeled nodes XL, unlabeled
nodes XU , and graph G in the training stage. Once the GNN
parametersWG are learned, labels of unlabeled nodes on the
graph will be assigned. The feed-forward process in GNN is
defined as: H l = gl(H

l−1, A) where g is a non-linear map-
ping function, H is the hidden layer representation, and l
indexes the layer. Essentially, node features in each layer are
aggregated via graph and then passed to next layer, namely,

H l = σ
(
D̃− 1

2 ÃD̃− 1
2H(l−1)W (l−1)

)
, (1)

where Ã = A + IN is the adjacency matrix with self-loops
by adding identity matrix IN . D̃ii =

∑
j Ãij , W (l) is the

l-th layer trainable weight matrix, and σ(.) represents acti-
vation function (usually ReLU). In our work, node features
H(0) are extracted by SphereNet pre-trained on FIW dataset.
Then these features are fed to a two-layer GNN. The output
of our deep learning model can be formulated as:

Z = softmax
(
ÂReLU

(
ÂXW (0)

)
W (1)

)
, (2)

where Z is the network output, and Â = D̃− 1
2 ÃD̃− 1

2 . Soft-
max function here normalizes the output feature in a row-
wise manner. By using the entropy loss summed over labeled
dataset, the model parameterWG can be trained end-to-end.
The relevant results can be found in the first subsection of
Experiment Results.

Adversary for Familial Privacy Protection
It can be seen that family information is at risk on the so-
cial network via the proposed GNN model. Next, we will
briefly describe how to use adversarial samples methodol-
ogy to protect family privacy. Afterwards, we will discuss
two separated ways of protecting family privacy followed
by a joint framework that embraces the merits of both.

Privacy protection and defense philosophy Since pub-
lic information on social networks is available to everyone,
we are allowed to add imperceivable noise to labeled images
(i.e., family labels) in the same way as adversarial samples.
This is doable for social websites while attackers are blind to
this. In the meanwhile, social websites are able to hide cer-
tain links based on public information with respect to iden-
tity and family information. When adding adversarial noise
to data, the pairwise similarity changes, which will affect
the connections based on this, e.g., k nearest neighbor links.
All of these allow us to construct the following adversarial

attacks for privacy protection and social good, as shown in
Figure 2, the second and third steps.

Visual Familial Feature Perturbation
Facial images are typically used in visual family recogni-
tion (VFR), and thus we will explore ways of compromising
visual features, namely, SphereNet features. Note that other
CNN models can also be applied here by following white
box attack. Representations from fully connected layers are
used as input which can be compromised through off-the-
shelf tools including Fast Gradient Sign Method (FGSM)
(Goodfellow, Shlens, and Szegedy 2014). Other recent ad-
versarial sample models in the same vein can also be applied
here, but explorations in that vein is beyond the scope of this
paper. Note that only data with family labels are perturbed.

By borrowing the gradient information from SphereNet
(also applicable to other CNN models), we are allowed to
generate adversarial samples of the node features. Essen-
tially, FGSM generates perturbation by updating features in
the direction of the sign of the gradient at each pixel, which
can be formally defined as:

x′ ← x+ η , η = εsign(∇xJ(WSphNet, x, y)), (3)

where WF is the model parameters of pre-trained
SphereNet, ∇x is the gradient of the loss function J(·) with
respect to input x with true label y. ε controls the magni-
tude of the perturbation to be applied on the input. Once the
SphereNet is learned, all these parameters are known and
easy to calculate. The perturbed sample x′ can be generated
by simply adding the noise to the clean data.

A key issue in this attack is maintaining a small value
for ε such that this perturbation is not noticeable for both
regular users, and attackers. In other words, a heavily per-
turbed sample will not be recognized, but this change can
be perceived by everyone. In our adversarial sample model-
ing, we always start from small ε, and may stop increasing
its value if perturbation is observable. Another key differ-
ence with the conventional adversarial sample methods is
we are perturbing node features before GNN training, sim-
ilar to the graph poisoning philosophy. Once the model is
trained, sneak shots from attackers will not be recognized
correctly. While in regular adversarial attack, the data will
not be perturbed until the running time.

Social Graph Perturbation
As our research targets are most likely hosted by social web-
sites, and our preliminary research has shown that family
recognition can be hacked easily on graph, we are well mo-
tivated to perturb the topology of the social networks, in ad-
dition to the node features for family privacy protection. Fur-
thermore, we are using adversarial graphs for “defense” and
require the graph perturbation to be blind to attackers. Thus,
graph poisoning approach is more appropriate in our case.
Namely, the graph will be perturbed before the model learn-
ing to maximize the loss of attacker’s model. Inspired by
recent graph perturbation work, we optimize the adversarial
graph under the network embedding framework.

Assume the affinity graph after perturbation is A′ and the
embedding of the graph to be optimized is V ∈ R

N×d, then
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A′ can be optimized through the following model:

max
A′
LE(V ∗, A′), s.t., ‖A−A′‖0 = e,A′ = A′T , (4)

where e is the budget on edge flips, ‖ · ‖0 indicates matrix
�0 norm, and LE denotes a generic loss function for Graph
Embedding. It should be noted that the embedding V ∗ is
not jointly optimized in Eq. (4) in an explicit manner, and
we may consider its solution being part of the solution to
A′, if the embedding is modeled through DeepWalk algo-
rithm (Perozzi, Al-Rfou, and Skiena 2014). In fact, the loss
of DeepWalk algorithm that optimizes Z∗ and A′ that con-
tributes to edge flip are both determined by the same spec-
trum, while the latter is slightly perturbed by a single flip
on the graph. Therefore, by targeting at a fixed dimension r
(i.e., rank-r SVD approximation) for V and maximizing the
loss caused by a single flip in A′, we are allowed to find the
adversarial flips on the graph in an greedy manner. Empiri-
cally, such strategy is not only working well on DeepWalk,
but also for GNN used in our SFR problem. To that end, an
incremental evaluation has been shown in Figure 3(a), 3(b)
and Figure 5 to demonstrate that with more edges flipped,
attackers have less chance (lower accuracy) to obtain the fa-
milial privacy.

Joint Feature and Graph Adversarial Samples
It can be seen that both feature and graph perturbations con-
tribute to our research goal, and their integration may im-
prove the effectiveness while keeping the budget of each
of them low. We may formulate this joint adversarial attack
model as the following:

max
{X′,A′}

LAD(X ′, A′) � max
{X′,A′}

lnZ∗
pert − lnZ∗

clean,

s.t., λ‖A−A′‖0 + (1− λ)‖X −X ′‖F ≤ θ,
(5)

where LAD indicates the loss function of the joint attack,
θ is the total budget, ‖ · ‖F indicates the matrix Frobenius
norm, and λ is a balancing parameter. Z∗

pert is the softmax
output of labeled data based on perturbed feature and graph,
and Z∗

clean is that based on clean data and graph. Compared
with Eq. (4), there are three changes: (1) feature perturbation
and corresponding loss are added; (2) balance between fea-
tures and graph perturbation are considered, controlled by
λ; (3) the loss is determined by the softmax output of GNN.
Intuitively, once θ and λ are fixed, we may search over the
domain defined by A′ and X ′, and obtain the maximum loss
of LAD. However, this bi-level problem has no closed-form
solution. In this paper, we propose to approach this problem
by decomposing into two sub-problems, and solve one at a
time in an iterative manner:⎧⎪⎪⎨

⎪⎪⎩

X ′
(t+1) = argmax

X′
(t)

LG(X ′
(t);A(t),WG , ε)

A′
(t+1) = argmax

A′
(t)

LG(A′
(t);X(t),WG , e)

(6)

The first sub-problem can be solved by FGSM using the
gradient of GCN loss with respect to features X ′ at step t,
with affinity A′ and WG parameters fixed. In fact, we can
also perturb the original image through SphereNet, similar

Input: X,A, e, ε, λ, θ.
Output:WGCN from the last training, X ′

(t), A
′
(t).

Set A′
(0)←A, X ′

(0)←X , t = 0, ε = Δε = 0.00025,
e = Δe = 0.05|E| ;

while λ× e
|E| + (1− λ)× 100ε ≤ θ do

Compute X ′
(t+1) with budget ε based on Eq. (3) ;

Compute A′
(t+1) with budget e based on Eq. (4);

if LG(X ′
(t+1), A

′
(t)) > LG(X ′

(t), A
′
(t+1)) then

UpdateWG by X ′
(t+1) and A′

(t);
A′

(t+1) = A′
(t) ;

ε← ε+Δε;
end
else

UpdateWG by X ′
(t) and A′

(t+1) ;
X ′

(t+1) = X ′
(t) ;

e←e+Δe;
end
t←t+ 1;

end
Algorithm 1: Procedure of Joint Adversarial Attack.

to Eq. (3). The benefit are two folds. (1) FGSM works es-
pecially well on high-dimension input, namely, the original
image; (2) It depends only on image rather than image plus
graph under the GCN framework. Further discussions can
be found in Figure 6(b) in experiments. The second sub-
problem is essentially a graph poisoning problem discussed
in (Bojchevski and Günnemann 2019). As edge flipping is
non-derivable due to the discrete nature of the problem, we
also refer to the approximate solution to problem in Eq. (4)
to solve the second sub-problem.

So far, we have been discussing loss minimization while
ignoring the budgets allowed to perturb the affinity graph
and feature matrix, namely, the total budget θ in problem Eq.
(5). In fact, in our iterative solution, the incremental budget
changes are not easy to quantify, and how to budget between
X ′ and A′ is unclear. To make the entire problem tractable,
we pursue a local solution through greedy search. Each time,
for a pre-defined incremental budget: Δε for feature and Δe
for edges, we compare the loss LG caused by perturbed fea-
tures and perturbed graph, respectively. If perturbed features
lead to a larger loss, then we will budget feature perturba-
tion in this iteration; otherwise, we will budget graph per-
turbation. The process will repeat until the total budget θ
is reached, and we are allowed to further balance budgets
between features and graph through λ. The details of joint
attack algorithm can be found in Algorithm 1.

Experiments
Database and settings In this study we have used Fami-
lies In the Wild (FIW) dataset (Robinson et al. 2018). FIW
is the largest visual kinship dataset available which com-
prises of 11 types of relationships which range from same
generation, e.g., Brother to Brother (B-B) to first, e.g., Fa-
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Figure 3: Budget, accuracy and model loss in different iterations.

ther to Daughter (F-D), and second generation, e.g., Grand
Mother to Grand Daughter (GM-GD). It contains 11,932
family photos of 1000 families where on average 12 images
are from each family and 656,954 image pairs are divided
between 11 relationships. Pairs are labeled with true kin re-
lation or false kin relation.

Pre-processing and configuration First, we have pre-
processed the FIW dataset by extracting the features of the
images by using pre-trained SphereNet model, and the di-
mension of node features is thus reduced to 512. Second, we
construct the social graph to fulfill social family recognition
by considering three factors: (1) number of labeled family
members; (2) number of images per person; (3) number of
neighbors in KNN graph. Their meaning and illustration also
can be found in Figure 2. More details and impacts of these
parameters will be discussed in the following sections.

We have created two social networks: small one with 100
families termed ‘Family-100’ and a large one with 300 fam-
ilies termed “Family-300”. Family-100 dataset contains 502
subjects and 2758 facial images where on average each fam-
ily has 5 kin members and each member has 5 face images.
Among 2758 nodes, we have used 502 nodes for training
with graph, while the rest for validation and testing. Family-
300 dataset contains 1712 members and 10255 face images.
We have used 1712 nodes for training with graph, while rest
of them are used for validation and testing.

In all experiments, we use PyTorch library, SphereNet and
GCN open implementation by (Kipf and Welling 2016; Liu
et al. 2017). All the codes are implemented on Ubuntu16.04
system with i7-8700 (3.2 GHz), 16 GB memory and a nvidia
GTX 1070 GPU card.

Experimental Results
Family recognition on the graph Family recognition has
been discussed in (Robinson et al. 2018), and here we com-
pare the results based on: (1) visual feature; (2) visual fea-
ture + graph. Under this setting, we achieve 17.00% accu-
racy via visual feature only while 98.89% accuracy via both
visual features and graph on Family-300 dataset. This is a
huge improvement, thanks to the graph that models the links
between different nodes and GNN models.

In addition, we explore the impacts of different number of
neighbors k in KNN graph (KNN), number of images with
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Figure 4: Illustration of impacts of graph parameters on
Family-100. Note when evaluating one parameter, we fixed
the rest by setting them = 5. For example, when discussing
neighbor of neighbors, we vary it from 1 to 5, while fix num-
ber of image per person and labeled family members to 5.

Table 1: Impacts of different edge types on Family-100.

Edge Type Edge Flipped Accuracy(%)KNN ID KIN
� � � 0 99.68
� � � 10000 98.57
� � � 10000 98.49
� � � 10000 95.23
� � � 10000 93.73

family label (KIN), number of images from the same iden-
tity (ID). For labeled images within one family, or images of
the same person, they will be fully connected, which simu-
lates the social network connections in real-world. It can be
seen from Figure 4 that k = 2 is good choice when building
the social networks to facilitate this problem. An increasing
number of either images per person or labeled family mem-
bers will benefit the accuracy.

Joint feature and graph adversarial samples In this sec-
tion, we will demonstrate how joint adversarial attack model
protects the family privacy. First, we will present the results
from separate attacks: (1) feature perturbation and (2) graph
perturbation, as can be seen in Figure 3(a) and 3(b), rep-
resented by red and purple dot lines, respectively. Note to
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Figure 5: Illustration of changes on the graph when flipping different numbers of edges on Family-100. “16224-Original” means
the flipped edges given the edge budget of 16224, and “21633-16224” means additional flipped edges given a larger budget
21633 compared to the previous budget 16224.

make a fair comparison between feature and edge perturba-
tion budgets, we create basic measurement for each of them.
For feature perturbation, we use ε × 100 as the basic mea-
surement; for graph perturbation, we use percentage of the
flipped edges as the basic measurement. To compute the to-
tal budget from both, we introduced a balancing parameter
λ. Therefore, the total budget will be:

Total-Budget = λ∗Edge-Flipping-Ratio+(1−λ)∗100∗ ε,
which is usually in the rage of [0,1]. As expected, with larger
ε and number of flipped edges, the family recognition accu-
racy continues decreasing, and in general, feature perturba-
tion works better in this case. The downside of each is ex-
cessive use of one particular attack, which compromises the
attack effectiveness.

Second, we conduct the joint attack whose results can be
found in Figure 3(a) and 3(b), represented by black, green
and blue curves. We show five results with different λ values.
It can be learned that most of joint attacks work better than
single attack, and on the two datasets, λ = 0.2 works best. It
also shows that our joint attack works well in a large range
with respect to budget weight λ.

Third, as our solution is based on greedy search leading
to local solution, it is necessary to check the convergence of
the model. In our case, we check the model training loss and
family recognition accuracy after each re-training. In Figure
3(c), 13 iterations from 5 trials are shown. As expected (in
terms of adversarial attack), the loss becomes larger while
the accuracy becomes lower with more iterations.

Discussions
First, we test the impacts of different edge types and re-
sults can be found in Table 1. It can be seen that flipping
edges of different types may have different impacts, and KIN
edge is very effective among three types. In addition, using
a mixture of three based on their contributions (graph per-
turbation) shows the best performance. We also demonstrate
the roles of different edges through the graph changes given
different edge budgets in Figure 5. We consider four bud-
gets: 16224, 21633, 37858, 54083, and visualize the flipped
edges between two given budgets on the first four figures,
and the accuracy change on the fifth figure, where each cir-
cle presents an edge budget. Therefore, we may know what
edges are flipped when given larger edge budgets. It can be
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Figure 6: Impacts of ε on visual and node features.

seen that from the beginning, a mixture of KIN, ID, and
KNN edges are considered, but the effectiveness of the per-
turbation is not significant as the major structure of the graph
does not change. With more edges flipped, there is an accel-
eration on the perturbation effects, and more KIN and ID
edges are flipped, which echoes the results from Table 1.

Last, we also show the impacts of ε under different con-
ditions. When perturbing the face images directly which lie
in high dimensional space, a smaller ε would work well. In
Figure 6(b), ε < 0.02 (red curve) can achieve very good
results, and this perturbation can be barely perceived in Fig
6(a). When using SphereNet feature (512D) as the attack tar-
get (blue curve), even larger ε > 0.8 can not provide accept-
able result, and at this magnitude, there is already significant
noise found on the face image. While the noise is on the fea-
ture space in this case, it reflects the facts that the feature
perturbation is perceivable. In brief, even feature perturba-
tion approaches like FGSM weigh more and lead to better
budget on Family-100 and Family-300 datasets, it has limi-
tation when feature dimension is relatively low. Therefore, it
might be appropriate to weigh more on graph perturbation.

Conclusions
In this paper, we proposed a novel joint adversarial attack
model to prevent family information leakage through social
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network. First, we demonstrated the family information will
be hacked through social networks and plain Graph Neu-
ral Networks and sneak shot on the street. Second, a de-
fense mechanism based on the joint adversarial attack has
been developed. Specifically, both perturbation on the node
features and graph were considered and optimized given a
pre-defined budget. Experiments on popular visual kinship
dataset have shown our defense strategy was effective when
limited changes upon budgets were made towards data.
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Bojchevski, A., and Günnemann, S. 2019. Adversarial attacks on
node embeddings via graph poisoning. In International Conference
on Machine Learning, 695–704.
Carlini, N., and Wagner, D. 2017. Towards evaluating the robust-
ness of neural networks. In 2017 IEEE Symposium on Security and
Privacy (SP), 39–57. IEEE.
Daly, M., and Wilson, M. I. 1982. Whom are newborn babies said
to resemble? Ethology and Sociobiology 3(2):69–78.
Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016. Con-
volutional neural networks on graphs with fast localized spectral
filtering. In Advances in Neural Information Processing Systems,
3844–3852.
Dong, Y.; Liao, F.; Pang, T.; Su, H.; Zhu, J.; Hu, X.; and Li, J. 2018.
Boosting adversarial attacks with momentum. In IEEE Conference
on Computer Vision and Pattern Recognition, 9185–9193.
Fang, R.; Gallagher, A. C.; Chen, T.; and Loui, A. 2013. Kinship
classification by modeling facial feature heredity. In 2013 IEEE
International Conference on Image Processing, 2983–2987. IEEE.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572.
Grover, A., and Leskovec, J. 2016. node2vec: Scalable fea-
ture learning for networks. In 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 855–864.
ACM.
Guo, Y.; Dibeklioglu, H.; and Van der Maaten, L. 2014. Graph-
based kinship recognition. In 2014 22nd International Conference
on Pattern Recognition, 4287–4292. IEEE.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive represen-
tation learning on large graphs. In Advances in Neural Information
Processing Systems, 1024–1034.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learn-
ing for image recognition. In IEEE Conference on Computer Vision
and Pattern Recognition, 770–778.
Kipf, T. N., and Welling, M. 2016. Semi-supervised clas-
sification with graph convolutional networks. arXiv preprint
arXiv:1609.02907.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Imagenet
classification with deep convolutional neural networks. In Ad-
vances in Neural Information Processing Systems, 1097–1105.

Liu, W.; Wen, Y.; Yu, Z.; Li, M.; Raj, B.; and Song, L. 2017.
Sphereface: Deep hypersphere embedding for face recognition. In
IEEE Conference on Computer Vision and Pattern Recognition,
212–220.
Lu, J.; Zhou, X.; Tan, Y.-P.; Shang, Y.; and Zhou, J. 2013.
Neighborhood repulsed metric learning for kinship verification.
IEEE Transactions on Pattern Analysis and Machine Intelligence
36(2):331–345.
Ozdag, M. 2018. Adversarial attacks and defenses against deep
neural networks: A survey. Procedia Computer Science 140:152–
161.
Papernot, N.; McDaniel, P.; Wu, X.; Jha, S.; and Swami, A. 2016.
Distillation as a defense to adversarial perturbations against deep
neural networks. In 2016 IEEE Symposium on Security and Privacy
(SP), 582–597. IEEE.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk: Online
learning of social representations. In 20th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining,
701–710. ACM.
Qin, X.; Tan, X.; and Chen, S. 2015. Tri-subject kinship verifi-
cation: Understanding the core of a family. IEEE Transactions on
Multimedia 17(10):1855–1867.
Robinson, J. P.; Shao, M.; Wu, Y.; Liu, H.; Gillis, T.; and Fu,
Y. 2018. Visual kinship recognition of families in the wild.
IEEE Transactions on Pattern Analysis and Machine Intelligence
40(11):2624–2637.
Roweis, S. T., and Saul, L. K. 2000. Nonlinear dimensionality
reduction by locally linear embedding. Science 290(5500):2323–
2326.
Shao, M.; Xia, S.; and Fu, Y. 2014. Identity and kinship rela-
tions in group pictures. In Human-Centered Social Media Analyt-
ics. Springer. 175–190.
Shen, Z.; Fan, S.; Wong, Y.; Ng, T.-T.; and Kankanhalli, M. 2019.
Human-imperceptible privacy protection against machines. In 27th
ACM International Conference on Multimedia, 1119–1128. ACM.
Sun, L.; Wang, J.; Yu, P. S.; and Li, B. 2018. Adversarial attack and
defense on graph data: A survey. arXiv preprint arXiv:1812.10528.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.;
Goodfellow, I.; and Fergus, R. 2013. Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199.
Xie, C.; Zhang, Z.; Wang, J.; Zhou, Y.; Ren, Z.; and Yuille, A.
2018. Improving transferability of adversarial examples with input
diversity. arXiv preprint arXiv:1803.06978.
Yan, H., and Hu, J. 2018. Video-based kinship verification using
distance metric learning. Pattern Recognition 75:15–24.
Yan, S.; Xu, D.; Zhang, B.; Zhang, H.-J.; Yang, Q.; and Lin, S.
2007. Graph embedding and extensions: A general framework for
dimensionality reduction. IEEE Transactions on Pattern Analysis
and Machine Intelligence 29(1):40–51.
Yuan, X.; He, P.; Zhu, Q.; and Li, X. 2019. Adversarial exam-
ples: Attacks and defenses for deep learning. IEEE Transactions
on Neural Networks and Learning Systems.
Zhang, Z.; Cui, P.; and Zhu, W. 2018. Deep learning on graphs: A
survey. arXiv preprint arXiv:1812.04202.
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