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Abstract

Weakly-supervised temporal action localization is a very
challenging problem because frame-wise labels are not given
in the training stage while the only hint is video-level labels:
whether each video contains action frames of interest. Pre-
vious methods aggregate frame-level class scores to produce
video-level prediction and learn from video-level action la-
bels. This formulation does not fully model the problem in
that background frames are forced to be misclassified as ac-
tion classes to predict video-level labels accurately. In this
paper, we design Background Suppression Network (BaS-
Net) which introduces an auxiliary class for background and
has a two-branch weight-sharing architecture with an asym-
metrical training strategy. This enables BaS-Net to suppress
activations from background frames to improve localization
performance. Extensive experiments demonstrate the effec-
tiveness of BaS-Net and its superiority over the state-of-the-
art methods on the most popular benchmarks – THUMOS’14
and ActivityNet. Our code and the trained model are available
at https://github.com/Pilhyeon/BaSNet-pytorch.

1 Introduction
As the number of videos grows tremendously, extracting
frames with actions from untrimmed videos is becoming
more important so that humans can exploit them more ef-
ficiently. Furthermore, such frames are also useful data for
machines to learn action representations. Accordingly, tem-
poral action localization (TAL) has been developed to find
frames containing actions in untrimmed videos, usually by
training deep networks with full supervision, i.e., individual
frames are labeled as action classes or background. How-
ever, training with full supervision has several pitfalls: they
are (1) expensive (2) subjective (especially on action bound-
aries) (3) error-prone. Consequently, the research commu-
nity has been interested in weakly-supervised temporal ac-
tion localization (WTAL).

WTAL also aims to predict frame-wise labels but with
weak supervision (e.g., video-level label, frequency of ac-
tion instances in videos, or temporal ordering of action in-
stances). Among them, the video-level label is the most
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commonly used weak supervision where each video is
treated as a positive sample for action classes if it con-
tains corresponding action frames. We note that a video can
have multiple action classes as its label. In order to dis-
seminate the video-level label to individual frames, some
previous methods formulate WTAL as multiple instance
learning (MIL) which employs labels for bags of instances
rather than those for individual instances (Wang et al. 2017;
Paul, Roy, and Roy-Chowdhury 2018; Xu et al. 2019). As a
video can be defined as a set of multiple frames, they first
classify individual frames into action classes and then ag-
gregate the frame-level scores to predict the video’s action
classes so that classification loss from video-level can guide
frame-level predictions.

In this paper, we argue that previous MIL-based ap-
proaches do not fully model the problem in that background
frames have not been regarded as a separate class although
they do not belong to any action class. As a result, back-
ground frames are trained to be classified as action classes
of the video to minimize loss from video-level even though
they do not have certain features of actions. This incon-
sistency pushes background frames towards action classes,
which causes false positives and performance degradation.

To tackle this problem, we introduce an auxiliary class
for background frames. Since all untrimmed videos contain
background frames, they are positive samples for their origi-
nal action classes and the background class at the same time.
The aforementioned inconsistency is resolved as all frames
in a video now have their own categories to target. We note
that our approach is in line with fully-supervised methods
for object detection (Ren et al. 2015; Redmon et al. 2016;
Liu et al. 2016) and TAL (Shou, Wang, and Chang 2016;
Zhao et al. 2017) in employing the background class. How-
ever, in weakly-supervised setting, introducing background
class alone does not lead to improvement because we have
no negative sample for background class to train. This means
the network will eventually learn to produce high scores for
background class regardless of input videos.

Hence, to better exploit background class, we design
Background Suppression Network (BaS-Net) containing
two branches: Base branch and Suppression branch. Base
branch has the usual MIL architecture which takes frame-
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Figure 1: Visualization of the effectiveness of our method. Above is an example video from THUMOS’14 belonging to Base-
ballPitch action. The first and second row are segment-wise activation sequences from Base branch and Suppression branch
respectively, while the last row indicates ground truth (GT). The horizontal axes denote timesteps of the video, while the vertical
axes indicate the intensity of activation.

wise features as input and produces frame-wise class acti-
vation sequence (CAS) to classify videos as positive sam-
ples for their action classes and the background class. Mean-
while, Suppression branch starts with a filtering module
which is expected to attenuate input features from back-
ground frames, followed by the same architecture of Base
branch with shared weights. Unlike Base branch, the ob-
jective of Suppression branch is to minimize scores for the
background class for all videos while optimizing the orig-
inal objective for the action classes. Because two branches
share weights, they are restricted from optimizing both of
their contrasting objectives at the same time given the same
input. To resolve the restriction, the filtering module learns
to suppress the activations from backgrounds. Finally, Sup-
pression branch becomes free from the interference of back-
ground frames and, in result, localizes action more precisely.

The effectiveness of our method is illustrated in Fig. 1.
Thanks to the filtering module, Suppression branch suc-
cesses to suppress the activations from background frames
and localize the action instance more accurately. In a later
section, ablation study verifies that explicitly modeling
background class and joint learning with the contrasting
training objectives both are necessary to improve perfor-
mance.

Our contributions are three-fold:

• We introduce an auxiliary class representing background
which was a missing element to model weakly-supervised
temporal action localization problem.

• We propose an asymmetrical two-branch weight-sharing
architecture with a filtering module and contrasting objec-
tives to suppress activations from background frames.

• Our BaS-Net outperforms current state-of-the-art WTAL
methods in experiments on the most popular benchmarks
- THUMOS’14 and ActivityNet.

2 Related Work

Fully-supervised temporal action localization (TAL)
TAL is challenging because it requires not only action
classes but also temporal intervals of the actions. To tackle
the problem, previous methods mostly depend on full su-
pervision, i.e., temporal annotations. Many of them (Shou,
Wang, and Chang 2016; Yuan et al. 2016) generate proposals
by sliding window and classify them into C + 1 classes for
C action classes plus background class. Furthermore, sev-
eral work (Xu, Das, and Saenko 2017; Chao et al. 2018)
attempts to generalize object detection algorithm to TAL.
Most recently, a sophisticated proposal generation (Lin et al.
2018) and Gaussian temporal modeling (Long et al. 2019)
are proposed for accurate action localization.

Weakly-supervised temporal action localization (WTAL)
WTAL solves the same problem but with less supervision,
e.g., video-level labels. To derive frame-wise scores from
video-level labels, previous methods generate class activa-
tion sequence (CAS). Some of them tackle the conventional
problem that CAS tends to focus on a few discriminative
frames (Singh and Lee 2017; Yuan et al. 2019; Liu, Jiang,
and Wang 2019). While STPN (Nguyen et al. 2018) lever-
ages class-agnostic attention weights along with CAS, Au-
toloc (Shou et al. 2018) generates proposals by regression
instead of thresholding. Meanwhile, some work (Wang et al.
2017; Paul, Roy, and Roy-Chowdhury 2018; Xu et al. 2019)
formulates WTAL as multiple instance learning (MIL) prob-
lem as we do. However, as mentioned in Sec. 1, they do not
fully model WTAL problem in that they did not consider the
background class so background frames are to be classified
as any action class. On the contrary, we introduce an aux-
iliary background class and also propose to suppress back-
ground frames for better action localization.
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Figure 2: Overview of the proposed method. It consists of three parts: (a) Feature Extraction, (b) Base branch, and (c) Suppres-
sion branch

3 Proposed Method

In this section, we describe details of our Background Sup-
pression Network (BaS-Net). The overall architecture of
BaS-Net is illustrated in Fig. 2. Before the detailed descrip-
tion, we first formulate weakly-supervised temporal action
localization (WTAL) problem.

Problem Formulation Suppose that we are given N train-
ing videos {vn}Nn=1 with their video-level labels {yn}Nn=1,
where yn is C-dimensional binary vector with yn;c = 1 if
n-th video contains c-th action category otherwise 0 for C
classes. A video may contain multiple action classes, i.e.,∑C

c=1 yn;c ≥ 1. Each input video goes through a network
to generate frame-level class scores, i.e., class activation se-
quence (CAS). Afterwards, the scores are aggregated to pro-
duce a video-level class score. The network is trained to cor-
rectly predict video-level label, which is a proxy objective
for CAS. At test time, frame-wise action intervals are in-
ferred by thresholding CAS for predicted action classes.

3.1 Background class

As discussed in Sec. 1, without background class, activa-
tions from background frames lean towards action classes,
which causes disturbance to accurate localization. In order
to alleviate the disturbance, we introduce an auxiliary class
representing the background. Then, naturally, all training
videos are labeled as positive samples for background class
since every untrimmed video contains background frames.
This leads to a data imbalance problem where we have no
negative sample for background class to use for training
and corresponding CAS will always be high. Consequently,
adding background class alone does not bring performance
improvement, which is also verified by ablation study in Sec.
4.

3.2 Two-branch Architecture

Hence, we design a two-branch architecture to better ex-
ploit the background class. As illustrated in Fig. 2, our ar-
chitecture contains two branches following a feature extrac-
tor; Base branch and Suppression branch. Both branches,
sharing their weights, take a feature map and produce CAS
to predict video-level scores with two differences: i) Sup-
pression branch contains a filtering module which learns to
filter out background frames to ultimately suppress activa-
tions from them in CAS. ii) Their training objectives are
different. The objective of Base branch is to classify an in-
put video as a positive sample for its original action classes
and also for the background class. On the other hand, Sup-
pression branch with the filtering module is trained to min-
imize the background class score with the same objective
for original action classes. The weight-sharing strategy pre-
vents the branches from satisfying both of their objectives at
the same time when the same input is given. Therefore, the
filtering module is the only key to resolve the congested con-
dition and is trained to suppress activations from background
frames to pursue both objectives simultaneously. This re-
duces the interference of background frames and improves
the action localization performance.

3.3 Background Suppression Network

Feature extraction We first divide each input video vn
into 16-frame non-overlapping Ln segments due to memory
constraint, i.e., vn = {sn,l}Ln

l=1. To deal with large variation
of video lengths, we sample a fixed number of T segments
{s̃n,t}Tt=1 from each video. Then, we feed sampled RGB and
flow segments into the pre-trained feature extractor to gen-
erate F -dim feature vectors xRGB

n,t ∈ R
F and xflow

n,t ∈ R
F , re-

spectively. Afterwards, RGB and flow features are concate-
nated to build complete features xn,t ∈ R

2F , which are then
stacked along temporal dimension to form a feature map of
length T , i.e., Xn = [xn,1, ..., xn,T ] ∈ R

2F×T (Fig. 2 (a)).
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Base branch To predict segment-level class scores, we
generate CAS An where each segment has its class score
by feeding the feature map into temporal 1D convolutional
layers. This can be formalized as follows for a video vn:

An = fconv(Xn;φ) (1)

where φ denotes trainable parameters in the convolutional
layers and An ∈ R

(C+1)×T . An has C + 1 dimensions be-
cause we use C action classes and one auxiliary class for the
background.

Afterwards, we aggregate segment-level class scores to
derive a single video-level class score which will be com-
pared to the ground truth. There are several approaches to
gather scores and we adopt top-k mean technique following
the previous work (Wang et al. 2017; Paul, Roy, and Roy-
Chowdhury 2018). Then, video-level class score for class c
of video vn can be derived as follows:

an;c = aggregate(An, c) =
1

k
max

A⊂An[c,:]
|A|=k

∑
∀a∈A

a (2)

where k =
⌊
T
r

⌋
and r is a hyperparameter to control the

ratio of selected segments in a video.
The video-level class score is then used to predict the

probability of being a positive sample for each class by ap-
plying softmax function along class dimension:

pn = softmax(an) (3)

where pn has C + 1 dimensions and each dimension indi-
cates the probability of being a positive sample regarding its
respective category for video vn.

To train the network, we define a loss function Lbase with
binary cross-entropy loss for each class.

Lbase =
1

N

N∑
n=1

C+1∑
c=1

−ybase
n;c log(pn;c) (4)

where ybase
n = [yn;1, ..., yn;C , 1]

T ∈ R
C+1 is the video-level

label for n-th video. The additional label for the background
class is set to be positive considering that all training videos
contain background frames.

Suppression branch Different from Base branch, Sup-
pression branch contains a filtering module in its front,
which is trained to suppress background frames by the op-
posite training objective for the background class. The filter-
ing module consists of two temporal 1D convolutional lay-
ers followed by sigmoid function. The output of the filtering
module is foreground weights Wn ∈ R

T which range from
0 to 1. While the configuration of the filtering module is sim-
ilar to the attention module in STPN (Nguyen et al. 2018), it
should be noted that training objectives are different so that
its goal to target and what it learns are also different from
STPN. The foreground weights from the filtering module are
multiplied to the feature map over the temporal dimension to
filter out background frames. This step can be expressed as
follows:

X ′
n = Xn ⊗Wn (5)

where X ′
n ∈ R

2F×T and ⊗ denotes element-wise multipli-
cation over temporal dimension.

The remaining process is analogous to Base branch except
that the input feature map is different:

A′
n = fconv(X

′
n;φ) (6)

We note that the convolutional layers of two branches share
weights. Following equations (2) and (3), we obtain the
video-level class score a′n;c = aggregate(A′

n, c) and the
class-wise probability p′

n = softmax(a′n) where back-
grounds are suppressed.

We build the loss function Lsupp with binary cross-
entropy loss for each class.

Lsupp =
1

N

N∑
n=1

C+1∑
c=1

−ysupp
n;c log(p′n;c) (7)

where ysupp
n = [yn;1, ..., yn;C , 0]

T ∈ R
C+1. we set the la-

bel for the background class to 0, which is different from
that of Base branch to train the filtering module to suppress
background frames.

Joint training We jointly train Base branch and Suppres-
sion branch. The overall loss function we need to optimize
is composed as follows:

Loverall = αLbase + βLsupp + γLnorm (8)

where α, β, and γ are the hyperparmaters. Following the
previous work (Nguyen et al. 2018; Xu et al. 2019), we em-
ploy the L1 normalization of attention weights, i.e., Lnorm =
1
N

∑N
n=1 |Wn|, in order to make foreground weights more

polarized.

3.4 Classification and Localization

After describing how our model is configured and trained,
we turn to discuss how it works at test time. Since we sup-
press activations from background frames with our filter-
ing module, it is reasonable to use the output of Suppres-
sion branch for inference. For the classification, we discard
classes whose probabilities in p′n are below the threshold
θclass. Then, for the remaining categories, we threshold the
CAS with threshold θact to select candidate segments. After-
ward, each set of consecutive candidate segments becomes
a proposal. We compute the confidence score for each pro-
posal using the contrast between inner and outer areas fol-
lowing the recent work (Liu, Jiang, and Wang 2019).

4 Experiments

In this section, we evaluate our BaS-Net with extensive
experiments. We first describe details of the experimental
settings, followed by comparison with the state-of-the-art
methods and ablation study. Lastly, we visually demonstrate
qualitative results of our method.

4.1 Experimental Settings

Dataset We conduct experiments on weakly-supervised
temporal action localization task on the most popular
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Table 1: Comparison with the state-of-the-art methods on THUMOS’14. Entries are separated regarding the level of supervi-
sion. † indicates the use of additional labels, i.e., the number of action instances in videos. UNT and I3D denote the use of
UntrimmedNets and I3D network as the feature extractor, respectively.

Supervision Method mAP@IoU
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Full

Richard et al. (2016) 39.7 35.7 30.0 23.2 15.2 - - - -
S-CNN (2016) 47.7 43.5 36.3 28.7 19.0 10.3 5.3 - -
Yeung et al. (2016) 48.9 44.0 36.0 36.0 36.0 26.4 17.1 - -
PSDF + T-SVM (2016) 51.4 42.6 33.6 26.1 18.8 - - - -
CDC (2017) - - 40.1 29.4 23.3 13.1 7.9 - -
Yuan et al. (2017) 51.0 45.2 36.5 27.8 17.8 - - - -
CBR (2017) 60.1 56.7 50.1 41.3 31.0 19.1 9.9 - -
R-C3D (2017) 54.5 51.5 44.8 35.6 28.9 - - - -
SSN (2017) 66.0 59.4 51.9 41.0 29.8 - - - -
SSAD (2017) 50.1 47.8 43.0 35.0 24.6 - - - -
TPC (2018) - - 44.1 37.1 28.2 20.6 12.7 - -
TAL-Net (2018) 59.8 57.1 53.2 48.5 42.8 33.8 20.8 - -
Action Search (2018) 51.8 42.4 30.8 20.2 11.1 - -
BSN (2018) - - 53.5 45.0 36.9 28.4 20.0 - -
GTAN (2019) 69.1 63.7 57.8 47.2 38.8 - - - -

Weak† STAR (2019) 68.8 60.0 48.7 34.7 23.0 - - - -

Weak

UntrimmedNet (2017) 44.4 37.7 28.2 21.1 13.7 - - - -
Hide-and-seek (2017) 36.4 27.8 19.5 12.7 6.8 - - - -
STPN (UNT) (2018) 45.3 38.8 31.1 23.5 16.2 9.8 5.1 2.0 0.3
AutoLoc (2018) - - 35.8 29.0 21.2 13.4 5.8 - -
W-TALC (UNT) (2018) 49.0 42.8 32.0 26.0 18.8 - 6.2 - -
Liu et al. (UNT) (2019) 53.5 46.8 37.5 29.1 19.9 12.3 6.0 - -
Ours (UNT) 56.2 50.3 42.8 34.7 25.1 17.1 9.3 3.7 0.5
STPN (I3D) (2018) 52.0 44.7 35.5 25.8 16.9 9.9 4.3 1.2 0.1
W-TALC (I3D) (2018) 55.2 49.6 40.1 31.1 22.8 - 7.6 - -
MAAN (2019) 59.8 50.8 41.1 30.6 20.3 12.0 6.9 2.6 0.2
Liu et al. (I3D) (2019) 57.4 50.8 41.2 32.1 23.1 15.0 7.0 - -
Ours (I3D) 58.2 52.3 44.6 36.0 27.0 18.6 10.4 3.9 0.5

benchmarks: THUMOS’14 (Jiang et al. 2014) and Ac-
tivityNet (Caba Heilbron et al. 2015). They consist of
untrimmed videos and provide both video-level action labels
and frame-level temporal annotations. Note that we utilize
only video-level labels for training and temporal annotations
are used only for evaluation.

Evaluation Metrics Following standard evaluation met-
rics, we measure mean average precision (mAP) at several
different levels of intersection of union (IoU) thresholds.
We employ the evaluation code provided by ActivityNet1 to
evaluate methods on both datasets.

Implementation Details We use two networks, namely
UntrimmedNet (Wang et al. 2017) and I3D networks (Car-
reira and Zisserman 2017), as our feature extractor. They
are pre-trained on ImageNet (Deng et al. 2009) and Kinet-
ics (Carreira and Zisserman 2017), respectively. We note
that the feature extractor is not fine-tuned for fair compar-
ison. We use TVL1 algorithm (Wedel et al. 2009) for gener-
ating optical flow of segments.

1https://github.com/activitynet/ActivityNet/

We fix the number of input segments T to 750. To sample
T segments from each video, we use stratified random per-
turbation during training and uniform sampling during test,
same as STPN (Nguyen et al. 2018). All hyperparameters
are empirically determined by grid search; r = 8, α = 1,
β = 1, γ = 10−4, and θclass = 0.25. For θact, we use
a set of thresholds from 0 to 0.5 with the step 0.025 and
perform non-maximum suppression (NMS) with threshold
0.7 to remove highly overlapped proposals. Experiments are
conducted on a single GTX 1080Ti GPU.

4.2 Comparison with state-of-the-art methods

We compare our BaS-Net with current state-of-the-art fully-
supervised and weakly-supervised approaches at the sev-
eral IoU thresholds. The results on THUMOS’14, Activi-
tyNet1.2 and 1.3 are summarized in Table 1, Table 4 and
Table 3, respectively. In the tables, methods at different lev-
els of supervision are separated by horizontal lines for fair
comparison. We note that STAR (Xu et al. 2019) cannot be
directly compared with our method2.

2STAR is a weakly-supervised method yet its level of super-
vision is different from that of ours since they exploit additional
annotations, i.e., frequency of action instances.
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Table 2: Effect of each component on the action localization performance on THUMOS’14. The column AVG denotes the
average mAP under the IoU thresholds from 0.1 to 0.9

mAP@IoU
Base

branch
background

class
Suppression

branch 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 AVG

baseline � 32.3 25.2 19.8 15.9 12.0 8.7 4.7 1.4 0.2 13.4
Base branch � � 28.5 23.0 18.1 13.7 9.2 5.8 2.7 0.8 0.1 11.3

Suppression branch � � 49.1 42.5 33.5 26.0 18.6 12.8 6.2 2.0 0.5 21.2
BaS-Net � � � 58.2 52.3 44.6 36.0 27.0 18.6 10.4 3.9 0.5 27.9

Table 3: Comparison on ActivityNet1.3 validation set. The
entries with an asterisk are from ActivityNet Challenge
while † denotes additional use of frequency of action in-
stances in videos for training. The column AVG means the
average mAP at IoU thresholds 0.5:0.05:0.95.

Supervision Method mAP@IoU
0.5 0.75 0.95 AVG

Full

Singh et al. (2016)* 34.5 - - -
CDC (2017)* 45.3 26.0 0.2 23.8
TCN (2017)* 36.4 21.2 3.9 -
Xiong et al. (2017)* 39.1 23.5 5.5 24.0
SSAD (2017)* 49.0 32.9 7.9 32.3
R-C3D (2017) 26.8 - - 12.7
TAL-Net (2018) 38.2 18.3 1.3 20.2
BSN (2018) 52.5 33.5 8.9 33.7
GTAN (2019) 52.6 34.1 8.9 34.3

Weak† STAR (2019) 31.1 18.8 4.7 -

Weak

STPN (2018) 29.3 16.9 2.6 -
MAAN (2019) 33.7 21.9 5.5 -
Liu et al. (2019) 34.0 20.9 5.7 21.2
Ours 34.5 22.5 4.9 22.2

Table 1 demonstrates the quantitative results on THU-
MOS’14 in chronological order. The lower two partitions
are grouped by choice of the feature extractor: Untrimmed-
Net (UNT) and I3D. Our method significantly outperforms
all state-of-the-art methods at the same level of supervision,
regardless of the feature extractor network. We also compare
our BaS-Net with fully-supervised approaches. Even with a
much lower level of supervision, our method shows the least
gap regarding the latest fully-supervised methods. Further-
more, it can be noticed that our method even outperforms
several fully-supervised methods at some IoU thresholds.

We also evaluate our BaS-Net on ActivityNet1.3 in Ta-
ble 3. We see that our method outperforms all other weakly-
supervised approaches. Moreover, despite using weaker la-
bels, our algorithm outperforms STAR at all IoU thresholds.

Experimental results on ActivityNet1.2 are shown in Ta-
ble 4 to compare our method with more methods. Our model
outperforms all weakly-supervised methods, following the
fully-supervised method with a small gap.

4.3 Ablation study

In Table 2, We conduct ablation study on THUMOS’14
to investigate the contributions of different components of
BaS-Net.

• Baseline. We set the baseline with vanilla MIL setting,
i.e., Base branch without the auxiliary background class.

Table 4: Comparison with other methods on ActivityNet1.2
validation set. The column AVG shows the average mAP at
IoU thresholds 0.5:0.05:0.95.

Supervision Method mAP@IoU
0.5 0.75 0.95 AVG

Full SSN (2017) 41.3 27.0 6.1 26.6

Weak

AutoLoc (2018) 27.3 15.1 3.3 16.0
W-TALC (2018) 37.0 - - 18.0
Liu et al. (2019) 36.8 22.0 5.6 22.4
Ours 38.5 24.2 5.6 24.3

Table 5: Performances for detecting background frames on
THUMOS’14 (F-measure).

Base branch Suppression branch BaS-Net
F-measure 0.541 0.775 0.846

• Base branch. We add an auxiliary class for background
into the baseline, i.e., Base branch. As shown, the per-
formance does not improve, rather decreases. We conjec-
ture that it is because the network is trained to always
produce high activations of the background class for any
video due to the lack of negative samples, causing distur-
bance to classification. It indicates that solely correcting
WTAL problem setting by explicitly modeling the back-
ground class cannot lead to performance improvement.

• Suppression branch. We evaluate a variant with only
Suppression branch in order to assess the role of Base
branch. With the filtering module acting like attention, it
improves the localization performance from the baseline.
However, we note that it is not derived from the back-
ground modeling, since there is no positive sample for
background class.

• BaS-Net. By employing both branches and jointly train-
ing them with contrasting objectives, BaS-Net learns the
background class as well as action classes and shows the
best performance with large gaps from the others.

We also perform experiments on how effective each
branch is for detecting background frames by measuring F-
measure. Table 5 demonstrates that BaS-Net requires joint
learning of both branches.

4.4 Qualitative results

Fig. 3 shows several qualitative results on THUMOS’14.

• Sparse case. Fig. 3 (a) is a challenging example be-
cause humans look small and actions sparsely occur i.e.,
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Figure 3: Qualitative results on THUMOS’14. For each example, there are three plots with several sampled frames. The first
and second plot represent segment-wise activation sequences of the corresponding action from Base branch and Suppression
branch, respectively. The last plot indicates the ground truths. The horizontal axes in the plots is the timesteps of the videos,
while the vertical axes in the first two plots indicate the activation intensity which ranges from 0 to 1.

background frames occupy a large portion of the video.
Despite these challenges, our method successfully sup-
presses the activation from background frames and further
seeks the action interval precisely.

• Frequent case. In Fig. 3 (b), the video has significantly
frequent actions of Shotput, which makes the localization
difficult. Nonetheless, by distinguishing actions from the
background, our method can accurately find the actions.

• Challenging background case. Fig. 3 (c) shows an ex-
ample with challenging background which has a very
similar appearance to foreground. As a result, in Base
branch, some background frames show even higher acti-
vation than foreground frames. Even so, our Suppression
branch successfully attenuate background activations, in-
dicating that explicitly modeling background is important.

5 Conclusion

In this work, we identified a problem posed by the lack
of background modeling in the previous weakly-supervised
temporal action localization methods. To solve the problem,
we proposed to classify not only action classes but also the
background class in multiple instance learning. Moreover,
to better exploit background information, we introduced
a new two-branch architecture and asymmetrical training
strategy. Ablation study showed that the background class
and the training strategy both are necessary to achieve per-
formance improvement. Through the extensive experiments,
we demonstrated that our framework is effective for sup-
pressing background and outperforms the current state-of-
the-art methods for weakly-supervised temporal action lo-
calization task on both THUMOS’14 and ActivityNet.
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